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Abstract

We show that causal effects can be nonparametrically identified using only bunching phe-
nomena (i.e., in the absence of instrumental variables, panel data, or other strategies currently
used for nonparametric causal identification). Specifically, if the treatment variable has bunch-
ing, we show that the selection bias can be identified. The main insight is the application of the
change-of-variables theorem from integration theory, which allows us to write the selection bias
as a ratio of the density of the treatment and the density of the selection function. Although
the selection function cannot be identified, at the bunching point, the outcome differences re-
flect only the selection function and the idiosyncratic error. Thus, the density of the selection
function can be recovered via deconvolution of the idiosyncratic errors from the distribution of
the outcome at the bunching point. Our main result identifies the average causal response to
the treatment among individuals who marginally select into the bunching point. We further
show that, under additional smoothness assumptions on the endogeneity bias, the treatment
effects away from the bunching point may also be identified. We propose estimators based on
standard software packages and apply the method to estimate the effect of maternal smoking
during pregnancy on birth weight.

1 Introduction

In this paper, we show that bunching in the distribution of a treatment variable can be used
to identify causal effects in the absence of the tools currently used for causal identification. In
particular, although the treatment may be endogenous, we do not rely on instrumental variables,
regression discontinuity designs, panel data, functional form, or distributional assumptions.

The setting is a standard causal model where both the treatment and the outcome variables are
observed. The treatment variable has a bunching point, and is continuously distributed near the
bunching point. The example in our application is a useful benchmark, where the treatment is the
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number of cigarettes a woman smokes during pregnancy (with 81% of the observations bunching
at zero), and the outcome is the baby’s birth weight. Caetano (2015) showed strong evidence of
endogeneity in this application. To identify treatment effects, we need to get rid of selection bias,
the part of the outcome variation that is due to confounders.

The key insight that makes the identification possible is that the change-of-variables theorem
from integration theory can be used to write the magnitude of selection bias as the ratio of the
probability density of the treatment variable and the probability density of the part of the outcome
that is due to confounders. As a consequence, we do not need to observe the values of those
confounders; it is instead sufficient to identify the distribution of the part of the outcome that
varies with confounders. This is where bunching is useful: at the bunching point, the outcome
variation is due only to confounders, since the treatment stays fixed. We use the distribution of the
outcome at the bunching point to identify the selection bias.

We identify the average marginal effect at the bunching point among those near the bunching
point (equivalently, we identify the rate of outcome response to a marginal increase in treatment at
the bunching point, among the observations at the bunching point that are most similar to those
near the bunching point). In our application, this quantity represents the expected rate of birth
weight loss if a woman who is currently not a smoker but is very similar to the women who smoke
very little were to start smoking. Alternatively, this quantity can be interpreted as the expected
rate of birth weight gain if the women who currently smoke little were to quit smoking.

The approach relies on four conditions. First, the treatment effects must be sufficiently smooth
near the bunching point. In our application, the condition on the treatment effects means that
smoking is not so poisonous that a marginal amount of smoking could on average cause a discrete
birth weight change. Second, the selection function must also be sufficiently smooth at the bunching
point. In our application, this means that the mothers who smoke a marginal amount are comparable
to the mothers who do not smoke but are indifferent between not smoking and smoking a positive
amount. Third, the selection bias maintains the same sign in a neighborhood near the bunching
point. In our application, it means that if smoking selection is negative among mothers who smoke
little (i.e. smoking less is associated with higher untreated birth weights), then selecting into not
smoking (i.e. selecting to not smoke as a corner solution) must be associated with even higher birth
weights. Finally, the outcomes at the bunching point are determined by confounders, but we also
allow additional (unconfounded) variation, which must then be deconvolved. By construction, the
unconfounded variation is mean independent of the confounders, but the deconvolution step requires
full independence at the bunching point (or alternatively the weaker subindependence condition in
(Schennach, 2019)).

If the selection function is real analytic, then our results allow the identification of ATTs near
the bunching point. If some bounds on the selection bias derivatives can be assumed, then the ATTs
can be identified further away. Specifically, we can identify the effect among those who took a given
treatment value versus a counterfactual where they take the bunching point treatment value. In our
application, it is thus possible to identify the birth weight gains (or losses) if mothers who smoke a
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given amount were to quit smoking.
We propose estimators that use well-known building blocks. We estimate expectations and

derivatives near the bunching point with local linear estimators (Fan and Gijbels, 1992) and bound-
ary densities using Pinkse and Schurter (2021)’s estimator, both of which achieve interior rates of
convergence at the boundary. The deconvolution step follows standard nonparametric methods,
equivalent to a standard kernel density estimator using a special kernel. All building blocks can be
implemented by plugging in existing packaged software.

We also explore how controls may be used to study heterogeneous treatment effects as well
as to weaken the identification assumptions (which may all then be required only conditional on
controls). In particular, this allows the sign of selection bias near the bunching point to be different
for different groups of observations. We discuss estimation in cases with discrete and continuous
controls, as well as in the case where the vector of controls may be large, and include mixed discrete
and continuous variables.

We apply our approach to the data on smoking and birth weight from Almond et al. (2005).
We show that, after correcting for the selection bias, the effect of the first daily cigarette is an
insignificant loss of about 8 grams in birth weight (less than 1/3 ounces). Smoking 5 cigarettes per
day causes an insignificant loss of less than 1 ounce (compare this to the average weight of a full
term newborn, which is 120 ounces). These estimates confirm and strengthen the qualitative point
in Almond et al. (2005) that smoking is not an important cause of birth weight.

Bunching is a common phenomenon. It is often found at zero in non-negative variables, such as
consumption goods,1 financial variables,2 time use,3 and neighborhood characteristics.4 Artificial
constraints also can generate bunching, such as regulatory minimums5 and maximums.6 Bunching
also occurs at interior points, often due to kinks or notches in budget sets, social norms and other
restrictions.7 Of course, small samples, coarse measurements, or attrition can make it impossible
to implement this method in some of the examples above.

1E.g., number of tobacco products, alcoholic beverages, caffeinated drinks, sugary drinks, fast food meals, dining
out meals, subscription services, supplements and vitamins, public transportation rides, books read, gym visits,
doctor visits, trips, fuel usage amounts, expenditure on health, fitness, travel, vacations, education, childcare.

2E.g., credit access, bequests, savings, emergency fund levels, retirement account contributions, mortgage balance,
credit card debt, student loan debt, income from investments, expenditure on ads, charitable donations, HSA and
FSA balances, life insurance coverage, number of trades.

3Bunching is found for most time uses with few exceptions. Some examples: exercising, working, watching TV,
using digital devices, doing homework, doing chores, volunteering, commuting.

4E.g., number of public transportation options or stops, retail stores, coffee shops, rental units, affordable housing
units, vacant units, electric vehicle charging stations; length of biking lanes or walking paths; areas of green space,
commercial districts, sport fields, parking lots.

5E.g., schooling time, wages, 401K contributions, coverage for auto insurance, nutritional standards for school
meals, bank capital, bank deposit insurance, age started working, age started withdrawing from retirement accounts,
age retired.

6E.g., contribution size in 401K, Roth IRA, HSA, FSA accounts, untaxed gifts, FHA loans, FDIC insurance,
carbon emissions, liquor licenses, lot coverage, contributions to political campaigns, data usage, grades, absences
from school, class size, commissions on sales.

7E.g. income at tax brackets, hours worked at overtime rules, multiples of 5, 40 hours per week, car speeds at ticket
thresholds, financial reporting around profit targets, energy consumption around utility billing tiers, pricing below
psychological points ($0.99), doctor visits at medical protocol numbers, hospital stay length at insurance payment
thresholds.
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The use of bunching phenomena for identification began with Saez (2010), followed by a large
applied literature interested in the effect of a policy change (or a related structural parameter) at
the threshold of a manipulable variable, which ends up with bunching at the change threshold.
Theoretical treatment of these approaches may be found in Blomquist et al. (2021), Bertanha et al.
(2023b), Goff (2023) and Lu et al. (2024). Our approach is more related to the literature initiated
by Caetano (2015), where bunching for any reason on the treatment variable of a reduced form
causal model allows the testing of the model’s identification conditions (see Caetano et al. (2016),
Caetano and Maheshri (2018), Caetano et al. (2021), and Khalil and Yıldız (2022)). Caetano et al.
(2023) developed the first strategy for identification of treatment effects under endogeneity in this
setting, followed by Caetano et al. (2024c) and Caetano et al. (2024d), where distributional and
functional form assumptions are relaxed. Surveys of the bunching literature include Kleven (2016);
Jales and Yu (2017); Blomquist et al. (2023), and Bertanha et al. (2023a). In this paper, we show
that nonparametric identification with bunching can be attained.

Section 2 introduces our setting, in which a treatment is continuously distributed near a bunching
point, and introduces a novel approach to identification of the average marginal treatment effect
using the change-of-variables theorem from integration theory. We detail how the average marginal
treatment effect at the bunching point can be identified in Section 3, and how treatment effects can
then be identified away from the bunching point in Section 4. We turn to estimation in Section 5,
and in Section 6 we present the application to the effects of smoking on birth weight. We conclude
in Section 7. Appendices contain extensions for the use of controls, examples and generalizations
referred to in the text, and proofs.

2 Identification near the bunching point

In this section, we set up the identification problem in the neighborhood of the bunching point and
relate the identification of causal effects to the distribution of the selection bias.

Our setting is the standard potential outcomes framework, where observation i’s outcome reacts
to the value x of a multivalued scalar treatment variable through the potential outcome function
Yi(x). We observe the treatment value Xi and the outcome Yi = Yi(Xi). The support of Xi includes
a nondegenerate interval, whose left boundary x̄ exhibits bunching. In many relevant applications,
Xi is continuously distributed on the positive real line with the bunching point x̄ = 0. The right
panel of Figure 1 depicts this case, while the left panel depicts a case in which x̄ is in the interior
of the support of Xi. One can accommodate bunching on the right boundary of the support of Xi

by simply redefining Xi as x̄−Xi.
We will adopt the following notational conventions. For an arbitrary function v 7→ g(v),

we denote the k-th derivative at ṽ as g(k)(ṽ). For the first derivative, we also use the notation
g′(ṽ) = g(1)(ṽ). For any function g(x) let g(x̄+) := limx↓x̄ g(x). To avoid unnecessarily strong dif-
ferentiability assumptions, we define for derivatives g′(x̄+) = limx↓x̄(g(x)− g(x̄+))/(x− x̄) (rather
than as limx↓x̄ g

′(x)), which amounts to a right-derivative defined with respect to the limit g(x̄+)
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Figure 1: Two examples of bunching

0 x̄

fX(x)
Interior bunching

x̄

fX(x)
Boundary bunching

instead of g(x̄). Higher order limit derivatives g(k)(x̄+) are defined analogously. For other composite
functions (g ◦ h)(x) := g(h(x)), we let g(h(x̄+)) := (g ◦ h)(x̄+). For an arbitrary random variable
Vi, let FV (v) = P(Vi ≤ v) and fV (v) = F ′

V (v) if the derivative exists. Analogously, for a set S ⊆ R,

FV |S(v) = P(Vi ≤ v|S) and fV |S = F ′
V |S(v) if the derivative exists. For example, fV |S(x) denotes

fV (v)
P (S) for any v ∈ S. Define the sign of v as sgn(v) = 1(v ≥ 0)− 1(v ≤ 0). For a set S ⊆ R, we say
g(S) to mean the image of the function g over S. For simplicity, we say the “support of Vi” when
we mean the support of the distribution of Vi.

Remark: (Friction around x̄) The examples in Figure 1 depict “perfect” bunching in the sense of a
point mass in the distribution of Xi (to the extent that this can be visualized in a density plot).
By contrast, interior bunching is often somewhat diffuse around the bunching point, due either to
optimization frictions or Xi being measured with error. We abstract from this issue and assume
that the researcher has a means of identifying the “bunched” observations Xi = x̄. This is generally
not problematic in settings with boundary bunching, and for interior bunching measurement error
can sometimes be eliminated by having administrative data (see Goff 2023 for an example). For a
general discussion of solutions in settings with optimization frictions, see Kleven (2016).

2.1 Parameters of interest and the identification problem

To define treatment effect parameters, we let the outcome Yi(x̄) that would occur if treatment were
equal to x̄ play the role of the “untreated” state. When bunching is at zero, this recovers the familiar
notation Yi(0). Let ATT(x) denote the average effect of moving from the bunching point to point
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x, among those with Xi = x:

ATT(x) := E[Yi(x)− Yi(x̄)|Xi = x] = E[Yi|Xi = x]−E[Yi(x̄)|Xi = x],

where we have used Yi = Yi(Xi) in the rightmost expression. This expression highlights the challenge
of identifying the causal quantity ATT(x), since E[Yi(x̄)|Xi = x] is counterfactual and not directly
observed for x ̸= x̄.

In our empirical application, x measures cigarettes per day and the bunching point is x̄ = 0, so
ATT(x) measures the average birth weight loss (or gain) mothers who smoke x cigarettes incur for
smoking that amount (versus a counterfactual where they do not smoke at all). There are many
mothers in this application who smoke zero cigarettes, leading to a case of boundary bunching as in
the right panel of Figure 1. Here, the ATT(x) is the effect of smoking x cigarettes per day among
those that smoked that amount, and E[Yi(x̄)|Xi = x] is the birth weight if mothers who smoked x

cigarettes per day were to quit.
Local effects of the treatment around a value x can be obtained by inspecting the derivative of

the function ATT(x). We define the average marginal effect near the bunching point AME+
x̄ as the

right derivative of ATT(x) as x approaches the bunching point from above, i.e.

AME+
x̄ := lim

x↓x̄

ATT(x)

x− x̄
= lim

x↓x̄
E
[
Yi(x)− Yi(x̄)

x− x̄

∣∣∣∣Xi = x

]
When the bunching point is interior as in the left panel of Figure 1, or the bunching point is on
the right boundary of the support of Xi one could define a similar AME−

x̄ parameter describing
the left limit at x̄. We use the right derivative to define the treatment effects of interest to fit our
application in which bunching is at the left boundary of the support of Xi, i.e. x̄ = 0 with x a
(weakly positive) number of cigarettes. In our application, the AME+

x̄ is the rate of birth weight loss
(or gain) incurred by those who smoked just a little (versus the counterfactual where they would
not have smoked at all), expressed on a per-cigarette basis.

If the individual potential outcome functions Yi(x) are differentiable and regularity conditions
permitting the exchange of limits and expectations hold, one can interpret AME+

x̄ in terms of an
average of the derivatives Y ′

i (x) of these dose-response functions, i.e. AME+
x̄ = limx↓x̄ AME(x) with

AME(x) := E[Y ′
i (x)|Xi = x]. It is for this reason that we use the terminology of a marginal effect to

refer to Y ′
i (x), in line with e.g. Hoderlein and Mammen (2007); Imbens and Newey (2009); Chiang

and Sasaki (2019). Other authors use the term partial effect (see e.g. Sasaki 2015; Kato and Sasaki
2017), emphasizing the interpretation of Yi(x) as g(x, Ui) for an underlying structural function g

over heterogeneity Ui in potential outcomes, in which case Y ′
i (x) becomes the partial derivative of

g(x, Ui) with respect to x. A related quantity is the ACRT (average causal response on the treated
function), studied in Callaway et al. (2024). Despite our use of the term marginal effect, our results
do not require Y ′

i (x) to exist with probability one. Rather, we maintain weaker assumptions that
are nevertheless sufficient to ensure that AME+

x̄ remains well-defined.
Like with ATT(x), identifying average marginal effects is challenging because the regression
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derivative of Yi on Xi generally confounds the casual effect of treatment with a bias due to endo-
geneity:

d

dx
E[Yi|Xi = x] =

d

dx
E[Yi(x)|Xi = x] =

causal effect︷ ︸︸ ︷
d

dx
E[Yi(x)|Xi = x′]

∣∣∣∣
x′=x

+

selection bias︷ ︸︸ ︷
d

dx
E[Yi(x

′)|Xi = x]

∣∣∣∣
x′=x

where the first term above is, under regularity conditions, equal to the average marginal effect at
x: E[Y ′

i (x)|Xi = x]. An analogous decomposition for AME+
x̄ implies that:

AME+
x̄ = lim

x↓x̄

d

dx
E[Yi|Xi = x]− lim

x↓x̄

d

dx
E[Yi(x̄)|Xi = x] (1)

The first term above is the right limit of the derivative of the observed outcome and the second
term reflects endogeneity: those with different values of Xi may have different mean values of Yi(x̄).

The following definitions will be useful in simplifying the exposition throughout our analysis:

m(x) := E[Yi|Xi = x]− E[Yi|Xi = x̄+], (2)

which yields a comparison of observed outcomes at Xi = x relative to the boundary as x ↓ x̄.
Similarly, define:

s(x) := E[Yi(x̄)|Xi = x]− E[Yi(x̄)|Xi = x̄+], (3)

which denotes the comparison of the counterfactual outcomes Yi(x̄) relative to the boundary as
x ↓ x̄. Then, we write

ATT(x) = m(x)− s(x) and AME+
x̄ = m′(x̄+)− s′(x̄+), (4)

where the equalities follow from Proposition 2.1 below.
Note that the function m is identified directly from observables. In each case, the identifica-

tion challenge therefore comes from the s term, which depends on unobservable counterfactuals.
Intuitively, the equations in (4) depict the fundamental problem of causal inference, because the
observable outcome variation among those with different treatment values, mapped by the function
m, combines both the causal effect of x and selection bias, captured by the function s.

Both m and s are defined above “relative” to the limit at the bunching point, so that m(x̄+) =

s(x̄+) = 0. Note as well that since only the first term in the definitions of m and x depends on x,
m′(x) = d

dxE[Yi|Xi = x] and s′(x) = d
dxE[Yi(x̄)|Xi = x] whenever these derivatives exist.

2.2 Identification of the average marginal effect near the bunching point

The main insight of this paper is the observation that, in order to identify the derivative of the
counterfactual function E[Yi(x̄)|Xi = x] for values of x near the bunching point x̄, it is sufficient to
identify the distribution of the expected counterfactuals E[Yi(x̄)|Xi] for Xi near x̄. We then show
in Section 3 that bunching in Xi can make it possible to identify this distribution, even though the
counterfactual outcome Yi(x̄) is never observed for those with Xi ̸= x̄. The second term in (1) can
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then be estimated.

Assumption 1 (continuous support and outcome and treatment effect smoothness). The following
hold:

(i) fX(x) exists and is continuous on an open interval (x̄, x̄ + ε1) for some ε1 > 0, and fX(x̄+)

exists and is strictly positive.

(ii) The function x 7→ E[Yi|Xi = x] is differentiable on an interval (x̄, x̄ + ε2) for some ε2 > 0,
and E[Yi|Xi = x̄+] as well as limx↓x̄

d
dxE[Yi|Xi = x] exist.

(iii) ATT′(x̄+) exists, and ATT(x̄+) = 0.

Item (i) of Assumption 1 states that Xi is continuously distributed with a density on an interval to
the right of x̄, though this density need not exist everywhere (e.g. there can be multiple bunching
points provided that they are well-separated). Item (ii) says that a regression derivative exists and
the regression function and its derivative have a right limit at the bunching point. Both parts of
Assumption 1 are restrictions on the observable data that can in principle be verified empirically.

Item (iii) of Assumption 1 states that, on average the treatment effects are sufficiently smooth
near the bunching point. This means that, at least on average among those with treatment levels
near the bunching point, marginally small doses of the treatment should have only marginal effects.
This rules out the case where x̄ has a threshold effect (e.g. a sheepskin effect, for example). In the
smoking example, this condition states that, among mothers who smoke very little, smoking is not
so poisonous that a little amount can cause a stark decline in the baby’s health.

Item (iii) of Assumption 1 is sufficient to guarantee that the AME+
x̄ is well defined. This is

because, since ATT(x̄+) = 0, AME+
x̄ = ATT′(x̄+). A sufficient condition (though stronger than

necessary) for item (iii) is that the Yi(x) are differentiable and uniformly bounded with probability
one near the bunching point, which furthermore implies that AME+

x̄ = E[Y ′
i (x̄)|Xi = x̄+].

Next we make a similar assumption about counterfactuals:

Assumption 2 (counterfactuals smoothness). The function 7→ E[Yi(x̄)|Xi = x] is differentiable on
an interval (x̄, x̄+ ε3) for some ε3 > 0, where limx↓x̄

d
dxE[Yi(x̄)|Xi = x] exists and is different from

zero.

Assumption 2 requires that the selection function s(x) be differentiable in a neighborhood above
the bunching point. It also rules out the case in which there is no endogeneity when one approaches
x̄ from above, but in this case, no correction for endogeneity is necessary. Note that the presence
of endogeneity needing a correction can be diagnosed using Caetano (2015)’s test.

The following proposition establishes the connection between the parameters of interest and the
functions m and s presented in Equation (4). All proofs are found in Appendix E.

Proposition 2.1. Under Assumptions 1-2, ATT(x) = m(x)− s(x) and AME+
x̄ = m′(x̄+)− s′(x̄+).
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We now move to the first main result of this paper. Assumption 2 implies that the counterfactual
function s(x) is differentiable and locally monotonic for x in some neighborhood above the bunching
point (without loss, we can take I = (x̄, x̄ + ε), for some ε < min{ε1, ε2, ε3, ε4}, and note that ε

need never be known). The local monotonicity and differentiability in I allows us to apply the
well-known change-of-variables formula from integration theory.

Theorem 2.1 (Change of variables). If Assumptions 1 and 2 hold, then there exists I = (x̄, x̄+ ε)

for some ε > 0 such that, for x ∈ I, fs(X)|I(s(x)) exists and is non-zero for all x ∈ I, and

∣∣s′(x)∣∣ = fX|I(x)

fs(X)|I(s(x))
. (5)

Note the absolute value |s′(x)| in (5): the RHS is always positive, but s′(x) will be negative
if there is negative selection. The textbook change-of-variables formula states that fu(X)(t) =

fX(u−1(t))/|u′(u−1(t))| for any t ∈ u−1(I), given any function u(x) that is differentiable and strictly
increasing on an interval I (and anagously for a strictly decreasing u). Then the claim follows with
u(X) = s(X) and t = s(x). Though the change-of-variables formula is a standard tool (see e.g.
Fremlin 2011 for a general formulation), a proof of Theorem 2.1 is provided in Appendix E, which
also establishes the local monotonicity of s required for the change-of-variables result. Figure 2
provides a visual illustration of the change-of-variables theorem for scenarios with high and low
selections for the case when x̄ = 0, as in our application.

Figure 2: Using the Change-of-Variables Theorem to Identify s′(x̄+)

fX (x̄+) = 2fs(X)(s(x̄
+))

x̄

D
en

si
ty

High Selection: s(Xi) = 2(Xi − x̄)

fX (x̄+) = 1
3
fs(X)(s(x̄

+))

x̄̄x

D
en

si
ty

Low Selection: s(Xi) =
1
3
(Xi − x̄)

Note: The blue curve is the density of Xi ∼ N(x̄ − 1, x̄ + 1) in both panels. The red curve is the
density of s(Xi) given selection taking the linear form E[Yi(x̄)|Xi = x] = a + b · (x − x̄), so that
s(x) = b · (x− x̄) and s′(x) = b. The equations relating the heights of the solid dots on each panel
highlight the proportionality of the densities at x = x̄+, matching s′(x̄+) = b. Note that for lower
selection, the density of s(Xi) at x̄+ is larger, increasing the denominator of the s′(x̄+) formula.
This illustration assumes s(x̄+) = x̄, which is true when x̄ = 0, as in our application.

Let θ := sgn
(
limx↓x̄

d
dxE[Yi(x̄)|Xi = x]

)
= sgn(s′(x̄+)) be the sign of the selection bias as one
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approaches x̄ from the right. As an application of Theorem 2.1, we have the following expression
for AME+

x̄ :

Theorem 2.2. (Average marginal effect near the boundary) If Assumptions 1 and 2 hold, then

AME+
x̄ = m′(x̄+)− θ ·

fX|I(x̄
+)

fs(X)|I(0)
.

3 Identification using bunching

The previous section established that identification of treatment effects may be possible if we can
identify the sign of the selection bias at the boundary point, θ = sgn(s(x̄+)), and the limit of the
density of the selection bias variable, fs(X)(s(x)), as x ↓ x̄. In this section, we show how information
at the bunching point may be used to obtain these quantities.

We start by noting that the treatment variable describes two distinct concepts. First, it describes
the dose taken by an individual, i.e. the number of cigarettes smoked in our application. Second,
it tells us something about that individual, i.e. the fact that those with that treatment value
are of the “type” that selected that amount. Thus, for example, in the parameter ATT(x) =

E[Yi(x) − Yi(0)|Xi = x], the first x describes the dose, and the second describes the group that
selected it. Here, we separate the notation of the two concepts: the dose is the treatment variable,
denoted Xi, as before, and the selection variable is denoted X∗

i .
In most cases, the selection variable X∗

i is identical to Xi. Indeed, this is precisely what gives rise
to endogeneity: if X∗

i is correlated with the potential outcomes Yi(x), then the correlation between
Yi = Yi(Xi) and Xi = X∗

i reflects both the causal effect (i.e. the part that refers to the variation
of the function Yi(x) with x for a given i), and the selection function (i.e. the part that refers to
the variation of Yi(x) across the i with different values of X∗

i ). Such is the case here as well, for
values away from the bunching point. When X∗

i > x̄, there is no constraint on the treatment value,
and X∗

i = Xi. However, the bunching setting is interesting in that multiple values of the selection
variable X∗

i occur simultaneously at the same treatment value Xi = x̄.
A separation between “types” and their dosage is a common feature of the bunching literature.

See, for example Kleven and Waseem (2013), Saez (2010), Blomquist et al. (2021), Bertanha et al.
(2023b), Bertanha et al. (2023a), Caetano et al. (2023), Goff (2023), and Caetano et al. (2024c).
The separation arises from constraints on individuals’ choices that cause different types to all choose
the common bunching point. The idea is that, at the bunching point, selection breaks away from
the dose, and observations with diverse selection values have the exact same dosage amount. Thus,
the bunching point affords the possibility of learning about the relationship between the selection
and other variables without any confusion arising from the variation in the dose.

We write
Xi = max{X∗

i , x̄}, (6)

which fits the case of bunching at the left boundary of the support of Xi. The right boundary case
also fits this description, by redefining the treatment to be x̄−Xi. Interior bunching resulting from
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kinks in the budget function can also be adapted to fit Equation (6), as we describe in Example 3.2.
In general, one can think of X∗

i as an index of all observable and unobservable individual
characteristics that determine the value of the treatment. In Section 3.4, we provide examples in
which X∗

i has a specific economic interpretation in terms of structural model primitives or reduced
form quantities, and we discuss the uniqueness of X∗

i . For the purposes of this section, we provide
a brief intuitive discussion of X∗

i in the context of our empirical application to maternal smoking.
In that setting, it is natural to think that although all non-smoking mothers share a value Xi = 0

of the treatment, they may differ in the intensity of their preference towards not smoking or other
factors that influence their choice. For instance, if ρi is a parameter that governs the person’s
relative preference towards smoking, there may exist a value ρ̄ and a smooth function h such that
Xi = h(ρi) when ρi ≥ ρ̄ (i.e. when the person’s preference towards smoking is sufficiently high),
and Xi = 0 otherwise, where P (ρ < ρ̄) > 0 (i.e. some observations strictly prefer not to smoke).

Intuitively, X∗ allows us to track observations at Xi = x̄ based on how selected they are relative
to the observations near the bunching point in the positive side. The key assumptions about X∗

i

will be that the smoothness conditions from Section 2.2 can be extended to values of X∗
i around

x̄, so that those observations away from the bunching point with Xi near x̄ are comparable to the
observations with X∗

i = x̄. This allows us to substitute the limit of the density of the selection
above the bunching point in Theorem 2.2 into the density of the selection at the bunching point.
The following sections then show that the sign of the selection bias is identified (Section 3.1), and
the density may be obtained by a deconvolution from the density of the outcome at the bunching
point (Sections 3.2 and 3.3). Finally, in Section 3.4 we discuss the nature of X∗

i when it arises from
choice models, the invariance of the identification results to monotonic transformations of X∗

i , and
how it may be artificially constructed under some conditions.

3.1 Identifying the sign of the endogeneity bias, θ.

We begin by extending the definition of s(x) to X∗
i as s(x) := E[Yi(x̄)|X∗

i = x]−E[Yi(x̄)|X∗
i = x̄+].

Since Xi = X∗
i when Xi ≥ x̄, this coincides with the function s defined in Section 2.2 for all x > x̄.

Assumption 3. For any x < x̄: sgn(s(x)) = − limx↓x̄ sgn(s(x)).

Assumption 3 states that if s(x) is increasing in a positive neighborhood around the bunching
point, then s(x) < 0 for all values of x < x̄. Conversely, if s(x) is decreasing in a positive neigh-
borhood around the bunching point, then s(x) < 0 for all values of x < x̄. Specifically, either
E[Yi(x̄)|X∗

i = x′] < E[Yi(x̄)|X∗
i = x̄+] < E[Yi(x̄)|X∗

i = x′′] for all x′ < x̄ and all x′′ > x̄ in a neigh-
borhood right above the bunching point, or the reverse ordering is true. Intuitively, the selection
function E[Yi(x̄)|X∗

i = x] maintains its tendency when comparing the values at the bunching point
to the boundary as x ↓ x̄ and from there to the positive values.

In the smoking example, suppose that, among mothers smoking positive amounts, those who
smoke more are negatively selected relative to those who smoke less (i.e., smoking more is associ-
ated with worse untreated outcomes). Then, Assumption 3 states that the nonsmoking mothers

11



would have even higher birth weights. This needs to hold only on average for every selection value
(E[Yi(x̄)|X∗

i = x] > E[Yi(x̄)|X∗
i = x̄+] for x ≤ 0), so individual nonsmoking mothers could have

lower birth weights than some smoking mothers.
Assumption 3 holds trivially if E[Yi(x̄)|X∗

i ] is monotonic, in which case s(x) is also monotonic.
However, the assumption is weaker than monotonicity. Figure 3 illustrates two examples of non-
monotonic functions that satisfy Assumption 3, one case with s′(x̄) > 0, and another with s′(x̄) < 0,

respectively. Note that s(x̄+) = 0 by definition, and Assumption 3 does not constrain the behavior
of s(x) for positive x, outside of a neighborhood of the bunching point.

Figure 3: Examples of functions s that satisfy Assumption 3 but are not monotonic.

x̄ x

s(x)

x̄ x

s(x)

Note: Each panel shows an example of a selection function s(x) that satisfies Assumption 3 but is
not monotonic in x. Note that in both cases s(x̄+) = 0, which is true by definition.

Lemma 1. If Assumptions 1, 2 and 3 hold, then θ is identified as

θ = sgn
(
E[Yi|Xi = x̄+]− E[Yi|Xi = x̄]

)
.

Lemma 1 relates to Caetano (2015)’s test of exogeneity, which is based on the discontinuity of the
outcome at the bunching point. If the sign of the discontinuity is not zero, then the test rejects the
exogeneity of Xi. However, in our setting, we can do more than just test exogeneity, as the same
discontinuity also allows us to sign the endogeneity within an interval of x̄.

The intuition of Lemma 1 can be obtained from Figure 3. Suppose that we observe a positive
discontinuity of the outcome at the bunching point. Then, at least some E[Yi(x̄)|X∗

i ] must be
below E[Yi(x̄)|X∗

i = x̄+]. By Assumption 3, we know that actually all E[Yi(x̄)|X∗
i ] must be below

E[Yi(x̄)|X∗
i = x̄+] for Xi < x̄, so s(x) < 0 for x < 0. We must therefore be in a situation akin to

the left plot. It follows that E[Yi(x̄)|X∗
i ] for X+

i slightly above x̄ are all above E[Yi(x̄)|X∗
i = x̄+],

and thus s′(x̄+) > 0.
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3.2 Translating the identification problem into the bunching point

We next concern ourselves with the elimination of the unknown interval I from the formula of The-
orem 2.2. More importantly, we need to substitute the density fs(X)|I with the density fs(X∗)|X=x̄,

which may be identified, as we show in the following section.

Assumption 4. The following hold:

(i) fX∗(x̄) exists and fX∗(x̄+) = fX∗(x̄).

(ii) fs(X∗)(s(x)) exists and is bounded for x ∈ (−∞, x̄].

(iii) The function x 7→ E[Yi(x̄)|X∗
i = x] is continuous in x at x̄.

Item (i) of Assumption 4 together with Assumption 1 (i) state that X∗
i has a continuous density

in [x̄, c̄ + ε1), and fX∗(x̄) is positive. Item (ii) of Assumption 4 states that s(X∗) has a density
for X∗ to the left of the bunching point. It is sufficient (but not necessary) for Assumption 4 (ii)
that x 7→ E[Yi(x̄)|X∗

i = x] is monotonic and X∗ has a density for (−∞, x̄]. More generally, if X∗

has a density on (−∞, x̄], then item (ii) holds provided that the set of x such that s(x) = s has
Lebesgue measure zero, for any s ∈ s−1((−∞, x̄]). Thus item (ii) can be thought of as a consequence
of X∗ being continuously distributed on the left side of x̄, requiring no restrictive assumptions on
selection. We state conditions (i) and (ii) above because they are weaker.

Item (iii) of Assumption 4 implies that the observations with X∗
i = x̄ are comparable to the

observations with X∗
i = x̄+. In the smoking example, it is equivalent to saying that if the mothers

who smoke very little (i.e. those with ρi slightly larger than ρ̄) would stop smoking, their outcomes
would be very similar to the outcomes of non-smoking mothers who are indifferent between not
smoking and smoking a bit (i.e., those with ρi = ρ̄). Note that we are not claiming that mothers
near the bunching point are comparable to mothers at the bunching point, since the mothers at
the bunching point can also include those who strictly prefer not to smoke (i.e. those with ρi much
smaller than ρ̄).

Assumption 4 (iii) implies that E[Yi(x̄)|X∗
i = x̄] = E[Yi(x̄)|X∗

i = x̄+] and thus s(x̄) = 0.
Moreover, it allows us to extend Assumption 2 to the interval [x̄, x̄ + ε3), and note that, since
limx↓x̄

d
dxE[Yi(x̄)|Xi = x] ̸= 0, we have that s′(x̄) ̸= 0. We then obtain the following corollary of

Theorem 2.2:

Corollary 3.1. Given Assumptions 1-4:

AME+
x̄ = m′(x̄+)− θ · fX(x̄+)/FX(x̄)

fs(X∗)|X=x̄(0)
. (7)

Equation (7) shows that, under Assumptions 1-4, identifying AME+
x̄ reduces to the problem of

identifying fs(X∗)|X=x̄(0) and θ. Since θ is identified by Lemma 1 in Section 1, the only remaining
piece is the density of s(X∗

i ) at the bunching point, which we tackle in the following section.
Figure 4 illustrates how we use the change-of-variables theorem in this corollary. This figure is

identical to Figure 2, except that here we show as dashed lines the part of the densities that are not
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observed, and the densities are conditional on Xi = x̄. While fX∗(x) can be identified for X∗
i ≥ x̄,

fs(X∗) can be identified for X∗
i ≤ x̄. Thus, the densities can be both identified only exactly at

X∗
i = x̄.

Figure 4: Using Corollary 3.1 to identify s′(x̄)

fX (x̄+)/FX (x̄) = 2fs(X∗)|X=x̄(0)

x̄

D
en

si
ty

High Selection: s(X∗
i ) = 2(X∗

i − x̄)

fX (x̄+)/FX (x̄) = 1
3
fs(X∗)|X=x̄(0)

x̄̄x

D
en

si
ty

Low Selection: s(X∗
i ) =

1
3
(X∗

i − x̄)

Note: This plot is identical to Figure 2, only it now refers to the selection variable X∗
i . Dashed

lines then show the unobserved parts of the distributions. Note that only at x̄ can we observe both
densities. This illustration assumes s(x̄) = x̄, which is true when x̄ = 0, as in our application.

3.3 Identifying the distribution of s(X∗)|X = x̄

Finally, we turn to the identification of fs(X∗)|X=x̄. Define the random variable

ϵi = Yi −E[Yi|X∗
i ],

which is the unconfounded variation in the outcome, i.e. the idiosyncratic part of the outcome
that remains after we eliminate the mean effect of treatment and the part determined by selection:
E[Yi|X∗

i ] = ATT(Xi) + E[Yi(x̄)|X∗
i ]. Note that, for Xi > 0, ϵi is identified as Yi −E[Yi|Xi].

We can write Yi = y0 + ATT(Xi) + s(X∗
i ) + ϵi with probability one, where the constant y0 :=

E[Yi(x̄)|X∗
i = x̄] (using that s(X∗

i ) = E[Yi(x̄)|X∗
i ] − y0 by Assumption 4). This shows that, when

Xi > x̄, we cannot disentangle the variations of ATT(Xi) and s(X∗
i ). However, exactly at Xi = x̄,

ATT(x̄) = 0, and thus
Yi = y0 + s(X∗

i ) + ϵi, (8)

with probability one. Thus, the outcome variation at the bunching point reflects the variation
of s(X∗

i ), unconfounded by the variation of the ATT(Xi). Unfortunately, the distribution of the
outcome at the bunching is a convolution of the density we want to identify, fs(X∗)|X=x̄ and the
distribution of the idiosyncratic remainder, y0+ϵi. The following conditions allow us to deconvolute
these distributions.

Assumption 5. The following hold:
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(i) fY |X=x̄ exists.

(ii) ϵi|X∗
i = x →d ϵi|X∗

i = x̄ as x ↓ x̄.

(iii) ϵi ⊥⊥X∗
i |Xi = x̄.

Item (i) of Assumption 5 states that the outcome has a density at the bunching point. Item (ii)
of Assumption 5 states that the idiosyncratic variation in the outcome near the bunching point is
similarly distributed to the idiosyncratic variation in the outcome of those at the bunching point
with X∗

i = x̄. This weak continuity condition implies that fϵ|X∗=x̄ = fY−E[Y |X]|X=x̄+ is identified.
Note that ϵi = Yi−E[Yi|X∗

i ] is mean independent of X∗
i by construction. Item (iii) of Assumption

5 extends this into full independence, at least at the bunching point. In our application, this
condition says that, among the non-smoking mothers, after removing the mean of the birth weight
that is due to the selection variable X∗

i , the remainder is independent of the relative preference for
smoking (or whatever else determines X∗

i ). Item (iii) of Assumption 5 may be substituted with
a weaker but less intuitive condition known as subindependence, which has long been used in the
deconvolution literature (see discussion in e.g. Hamedani 2013), and was rigorously formalized in
Schennach (2019). In our context, the subindependence condition translates to: for all t ∈ R,

E[eit(X
∗
i +ϵi)|Xi = x̄] = E[eitX

∗
i |Xi = x̄]× E[eitϵi |Xi = x̄],

where i =
√
−1. Schennach (2019) shows that subindependence is no “stronger” than mean in-

dependence, in the sense that subindependence imposes the same number of restrictions on the
data-generating process as mean independence does. Nevertheless, mean independence does not
imply subindependence.

Lemma 2. If Assumptions 2, 3, 4, and 5 hold, then fs(X∗)|X=x̄(0) is identified as

fs(X∗)|X=x̄(0) =
1

2π

∫
E[eiξYi |Xi = x̄]

E[eiξYi |Xi = x̄+]
dξ.

Proof. Conditional on Xi = x̄, equation (8) holds, so:

FY |X=x̄(y) = P(y0 + s(X∗
i ) + ϵi ≤ y|Xi = x̄)

=

∫
Fs(X∗)|X=x̄,ϵ=e(y − e− y0)dFϵ|X=x̄(e)

=

∫
Fs(X∗)|X=x̄(y − e− y0)dFϵ|X=x̄+(e),

where the third equality follows from items (ii) and (iii) in Assumption 5 and Helly-Bray Theorem,
due to the fact that Fs(X∗)|X=x̄(y − e− y0) is bounded and continuous.

Then, by item (i) of Assumption 5, FY |X=x̄(y) is differentiable, and by item (ii) of Assumption 4,
Fs(X∗)|X=x̄ is differentiable. By the Dominated Convergence Theorem, we can write the convolution
inverse problem

fY |X=x̄(y) =

∫
fs(X∗)|X=x̄(y − e− y0)dFϵ|X=x̄+(e). (9)
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Equation (9) has a well-known closed form solution using the Fourier representation (see e.g. Schen-
nach 2021).

fs(X∗)|X=x̄(v) =
1

2π

∫
E[eiξYi |Xi = x̄]

E[eiξ(ϵi+y0)|Xi = x̄+]
e−iξvdξ =

1

2π

∫
E[eiξYi |Xi = x̄]

E[eiξYi |Xi = x̄+]
e−iξvdξ, (10)

where the second equality follows because, for Xi > x̄, ϵi = Yi−E[Yi|Xi], and thus E[eiξ(ϵi+y0)|Xi =

x] = E[eiξ(Yi−E[Yi|Xi]+y0)|Xi = x] = e−iξ(E[Yi|Xi=x]−y0)E[eiξYi |Xi = x]. The equality then follows
because E[Yi|Xi = x] converges to y0 as x ↓ 0.

The result then follows if we evaluate the expression above at v = 0.

Figure 5 illustrates the components of the deconvolution. The outcome distributions were spec-
ified as a sequence of normal distributions fY |X=x, depicted in solid blue. Since, for Xi > 0,

Yi = ATT(Xi) + y0 + ϵi, fY |X=x converges to fϵ|X=x̄+ as x ↓ x̄, the solid blue densities (which
are observed) converge to the dotted blue density, which is equivalent to fϵ|X=x̄+ . This is how that
distribution is obtained.

In the figure, we can also see the unobserved dashed red density of s(X∗
i ) at the bunching

point, fs(X∗)|X=x̄, which is specified here as normal as well. The solid black line is the observed
density of the outcome at the bunching point, which is the convolution of the red dashed density
(fs(X∗)|X=x̄) and the blue dotted density (fϵ|X=x̄+). Note that the images were produced using
the actual convolution of the depicted densities, so the dimensions illustrate the real relationship
between these densities.

Our final identification result is derived from the combination of Equation (7) with Lemmas 1
and 2:

Theorem 3.1. Under Assumptions 1-5, AME+
x̄ is identified as:

AME+
x̄ = lim

x↓x̄

d

dx
E[Yi|Xi = x]− 2πθ

(∫
E[eiξYi |Xi = x̄]

E[eiξYi |Xi = x̄+]
dξ

)−1

· fX(x̄+)

FX(x̄)
, (11)

where θ = sgn (E[Yi|Xi = x̄+]− E[Yi|Xi = x̄]).

The expression is familiar in that the treatment effect is calculated by correcting the outcome
variation with a scaled inverse Mills Ratio term, as is usually seen in the censoring and sample
selection literatures, where some of the model components are truncated or missing below a certain
threshold.

Note that when there is no endogeneity at Xi = x̄, s′(x̄) = 0. Therefore, θ = 0 and Equation
(11) still holds. This means that the RHS of (11) can be used to identify AME+

x̄ while remaining
agnostic about endogeneity.

In Appendix A, we show how identification may be obtained in the presence of controls. Specifi-
cally, all the assumptions required for identification may be done conditional on a vector of controls
Zi, so that the requirements may effectively be weaker. In particular, the treatment and selection
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Figure 5: Components of the Deconvolution to Identify fs(X∗)|X=x̄

fY |X=x̄+1 fY |X=x̄+2 fY |X=x̄+3

y

D
en

si
ty

fY |X=x̄ (convolution)
fY |X=x̄+ (idiosyncratic ϵ)
fs(X∗)|X=x̄ (selection)

Note: The solid empirical distributions are observed. The solid blue lines depict the densities of
the outcome, which approaches the density of ϵ|Xi = x̄+ as x ↓ x̄, depicted by the dotted blue
line. The dashed red line is the density of s(X∗

i )|Xi = x̄, which is the object we want to identify.
The solid black line is the observed density of Yi = Xi = x̄, which is the convolution of the
dotted blue and the dashed red distributions. Plots were constructed with x̄ = 0, Yi|Xi = x ∼
N(3500+625x, 312.5+20x), and s(X∗

i )|Xi = x̄ ∼ N(3500, 625). The density fY |X=x̄ was produced
by convoluting the distributions of Yi|Xi = x̄+ and s(X∗

i )|Xi = x̄.

effects may change direction for different subgroups, and we can identify the AME+
x̄ (Zi) to study

heterogeneous treatment effects. We propose estimators in the case with discrete controls (Section
A.1), continuous controls (Section A.2), and when the vector of controls is large and with mixed
continuous and discrete controls (Section A.3).

3.4 The selection variable X∗
i

While the existence of a selection variable X∗
i satisfying Equation (6) is without loss of generality, the

identification result of Theorem 3.1 relies upon assumptions made about X∗
i . To guide researchers

in assessing the plausibility of these assumptions, the examples below illustrate how X∗
i relates to

well-defined quantities within empirically relevant choice models, both in settings with boundary
bunching in Example 3.1, and in settings with interior bunching at a budget kink in Example 3.2.
The selection variable X∗

i can in principle also be defined in the absence of any choice model being
posited, given suitable assumptions regarding the distribution of (Xi, {Yi(x)}x≥x̄) alone. This is
discussed in Example 3.3.

Example 3.1 (A parametric model of constrained choice). Consider the following parametric model
where each individual chooses the number of units of a good or service to consume at price p, subject
to the non-negativity constraints x ≥ 0 and r ≥ 0 as well as a budgetary constraint Wi = px + r,
where Wi is the budget and r acts as the numeraire good. This model fits for instance the case of
our application, where x refers to the choice of cigarettes smoked per day. Consider the family of
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utility functions:

V (x; ρi) =

{
(1 + ρi)

γ
(
(1+x)1−γ−1

1−γ

)
+ (Wi − px), if γ > 0, γ ̸= 1

(1 + ρi) log(1 + x) + (Wi − px), if γ = 1.

The parameter γ modulates the degree of concavity of the utility function. The individual-level
parameter ρi can be interpreted as the preference for x relative to the numeraire good. For individuals
with ρi < −1, x is seen as a “bad,” while for individuals with ρi > −1, x is seen as a “good.” In this
particular family of utility functions, we have X∗

i = a+ bρi, where a = (1/p
( 1
γ
)
)− 1 and b = 1/p

( 1
γ
),

so that X∗
i is a linear function of the primitive source of selection ρi.

If the price p = 1, then a = 0 and b = 1 and X∗
i = ρi, so the selection variable is exactly the

preference parameter ρi. This is the case for instance in time use models, where x refers to the
number of hours in the day spent on a given activity, such as watching TV (Caetano et al. 2023).8

In this example individuals with −1 < ρi = X∗
i ≤ 0 are choosing Xi = 0 but still value watching TV

positively, they just do not value it as highly as they value the alternative use of their time.

In Proposition B.1 of Appendix B, we extend this example beyond the parametric utility of
Example 3.1. Specifically, we show that in a large class of utility maximization models that feature
a scalar preference parameter ρi, we can write X∗

i = h(ρi) where h is a strictly increasing and
differentiable function.

Then, in Proposition B.2, we abandon the utility maximization model and show that if X∗
i =

h(ρi) for any strictly increasing and differentiable h, the assumptions that establish Theorem 3.1 can
be made directly on ρi = h−1(X∗

i ), rather than on X∗
i . This means that any monotonic differentiable

transformation of X∗
i yields the exact same identification results, This result is particularly useful in

the context of a structural model of choice, where the researcher may be more comfortable making
assumptions about the choice determinant ρi than about the more abstract object X∗

i . Proposition
B.2 does not require that ρi is observable, nor that the function h be known to the econometrician.

In the following example, we discuss a class of models characterized by interior bunching at a
kink in the decision-makers’ choice sets. In such settings, there is no hard constraint that Xi ≥ x̄:
rather, Equation (6) emerges from a discontinuous change in individuals’ incentives at Xi = x̄:

Example 3.2 (Interior bunching at a kink). Consider the treatment variable x as an individual’s
taxable income. Suppose that utility u(x, t;Ai) is decreasing in t, and strictly quasi-concave in x,
for each vector of individual characteristics Ai, which do not need to be observed by the researcher.
Suppose that t as a function of x exhibits a convex kink at x̄, so that costs increase faster with x

when x > x̄ than they do when x < x̄. Goff (2023) shows that in this setting optimal choice can be
8In time use choice models, r refers to the remaining activities adding up to Wi = 24 hours per day, so that

x + r = 24. In this setting, the budget Wi is constant, and p = 1 because individuals trade-off x and r at the rate
1-to-1.
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written as

X̃i =


Xi(0) if Xi(0) < x̄

x̄ if Xi(1) ≤ x̄ ≤ Xi(0)

Xi(1) if Xi(1) > x̄

where Xi(0) and Xi(1) are counterfactual choices that the individual would make if the budget
function to the left of the kink applied globally, or if the budget function to the right of the kink
applied globally, respectively.

If we consider only the observations with Xi ≥ x̄, then the mapping from Equation (6), Xi =

max{X∗
i , x̄}, holds by defining X∗

i = Xi(1). Thus, X∗
i could be interpreted as the counterfactual

choice that would be made if the budget function to the right of the kink applied globally. Conversely,
if we consider only the observations with Xi ≤ x̄, we would have Xi = min{X∗

i , x̄} by defining
X∗

i = Xi(0), and X∗
i could be interpreted as the counterfactual choice that would be made if the

budget function to the left of the kink applied globally.

We can also explicitly construct X∗
i without requiring any underlying choice model, referring

only to potential outcomes and treatment values to the right of x̄ as primitives. Specifically, if s(x)
is sufficiently smooth on the positive side, it can be extrapolated into the negative side, and thus
X∗

i can be artificially constructed so as to satisfy the identification restrictions.

Example 3.3 (Bunching without choice model). Suppose that s(x) is an analytic function for x > x̄,

and ϵi ⊥⊥ Xi|Xi > x̄. For the latter condition, the researcher can harness evidence on the basis of
observable data (see e.g., the discussion of Figure 7 in Section 6). We show in Appendix C that,
under these conditions, one can always define an X∗

i such that Equation (6) and ϵi ⊥⊥X∗
i |X∗

i ≤ x̄

hold. Specifically, the original probability space for (Xi, {Yi(x)}x≥x̄) can be replaced by a probability
space for (X∗

i , {Yi(x)}x≥x̄) in which Equation (6) and ϵi ⊥⊥X∗
i |X∗

i ≤ x̄ hold.
This type of construction of X∗

i is particularly useful in cases where Xi is not a choice variable.
As discussed in the introduction, bunching has been observed in many examples where the treatment
variable is not a clear function of individual choices. For instance, Caetano and Maheshri (2018)
study of the effects of crime, and define X∗

i as an unknown index of unobserved factors that may
lead some neighborhoods to have more crime than others. Neighborhoods often bunch at zero crimes
per week, and yet some neighborhoods at Xi = 0 are only somewhat safe (i.e., they would have some
crime every once in a while) while others are very safe (i.e., they would almost never have any
crime), so they may have different values of the selection variable X∗

i . In any case, the amount of
crime on a given week is not a choice variable of a specific individual.

4 Identification of causal effects away from the bunching point

Given identification of AME+
x̄ demonstrated in Section 3, we consider now if global effects ATT(x)

may be identified by extrapolating the information available near the bunching point. The extension
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requires a sufficient degree of smoothness of the counterfactual function near x̄, which is guaranteed
by the following assumption.

Assumption 6. The counterfactual function x 7→ E[Yi(x̄)|Xi = x] is real analytic on an interval
I = (x̄, x̄+ ε5) for some ε5 > 0.

Functions that are real analytic on I are infinitely differentiable functions for which the Taylor
series around a given point x ∈ I converges pointwise to the value of the function in a neighborhood
of x. The class includes all functions that behave locally as, to give some examples: polynomial,
exponential, trigonometric, hyperbolic, logarithmic, or inverse trigonometric functions, as well as
composite, ratios, and roots of these. A sufficient condition for Assumption 6 is that the observable
function E[Yi|Xi = x] and the ATT(x) function are both analytic on I. This may be an appealing
argument if the researcher finds it plausible to assume that the dose response function ATT(x) is
sufficiently smooth, without needing to reason about properties of the selection function s(x).

Recall that ATT(x) = m(x)− s(x). The following theorem establishes the desired local extrap-
olation.

Theorem 4.1. (Local ATTs) If Assumptions 1, 2, and 6 hold, then there exists an ε > 0 such that
for all x ∈ Iε := (x̄, x̄+ ε) ⊂ I:

ATT(x) = m(x)−
∞∑
k=1

s(k)(x̄+) · (x− x̄)k

k!
, (12)

where all the derivatives and limits in the equation above are well defined. Moreover, for any K ≥ 0

there exists a value ζx̄(x) ∈ (x̄, x] such that,

Rk(x− x̄) :=

∞∑
k=K+1

s(k)(x̄+) · (x− x̄)k

k!
= s(k)(ζx̄(x)) ·

(x− x̄)K+1

(K + 1)!
.

The second part of Theorem 4.1 offers a practical strategy for finite approximations to Equation
(12). For a suitably large K: ATT(x) ≈ m(x) −

∑K
k=1 s

(k)(x̄+) · (x−x̄)k

k! . The error of the K-th
degree approximation does not exceed supx∈Iε |s

(K+1)(x)| ·εK+1/(K+1)!. Since (K+1)! has supra-
exponential growth, even if ε and the high-order derivatives are very large, the approximation error
decays quickly.

Equation (12) indicates that, if all the derivatives s(k)(x̄+) are identifiable, then the ATT(x)

is identifiable in a neighborhood of x̄. This implies that extrapolations near the bunching point
are possible, provided θ is identified and the s(k)(x̄+) are known for all k ≥ 1. By differentiating
Equation (5) with respect to x, we can see that this is indeed possible since the density fs(X)|I (and
hence its derivatives) is identified on s(Iϵ).

Corollary 4.1. If Assumptions 1-6 hold, then ATT(x) is identified for each x ∈ Iϵ.

Corollary 4.1 guarantees the identification of the ATT(x) in a neighborhood of the bunching
point. In practice, finite approximations may be used to approximate the value. For example, a
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first-degree approximation is simply

ATTx̄(x) ≈ E[Yi|Xi = x]− E[Yi|Xi = x̄+]− 2πθ

(∫
E[eiξYi |Xi = x̄]

E[eiξYi |Xi = x̄+]
dξ

)−1
fX(x̄+)

FX(x̄)
(x− x̄),

and a second-degree approximation adds the term(
s′(0)

f ′
X(x̄+)

fX(x̄+)
− s′(0)2

f ′
s(X∗)|X=x̄(0)

fs(X∗)|X=x̄(0)

)
(x− x̄)2

2
,

where s′(0) is the correction term in Equation (11), and f ′
s(X∗)|X=x̄(0)/fs(X∗)|X=x̄(0) is equal to(∫

E[eiξYi |Xi = x̄+]−1E[eiξYi |Xi = x̄]dξ
)−1 (∫ iξE[eiξYi |Xi = x̄+]−1E[eiξYi |Xi = x̄]dξ

)
. This expres-

sion may seem complex, but in practice, one would have already identified fs(X∗)|X=x̄(0) for a
first-degree approximation, and standard deconvolution packages automatically provide the first
derivative f ′

s(X∗)|X=x̄(0) at the same time.
One limitation of Theorem 4.1 and Corollary 4.1 is that the interval Iε could in principle be

quite small. A sufficient condition for the ATT to be defined far away from the bunching point is
that the higher order derivatives decay suitably fast with k.

Corollary 4.2. Suppose Assumptions 1-6 hold and lim supk→∞

∣∣∣ s(k)(x̄)k!

∣∣∣1/k < 1/M , then ATT(x) is
identified for all x ∈ [x̄, x̄+M ].

Corollary 4.2 specifies “how far” one can extrapolate from the derivatives of s(k)(x̄) to obtain ATT(x).
Specifically, if the |s(k)(x̄)| are bounded by M−k ·k! uniformly over k for some M, then the ATT(x)

identification can be extrapolated as far as x̄+M .

5 Estimation

For a sample {(Yi, Xi)
′, i = 1, . . . , n}, the average marginal effect at the bunching point may be

estimated following Equation (11). Specifically, we use the following formulas:

ÂME
+

x̄ = m̂′(x̄+)− θ̂ · f̂s(X∗)|X=x̄(0)
−1 · f̂X(x̄+)

F̂X(x̄)
,

where m̂′(x̄+) is an estimator of limx↓x̄
d
dxE[Yi|Xi = x], and θ̂ = sgn(Ê[Yi|Xi = x̄+]− Ê[Yi|Xi = x̄]).

A first-degree approximation following Corollary 4.1 uses the estimator

ÂTT(x) = Ê[Yi|Xi = x]− Ê[Yi|Xi = x̄+]− θ̂ · f̂s(X∗)|X=x̄(0)
−1 · f̂X(x̄+)

F̂X(x̄)
· (x− x̄),

and analogously for a second-degree approximation.
All the components of these formulas are standard objects frequently studied in econometrics.

We discuss next how each component may be estimated.

21



The terms F̂X(x̄) and Ê[Yi|Xi = x̄] may be estimated with simple averages:

F̂X(x̄) =
1

n

n∑
i=1

1(Xi = x̄), and Ê[Yi|Xi = x̄] = F̂X(x̄)−1 · 1
n

n∑
i=1

Yi1(Xi = x̄).

The terms Ê[Yi|Xi = x̄+] and m̂′(x̄+) are standard non-parametric regression boundary quanti-
ties. Estimation of these objects has been extensively researched in the statistics literature on local
polynomial estimators, and in the Regression Discontinuity Design and Regression Kink Design
literatures in economics. In line with classical methods in this literature and with the vast majority
of applications in boundary regression estimation, we propose using a local linear regression of Yi
onto Xi at Xi = x̄, using only observations such that Xi > x̄, for its superior properties of bias
reduction and variance control at the boundary over other methods.9 The intercept coefficient of
this regression is Ê[Yi|Xi = x̄+], and the slope coefficient is m̂′(x̄+). This may be executed using
any package for local linear regression available in standard statistical software (R, STATA, etc.).

Explicitly, for a bandwidth h1 > 0 and a kernel function k1,
10 solve the problem

b̂0, b̂1 = argmin
b0,b1

n∑
i=1

(Yi − b0 − b1(Xi − x̄))2 · k1
(
Xi − x̄

h1

)
1(Xi > x̄), (13)

then Ê[Yi|Xi = x̄+] = b̂0, and m̂′(x̄+) = b̂1. This estimator has a closed-form expression, which is
commonly found in nonparametric econometrics textbooks, e.g. Li and Racine (2007). Note that
the term Ê[Yi|Xi = x] is not a boundary quantity, but it may be estimated analogously, with a
local linear regression of Yi onto Xi at x, using only observations such that Xi > x̄.

The term f̂X(x̄+) is a boundary density. As in the case of nonparametric boundary regression
discussed in the previous item, the tendency for higher bias in this scenario necessitates the use of
corrective methods, such as the use of local polynomial estimators. We recommend the approach
recently proposed in Pinkse and Schurter (2021),11 which has two important properties which are of
great value in our case and which are not found in other estimators currently available. First, this
estimator achieves the same rates of bias convergence at the boundary that is normally achieved
in interior points. Second, the density estimator is never negative, a situation which would be
complicated to address in our case. Additionally, the estimators have simple closed-form expressions,
requiring only the choice of a bandwidth tuning parameter, h2.

Following Pinkse and Schurter (2021), let LX(x) = log fX(x). We begin by estimating L′
X(x̄+)

as12

L̂′
X(x̄+) = −

∑n
i=1 (1− 2(Xi − x̄)/h2)1(x̄ < Xi ≤ x̄+ h2)∑n

i=1(Xi − x̄) (1− (Xi − x̄)/h2)1(x̄ < Xi ≤ x̄+ h2)
.

9See Ruppert and Wand (1994) and Fan and Gijbels (2018), and also Cheruiyot (2020). See Imbens and Wager
(2019) and citations therein for recent proposals which may be superior to local linear estimators.

10The triangular kernel k1(ν) = (1 − |ν|), where |ν| ≤ 1 is recommended for boundary regressions such as this
(Cheng et al. 1997).

11Other estimators of boundary densities include Hjort and Jones (1996), Loader (1996), Cheng et al. (1997), Zhang
and Karunamuni (1998), Bouezmarni and Rombouts (2010) and Cattaneo et al. (2020).

12This estimator is derived from applying Example 1 with z = 0 to equation (2) in Pinkse and Schurter (2021).
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This, then, allows us to estimate the density at the boundary as

f̂X(x̄+) =

1
nh2

∑n
i=1 k2

(
Xi−x̄
h2

)
∫ 1
0 k2(ν) exp(L̂′

X(x̄+)νh2)dν
,

which can be calculated for many standard positive kernel functions k2. For example, as in Example
5 of Pinkse and Schurter (2021), when k2 is the Epanechnikov kernel k2(ν) = 3/4(1− ν2) (which is
the kernel recommended for boundary estimation in that paper) the denominator is equal to

3

2
·
2 + L̂′

X(x̄+)2h22 − eL̂
′
X(x̄+)h2(2− 2L̂′

X(x̄+)h2)

L̂′
X(x̄+)3h32

.

This estimator is available in packaged form in standard statistics software and can be implemented
by simply restricting the sample to observations such that Xi > x̄ and then using the package to
estimate the density of Xi at Xi = x̄. Incidentally, the same package also provides the estimator
of the derivative f ′

X(x̄+), that can be used in the second-order approximation of the ATT(x) (see
Section 4).

The final term f̂s(D∗)|X=0(0) is a standard deconvolution estimator. We follow the estimator
described in Schennach (2021), which is the focus of an extensive literature, although there are
many alternative proposals which are also referenced therein.

We first write Ê[eiξYi |Xi = x̄+] as a local linear regression of eiξYi onto Xi at Xi = x̄ using only
observations such that Xi > x̄. To do this, for a matrix x with rows (1, (Xi − x̄))′ and a diagonal
matrix k, with diagonal elements k3((Xi − x̄)/h3)1(Xi > x̄), where k3 is the triangular kernel, and
e1 = (1, 0)′, define the vector A(ξ) = (eiξY1 , . . . , eiξYn)′, and program the function

ϕ̂(ξ) = e1(x′kx)−1x′kA(ξ).

This is then imputed into a standard convolution estimator, such as for example:

f̂s(X∗)|X=x̄(0 =
1

nh4

n∑
i=1

g(Yi)1(Xi = x̄),

with
g(Yi) =

1

F̂X(x̄) · 2π

∫
eiξYi

ϕK(h4ξ)

A(ξ)
dξ,

where ϕk4(h4ξ) =
∫
k4(ν)e

ih4ξνdν is the Fourier transform of the kernel k4 evaluated at h4ξ.

The nonparametric estimators just described require the choice of the bandwidth tuning param-
eters: h1, h2, h3 and h4, which modulate the bias-variance trade-off. This choice is rather important,
and the subject of a great deal of interest in the nonparametrics estimation literature. At this stage,
our recommendation is that, if an optimal method for bandwidth selection exists for the specific
estimator used at a given step, then it should be used.13 However, it is possible that the optimal

13For the selection of h1 and h3, Ruppert et al. (1995) propose an optimal bandwidth estimator for the local linear
regression, and this or similar approaches for bandwidth selection are usually offered in standard local linear regression
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bandwidths for ÂME
+

x̄ are not the optimal bandwidths for each of the separate components.
Additionally, there is an interest in the use of bias correction techniques for inference in the

Regression Discontinuity Design literature which may have relevance in this context as well (e.g.
Calonico et al. (2014), Noack and Rothe (2019), He and Bartalotti (2020), Armstrong and Kolesár
(2020) and citations therein). This is because, if optimal bandwidths are used, ÂME

+

x̄ will likely be
asymptotically biased. We leave these questions for future research.

Remark 5.1. (Improving efficiency by parameterizing the outcome distributions) We can estimate
f̂s(X∗)|X=x̄(0) more efficiently via deconvolution if either of the distributions fY |X=x̄ or fY |X=x̄+

are assumed to be of a known parametric family. Since the outcome is observed both at and above
the bunching point, this assumption may not be overly speculative, and it is directly testable using
standard Kolmogorov-Smirnoff tests or Goldman and Kaplan (2018).

Assuming a parametric distributional class for the outcome is helpful because it allows the rele-
vant characteristic function to be estimated less noisily. For example, in the empirical analysis in
Section 6, we assume that Yi|Xi = x̄+ ∼ N(E[Yi|Xi = x̄+], σ2), while we allow fY |X=x̄ to be fully
nonparametric. This normality assumption appears to be a good approximation, as can be seen in
Figure 7.

We estimate the parameter σ2 in two steps. First, we restrict the sample to observations with
Xi > x̄, and for each i, we predict Ŷi via local linear regression estimated on the non-bunched sample.
Then, we form the squared residual ϵ̂2i = (Yi − Ŷi)

2. Second, we fit a local linear model of ϵ̂2i on Xi

estimated on the Xi > x̄ subsample, and we estimate σ̂2 as the predicted value of this regression at
X = x̄. We note that the variance of ϵi|Xi = x̄+ is the same as the variance of Yi|Xi = x̄+. We
then deconvolve the distribution N(0, σ̂2) from F̂Y |X=x̄ using standard methods.14

6 Application: The Effect of Maternal Smoking on Birth Weight

In this section, we apply our method to estimate the marginal effect of smoking while pregnant
on the baby’s birth weight. This question holds significant importance in both economics and
epidemiology, given that maternal smoking during pregnancy is recognized as a critical modifiable
risk factor for low birth weight (Almond et al. 2005), which not only results in immediate societal
costs but is also widely considered to be consequential for outcomes later in the child’s life (Black
et al. 2007).

Our application uses the data set from Almond et al. (2005), which is also used in Caetano (2015).

packages. There are many proposals for improvement of bandwidth selection in the Regression Discontinuity Design
literature which may be adapted to this context, see, e.g. Imbens and Kalyanaraman (2012), Arai and Ichimura (2016),
Arai and Ichimura (2018) and Calonico et al. (2020). For h2, the optimal bandwidth is h = (72/(nfX(0)+β2

2))
1/5,

which may be calculated following Example 6 in Pinkse and Schurter (2021). β2 can be estimated using a pilot
estimate of f̂X(0)+, and both these terms are then added to the formula of the optimal bandwidth. Nevertheless,
although theoretically sound, this method is not yet studied, and thus in practice, we recommend testing several
bandwidths around this benchmark and looking for robustness of the results. For h4, consider the several approaches
studied in Delaigle and Gijbels (2004).

14Specifically, we employ the “decon” package in R.
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These data, from the U.S. National Center for Health Statistics, have available both maternal
cigarettes smoked daily during pregnancy (our treatment) and birth weight in grams (our outcome)
for over 430,000 mother-child pairs. These data also contain many additional covariates/controls
which Almond et al. (2005) use to estimate a selection-on-observables effect of maternal smoking on
birth weight of around -200 grams. Caetano (2015) uses these data to illustrate the discontinuity
test, showing that selection-on-observables does not seem to be a valid assumption using Almond
et al. (2005)’s very detailed specification.

We drop premature births (gestation < 36 weeks) as well as birth weight outliers (a small subset
of observations with very high, >6 kg, or very low, <1 kg, full-term birth weights) from the data.15

In our analysis sample, about 81% of the mothers smoke zero cigarettes daily, while about 11%
smoke between 1 and 10 cigarettes, with 99.95% of the sample smoking 40 cigarettes or less. Figure
6 shows E[Yi|Xi = x], the average birth weight among mothers smoking different amounts in our
sample. The evidence of a discontinuity in E[Yi|Xi = x] at x = 0 is clear. While the average
birth weight among mothers who smoke zero cigarettes is 3,499 grams, the average birth weight for
mothers who smoke one cigarette is 3,338 grams, with the analogous quantity for mothers smoking
2–5 cigarettes ranges between 3,278-3,330. The rich controls in Almond et al. (2005) can account
for only 55 out of the 161 gram (3,499-3,338) difference in birth weight between the children of
mothers who smoke zero versus one cigarettes. Thus, there remains a lot of “room”—106 grams—
for both the treatment effect of cigarettes and selection on unobservables to explain this birth weight
difference.16

We estimate the marginal effect AME+
0 of cigarette smoking on birth weight using the procedure

outlined in Remark 5.1. In particular, as discussed in Remark 5.1, we increase efficiency by assuming
that Yi|Xi = x̄+ is normally distributed. This assumption is empirically well-supported in our
setting; Figure 7 makes clear that the conditional distributions Yi|Xi = x are all very close to
normal with nearly the same variance for 0 < x ≤ 5.17 In addition to simplifying estimation, Figure
7 can also be interpreted as indirect evidence for the assumption that ϵi ⊥⊥X∗

i |Xi = 0. Specifically,
because fY |X=x = fϵ+E[Y |X=x]|X , the distribution of ϵi|Xi = x is just a horizontal shift of the
distribution of Yi|Xi = x. Thus, if the fY |X=x look like simple horizontal shifts for 0 < Xi ≤ 5, this
is evidence of ϵi ⊥⊥Xi|0 < Xi ≤ 5. This is thus indirect evidence that this pattern may continue for
X∗

i ≤ 0, though this cannot be verified.
For context, we also show the conditional distribution Y |X = 0. While we estimate the variance

of Yi|Xi = x̄+ allowing for a trend in the analogous variances of Yi|Xi = x for x > 0, we obtain
nearly identical results simply using the variance of Y |X = 1 as our estimator. This is not surprising
given the evident homoskedasticity in Figure 7.

15Our estimates barely change when we extend the sample to include premature babies and outliers.
16The numbers cited in this paragraph are very similar to those reported in Caetano (2015). That paper removes

neither premature nor “outlier” births from the analysis sample. Similarly, including premature and outlier births in
the causal analysis yields similar estimates of AME+

0 and ATT(x). Indeed, the full-sample results tend to be smaller
in magnitude than those reported in Table 1 and Figure 8, further supporting our qualitative claims.

17Figure 9 in Appendix D presents QQ-plots as additional graphical evidence that these conditional distributions
are approximately normal.
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Figure 6: Evidence of Bunching and Discontinuity
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Note: The figure shows E[Yi|Xi = x] for different values of x (along with the 95% confidence interval for x ≤ 5).

Estimation requires that we select several different bandwidths. We use a bandwidth of 4
cigarettes for both Ê[Yi|Xi = 0+] and f̂X(0+). However, we find very similar results using alternative,
reasonable bandwidth choices for these objects. The selection of a bandwidth for m̂′(0+) is more
consequential for the standard error of our estimates, thus we report ÂME

+

0 for several bandwidth
choices.

Table 1 presents our main results. We estimate the marginal effect of smoking on birth weight at
zero to be around -8 grams. We estimate s′(0+), the endogeneity bias around zero, to also be around
-8 grams. This endogeneity term is quite precisely estimated – most of the sampling variation in
ÂME

+

0 comes from sampling variation in the estimated slope of E[Yi|Xi = 0+].

Table 1: Main Results: The Average Marginal Effect of Smoking Near Zero Cigarettes

m̂′(0+) per bandwidth

h = 4 h = 5 h = 6 h = 7 h = 8

ÂME
+

0 -8.15 -10.55 -8.61 -7.76 -7.21
(8.10) (5.59) (3.22) (2.73) (2.38)

Note: Xi is measured in cigarettes per day, and Yi is measured in grams. The bandwidths for Ê[Yi|Xi = 0+] and
f̂X(0+) are both set to 4. The estimate for s′(0+) used for each of the displayed bandwidths is -8.36. Standard errors
based on 2,500 bootstrap iterations. Data taken from Almond et al. (2005).

As shown in Section 4, if we can make a local extrapolation, then we can further recover ATT(x)

for positive x. We use the first-degree ATT approximation formula in Section 5, and present the
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Figure 7: Birth Weight Distributions Conditional on Maternal Smoking
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Note: The figure plots the kernel density estimates (Epanechnikov, bandwidth=100) of birth weight conditional on
maternal cigarettes smoked per day (X).

estimates in Figure 8 for x ≤ 5.

Figure 8: ATT Estimates on Birth Weight for Different Levels of Maternal Smoking
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Note: This figure reports ATT(x) = E[Yi(x)−Yi(0)|Xi = x] for different values of x, represented in the horizontal axis.
It uses the same bandwidths as in Table 1. The E[Yi|Xi = x] estimates are smoothed using a local linear polynomial
with triangular kernel and bandwidth of 6. 95% confidence intervals based on 2,500 bootstrap iterations shown. The
dashed line at -147.6 g is the estimated discontinuity in birth weight at X = 0 (i.e., Ê[Yi|Xi = 0+] − Ê[Yi|Xi = 0]).
Data taken from Almond et al. (2005).

Our estimates show small negative ATT’s. For instance, if mothers who currently smoke one
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cigarette were to quit smoking, their babies would gain about 8 grams at birth. The effects of
quitting smoking add up to a gain of only about 1 ounce for mothers who smoked 5 cigarettes per
day. The estimates are not significant at standard levels, suggesting that the effect of maternal
smoking on birth weight is small, and we can rule out effects larger than 3 ounces at standard levels
of significance. For reference, in 2025 the average birth weight of a healthy full term baby in the
U.S. is about 119 ounces (7lb and 6 ounces). Indeed, these estimates are much smaller than the
effect implied by the discontinuity of the outcome at X = 0 shown in the dashed line of Figure 8.
Our estimates support the qualitative point in Almond et al. (2005) that smoking seems to have
only small effects on birth weight, although our findings suggest even smaller effects than in that
paper.

7 Concluding remarks

When a treatment variable has bunching, this paper presents a new design for identification of the
average marginal treatment effects at the bunching point. This is the first identification approach
leveraging bunching which does not make assumptions on functional forms or on shape of the
distribution of the unobservables. Since the method does not rely on exclusion restrictions or
special data structures, it provides a new avenue for the identification of treatment effects when
well-established methods are not applicable.

The approach requires that the treatment be continuously distributed near the bunching point,
and it relies on the continuity of the selection function at the bunching point selection value. Intu-
itively, those who chose the bunching point as an interior solution (i.e., not as a corner solution) are
comparable to those right above the bunching point. Besides this and other regularity conditions,
the method also requires two other conditions that are hard to explain succinctly, but are implied if
the selection equation is monotonic on the selection variable and if the idiosyncratic errors (which
are by definition mean independent from the selection variable) are independent from the selection
variable at the bunching point.

Identification is achieved by the comparison of the density of the treatment near the bunching
point (observed on the positive side) and the distribution of the selection function at the bunching
point (identifiable on the negative side, thanks to a deconvolution of the distribution of the outcome
at the bunching point to eliminate the noise from the idiosyncratic error). The ratio of these is
exactly the magnitude of the endogeneity bias.

The approach results in the identification of the average marginal effect as a closed-form expres-
sion of identifiable quantities which are fairly standard well-known quantities in the econometrics
literature, including the limits as the treatment approaches the bunching point of (1) the density
of the treatment, (2) the expected outcome, and (3) the derivative of the expected outcome. The
final term is the density of the selection variable at the bunching point, which is obtained through
a deconvolution of the outcome near the bunching point from the outcome at the bunching point.
All the terms in the identification equations can be estimated with off-the-shelf methods readily
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available in package form in all standard statistical software.
We apply the method to the estimation of the effect of smoking during pregnancy on the baby’s

birth weight. Our results show that the effects are rather small, strengthening the qualitative results
in the previous literature.

There is ample opportunity for further technical advancements that would enhance the appli-
cability of this method. Of note, there seems to be a scarce supply of options for estimation of
boundary derivatives in the literature. Even for local polynomial estimators (Fan et al., 1996), the
optimal degree, kernel and bandwidths for estimation of boundary derivatives remain unknown.
Deconvolution estimators are ubiquitous in other fields, but still rare in economics, with the no-
table exception of the measurement error literature (see e.g. Schennach 2021). The application of
deconvolution to bunching is more aligned with the classical setting, where the distributions of the
“recorded signal” and the “distortion” are identified, but the behavior of deconvolution estimators
with boundary plugins is largely unexplored.
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Appendix

A Incorporating control variables

Suppose that in addition to Xi and Yi, we observe a vector of control variables Zi that are unaffected
by treatment. Then, if Assumptions 1, 2, 3, 4, and 5 each hold conditional on Zi,

AME+
x̄ (z) = m′(x̄+, z)− 2π · θ(z) ·

(∫
E[eiξYi |Xi = x̄, Zi = z]

E[eiξYi |Xi = x̄+, Zi = z]
dξ

)−1

·
fX|Z=z(x̄

+)

FX|Z=z(x̄)
,
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where AME+
x̄ (z) := limx↓x̄ E[(Yi(x)−Yi(x̄))/(x−x̄)|Xi = x, Zi = z], m′(x̄+, z) = limx↓x̄

d
dxE[Yi|Xi =

x, Zi = z], and θ(z) = sgn (E[Yi|Xi = x̄+, Zi = z]− E[Yi|Xi = x̄, Zi = z]). Note then that we can
identify the unconditional AME+

x̄ given that

AME+
x̄ = lim

x↓x̄
E [E[(Yi(x)− Yi(x̄))/(x− x̄)|Xi = x, Zi]] = E

[
AME+

x̄ (Zi)|Xi = x̄+
]

under suitable conditions to interchange the limit and the expectation.

A.1 Estimation with discrete controls

Estimation with controls depends on the nature of Zi. If Zi has a finite support, i.e. Zi ∈ {z1, . . . , zL}
with P(Zi = zl) > 0, for all l = 1, . . . , L, then the exact procedures described for the unconditional
case may be performed separately for each zl. That is, for all zl, calculate

p̂l,x̄ = P̂(Zi = zl|Xi = x̄) = F̂X(x̄)−1 · 1
n

n∑
i=1

1(Xi = x̄, Zi = zl), for l = 1, . . . , L. (14)

Then, for all zl such that p̂l,x̄ > 0, restrict the sample to observations such that Zi = zl, and estimate
AME+

x̄ (zl) just as described in the unconditional case using the new, restricted, data.
The average marginal treatment effect estimator in this case is

AME+
x̄ =

L∑
l=1

p̂l,x̄ · ÂME
+

x̄ (zl). (15)

Where ÂME
+

x̄ (zl) is the estimator described in Section 5 applied to the subsample with Zi = zl.
Note that it is not possible to estimate AME+

x̄ (zl) when p̂l,x̄ = 0, but it is also not necessary to do
so, since those treatment effects have weight equal to zero in the estimator formula.

A.2 Estimation with continuous controls

When Zi is continuously distributed, one may apply a smoothing technique to the estimators de-
scribed above, so as to use information coming from values of the control around Zi to perform the
estimation. A simple strategy to estimate AME+

x̄ (Zi) is as follows: let Zi = (Z1i, . . . , ZMi)
′, and for

bandwidths κ1, . . . , κM , and kernel functions K1, . . . ,KM , restrict the sample to observations such
that −κ1 < Z1j < κ1, . . . ,−κM < ZMj < κM . Index the resulting dataset by t, suppose it has nT

observations, and define

Kκ(Zt − Zi) :=
1

κ1 · · · κM
K1

(
Z1t − Z1i

κ1

)
· · ·KM

(
ZMt − ZMi

κM

)
.

Then, for each value Zi such that the restricted sample has bunching, i.e.

p̂i,x̄ =
1

nT

nT∑
t=1

1(Xt = x̄) > 0,
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perform the methods described for unconditional estimation, only weighting each observation by
kκ(Zt − Zi) = Kκ(Zt − Zi)/

∑T
t=1Kκ(Zt − Zi).

18

Then,

AME+
x̄ =

L∑
l=1

p̂i,x̄ · ÂME
+

x̄ (Zi).

As in the previous section, it is not necessary to compute ÂME
+

x̄ (Zi) when p̂i,x̄ = 0.

A.3 Estimation with mixed or large dimensional controls

In practice, most control lists include a mixture of discrete and continuous variables, and may
include a large number of terms. In such cases, smoothing is either impractical or impossible. We
have had success with a discretization technique which implements clustering methods, which are
popular in machine learning and have been recently adopted in economics.19

Let {Ĉ1, . . . , ĈC} be a finite partition of the observations into groups, which we call clusters, and
let Ĉi = (1(Zi ∈ Ĉ1), . . . ,1(Zi ∈ ĈC))′ be the cluster indicators. We propose substituting Zi with
Ĉi, which has finite support. This then transforms the estimation procedure into a discrete controls
case, which can be implemented exactly as described in Section A.1.

Explicitly, for each cluster Cc, calculate

p̂c,x̄ = F̂X(x̄)−1 · 1
n

n∑
i=1

1(Xi = x̄, Zi ∈ Cc), for c = 1, . . . , C. (16)

Then, for those clusters with p̂c,x̄ > 0, estimate ÂME
+

x̄ (Ĉc) separately using a new dataset composed
only of observations within cluster Cc (i.e. i such that Zi ∈ Cc). For this, follow the exact procedures
described in the unconditional case. The average marginal treatment effect estimator is, then,

ÂME
+

x̄ =
C∑
c=1

p̂c,x̄ · ÂME
+

x̄ (Ĉc). (17)

As in the previous sections, it is not necessary to estimate AME+
x̄ (Ĉc) when p̂c,x̄ = 0.

In general, if AME+
x̄ (z) is continuous in z, the ability of this estimator to approximate AME+

x̄ (z)

depends on how much information about Zi is given by the cluster indicator vector ĈC . Thus, it
is desirable to choose a clustering method that minimizes the within-cluster variation in the values
of Zi. All unsupervised clustering methods in the statistical learning literature could in principle

18Thus, F̂X|Z=Zi
(x̄) = 1

nT

∑nT
t=1 1(Xi = x̄)kκ(Zt − Zi), and Ê[Yi|Xi = x̄, Zi] = F̂X|Z=Zi

(x̄)−1 · 1
nT

∑nT
t=1 Yi1(Xi =

x̄)kκ(Zt − Zi), Ê[Yi|Xi = x̄+, Zi]. The densities f̂X|Z=Zi
(x̄+) and f̂Y |X=x̄,Zi

(Yi) are implemented in the same way
using the restricted sample, substituting i by t and n by nT in the formulas, and multiplying terms inside sums
indexed by t by kκ(Zt − Zi). Finally, Ê[Yi|Xi = x̄+, Zi] and m̂′(x̄+, Zi) are respectively the intercept and slope
coefficients of a local linear regression of Yt onto Xt at zero, using only observations such that Xt > x̄ and weights
kκ(Zt − Zi); and Ê[f̂Y |X=x̄,Z=Zi

(Yi)|Xi = x̄, Zi] is the intercept of the same procedure, only with f̂Y |X=x̄,Z=Zi
(Yi)

instead of Yi.
19See, e.g. Bonhomme and Manresa (2015); Bonhomme et al. (2017); Cheng et al. (2019); Cytrynbaum (2020);

Caetano et al. (2023, 2024a,b).
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be used (e.g. k-means, k-medoids, self-organizing maps, and spectral – see Hastie et al. (2009)). If
feasible, we recommend using hierarchical clustering for its well-known stability.20

The clustering strategy requires the choice of the number of clusters, which modulates the bias-
variance trade-off in the estimation of AME+

x̄ (z). The more clusters are used, the more similar are
the Zi within each cluster, and thus the smaller the bias and the larger the variance. Although
there must exist an optimal number of clusters, there are as yet no established methods to aid with
this decision.

Nevertheless, note that we are not directly interested in AME+
x̄ (z) but rather in ÂME

+

x̄ , which
aggregates the information over all clusters. The trade-off is, in theory, much less important for
ÂME

+

x̄ , and thus one should err on the side of having a larger number of clusters, with an eye for
instability which could be created by pathological clusters (e.g. clusters with bunching but with
too few observations near the bunching point, or clusters where every observation is bunched).

B Theorem 3.1 with a generalized latent selection variable

In this section we first show that in settings where Xi is constrained to be greater than x̄, a large
class of choice models yields a constructive expression for the selection index X∗

i that determines Xi.
In particular, we obtain a choice rule Xi = max{h(ρi), x̄} for a strictly increasing and differentiable
function h, and heterogeneity parameter ρi, which is equivalent to Eq. (6) with X∗

i = h(ρi). Since
such settings arise naturally due to physical positivity constraints (the quantity of a good consumed,
the time spent on an activity, etc.), we take x̄ = 0 for simplicity. This is however without loss of
generality since we can always redefine Xi as Xi − x̄.

In this class of examples we suppose individuals have two scalar choice variables x and r, with
individual i’s utility denoted as V (x, r; θi) for a family of utility functions parametrized by θ. We
suppose that individuals’ choices are made subject to the budget constraint that p · x + r = W ,
where p indicates the relative price of x versus r, and W a budget common to all individuals. This
for example nests the class of Example 3.1 related to time use (e.g., hours spent on TV watching),
where p = 1 and W = 24: all individuals have 24 hours in a day and can swap time one-for-one
between watching TV x and spending time on other activities r. Note that the budget constraint
can be relaxed to p ·x+ r ≤ W , provided that utility is strictly increasing in at least one of the two
goods for all individuals.

Proposition B.1. Suppose utility is a twice differentiable function of (x, r) with heterogeneity
parameterized by a scalar θ, such that

Xi = X(θi) := argmaxx{V (x, r; θi) subject to x ≥ 0, r ≥ 0, p · x+ r = W}

We can allow V (x, r; θ) to be defined only for positive values of x (and not e.g. on all of R2). For
instance V (·, ·; θ) : [0, 24]× [0, 24] 7→ R in the TV setting: we do not need to conceive of the utility

20Hierarchical clustering requires the choice of a linkage method and a dissimilarity measure. We recommend using
Ward’s linkage and the Gower measure for mixed continuous and discrete controls.
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that an individual would experience from watching negative TV, or spending more than 24 hours a
day on other activities. Assume instead that V (·, ·; θ) is defined on [0,W ]× [0,W/p] for all θ ∈ Θ.

Suppose that θ regulates the relative preference for x over r in the sense that Vx(x, r; θ)/Vr(x, r; θ)

is strictly increasing in θ for all x, r. Define MRS(x, θ) := Vx(x,W − px; θ)/Vr(x,W − px; θ) and
suppose that MRS(x, θ) is strictly decreasing in x and continuously differentiable on [0,W ] × Θ.
Suppose finally that P (Xi = W ) = 0 (nobody spends their entire budget on Xi). Then, with
probability one Xi = max{h(ρi), 0} for a strictly increasing and differentiable function h, where
ρi = MRS(0, θi).

Proof. We can write the optimization problem as

X(θ) := argmaxx{V (x,W − px; θ) subject to x ≥ 0, r ≥ 0}

Given convexity of V , we have by the first order condition that MRS(X(θ), θ) = 1 if and only if
there is an interior maximum X(θ) ∈ (0,W ). In this case, differentiating with respect to θ:

MRSx(X(θ), θ) ·X ′(θ) = −MRSθ(X(θ), θ)

where X ′(θ) exists by the implicit function theorem. By assumption MRSθ(x, θ) :=
∂
∂θMRS(x, θ) >

0 for all x ∈ (0, W̄ ), θ ∈ Θ. Since MRSx(x, θ) :=
∂
∂xMRS(x, θ) < 0 for all x ∈ (0,W ), θ ∈ Θ, we

must then have that X ′(θ) > 0 given that X(θ) ∈ (0,W ): optimal choices are strictly increasing in
θ for any θ such that 0 < X(θ) < W . Let θ̄ = limx↓0X

−1(x). If θ = θ̄, then X(θ) = 0 by continuity
and if θ < θ̄, we must have X(θ(ρi)) /∈ (0,W ).

Meanwhile, since MRSθ(x, θ) > 0, MRS(x, θ) is strictly increasing in θ for each x ≥ 0, the
function ρ(θ) := MRS(0, θ) is also strictly increasing in θ. Let θ(ρ) be the inverse function of ρ(θ),
which is also strictly increasing and differentiable in ρ (given that these properties hold for ρ(·)).

Given the assumption that P (Xi = W ) = 0, we have combining cases that with probability one:

Xi =

0 if θ(ρi) ≤ θ̄

X(θ(ρi)) if θ(ρi) > θ̄
= max{X(θ(ρi)), 0}

The result of the Proposition then holds with the strictly increasing and differentiable function
h(ρ) = X(θ(ρ)).

The assumptions invoked in Proposition B.1 are natural if preferences are convex over (x, r), can
be parameterized by a scalar θi, and utility is smooth in that scalar. While an assumption that the
relative price p of x and r is homogeneous across individuals is relatively weak (within e.g. a given
market), the restriction that budgets W are homogeneous across individuals i is much stronger. This
can be relaxed by assuming that the demand for X does not depend on W , which is reasonable
if preferences are approximately quasi-linear, r is a good, or W is suitably high. We can proceed
without these assumptions by controlling for income in estimation, such that the assumptions of
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Propositions and B.1 and Theorem 3.1 need only hold conditional on income. This strategy can
be helpful in motivating Proposition B.1 more generally by also controlling for other proxies of
preference heterogeneity, making the scalar heterogeneity assumption less restrictive. Appendix A
discusses the use of controls in our approach.

B.1 A generalization of Theorem 3.1

Motivated by Proposition B.1, we now generalize Theorem 3.1 to the case where X∗
i is not the

primitive source of selection, but instead there exists some (possibly unobserved) index of hetero-
geneity ρi such that X∗

i = h(ρi). In this case we can make Assumptions 2-5 with ρi replacing X∗
i ,

while maintaining the constructive estimand of Theorem 3.1 for AME+
x̄ , even if ρi is unobserved

and the function h unknown. The index ρi will therefore not be unique. For example, in the case of
Proposition B.1 we could make Assumptions 2-5 about ρi := θi or about ρi := MRS(0, θi), rather
than ρi := X∗

i .

Proposition B.2. Suppose that Assumption 1 holds and Assumptions 2-5 all hold not for X∗
i , but

for a variable ρi such that X∗
i = h(ρi) for a strictly increasing and differentiable function h. Then

the expression for AME+
x̄ from Theorem 3.1 still holds, provided that h′(ρ̄) ̸= 0, where ρ̄ = h−1(x̄).

The function h does not need to be known or identified, and hence ρi may be unobserved for all i.

Proof. Rewriting Equation (6) as Xi = max{h(ρi), h(ρ̄)} where ρ̄ = h−1(x̄), we have, given Theorem
3.1, that

ÃME
+

ρ̄ = lim
ρ↓ρ̄

d

dρ
E[Yi|ρi = ρ]− sgn (E[Yi|ρi = ρ̄+]− E[Yi|ρi = ρ̄]) · fρ(ρ̄+)

Fρ(ρ̄) · 1
2π

∫ E[eiξYi |ρi=ρ̄]

E[eiξYi |ρi=ρ̄+]
dξ

, (18)

where ÃME
+

ρ̄ := limρ↓ρ̄ E[(Ỹi(ρ)− Ỹi(ρ̄))/(ρ− ρ̄)|ρi = ρ], and Ỹi(ρ) indicate potential outcomes with
respect to ρ: Ỹi(ρ) = Yi(h(ρ)) for any ρ ≥ ρ̄. Equivalently, Yi(x) = Ỹi(h

−1(x)) for any x ≥ x̄.
First, notice that under the maintained assumptions

ÃME
+

ρ̄ = E[Ỹ ′(ρ̄)|ρi = ρ̄] = E
[

d

dρ
Ỹ (ρ̄)

∣∣∣∣ ρi = ρ̄

]
= E

[
d

dρ
Yi(h(ρ))

∣∣∣∣
ρ=ρ̄

∣∣∣∣∣X∗
i = x̄

]
= h′(ρ̄) · E[Y ′

i (x̄)|X∗
i = x̄] = h′(ρ̄) · AME+

x̄

using the chain rule and defining X∗
i = h(ρi). Meanwhile, all of the terms on the RHS of (18) are

invariant after replacing ρi by X∗
i and ρ̄ by x̄, except that similarly

lim
ρ↓ρ̄

d

dρ
E[Yi|ρi = ρ] = lim

ρ↓ρ̄

dx

dρ

d

dx
E[Yi|Xi = x]

∣∣∣∣
x=ρ̄

= h′(ρ̄) · lim
ρ↓ρ̄

d

dx
E[Yi|Xi = x]

while also fρ(ρ̄
+) = h′(ρ̄) · fX(x̄+). Equation (18) thus implies (11), provided that h′(ρ̄) ̸= 0.
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C Defining X∗
i by extending the support of treatment

For any e ∈ [0, 1], x ≥ x̄ and random variable A, define where QA(a) := inf{a : FA(a) ≥ e} and
FA is the CDF function of A. Given a conditioning variable X, we can write A = QA|X(E) with
probability one, for a random variable E ∼ Unif[0, 1] that satisfies E ⊥⊥ X. See Lemmas 3 and 4
of Goff et al. (2024) for a proof of this property, which holds regardless of whether A is discrete or
continuously distributed.

Consider in particular the conditional quantile function g(x, x′, e) = QY (x)|X=x′(e). Then using
that Yi = Yi(Xi) we can write, with probability one:

Yi = g(Xi, Xi, Ei) (19)

where Ei := FY (X)|X(Y ) = FY |X(Y ). Note that with Y continuously distributed conditional on X,
then Ei|Xi] = Unif[0, 1] and thus Ei ⊥⊥Xi.21

C.1 An endogeneity decomposition with nonseparable errors

For simplicity, we consider in this section a setting in which x̄ = 0, and assume only that Xi is
defined on the positive side of the real line. Accordingly, consider any x ≥ 0. By the fundamental
theorem of calculus, we can write:

g(x, x, e) = g(0, 0, e) +

∫ x

0
g2(0, v, e)dv︸ ︷︷ ︸

:=s(x,e)

+

∫ x

0
g1(x, v, e)dv︸ ︷︷ ︸
:=m(x,e)

where g1 and g2 represent derivative functions of g, and the path of integration is from (x, x′) = (0, 0)

to (0, x) and then from (0, x) to (x, x).
We can write

s(e, x) = g(0, 0, e) +

∫ x

0
g2(0, v, e)dv = QY (0)|X=x(e) (20)

where the second term above s(x, e) is a pure “endogeneity term”, capturing how the distribution of
the untreated potential outcome Yi(0) varies across groups with different treatment levels Xi. On
the other hand m(x, e) :=

∫ x
0 g1(x, v, e)dv is a pure causal term, summarizing how the distribution

of Yi(x) changes with x with a fixed conditioning group Xi = x. Note that m(0, e) = 0 for all e.
By Equation (19), we have that with probability one:

Y = m(X,Ei) + s(X,Ei) (21)

By totally differentiating QY |X=x(e) = QY (x)|X=x(e) with respect to x, note that for any x > 0, it
follows that we can identify

d

dx
QY |X=x(e) = m′(x, e) + s′(x, e) (22)

21If Y were to exhibit mass points (e.g. Y is discrete), then we can define Ei|Yi, Xi ∼
Unif[limy↑Yi FY |X(y), FY |X(Yi)] and (19) still holds with Ei|Xi = Unif[0, 1] (Cf. Lemma 4 of of Goff et al. 2024).
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where we define m′(x, e) := d
dxm(x, e) = g1(x, x, e) and s′(x, e) := d

dxs(x, e) = g2(x, x, e). As above
m′ captures a causal effect and s′ an endogeneity term.

Let m′(x) :=
∫ 1
0 m′(x, e) · de and s′(x) :=

∫ 1
0 s′(x, e) · de. Under regularity conditions, the

expectation analog of Equation (22) satisfies:

d

dx
E[Yi|Xi = x] = m′(x) + s′(x) (23)

and m′(x) = E[Y ′
i (x)|Xi = x], where Y ′

i (x) =
d
dxYi(x).

Recall that the parameter AME+
x̄ is well-defined given Assumption 1 from Section 2.2. But we

can give it an economic interpretation without assuming X∗
i exists ex-ante, by supposing that a

subset of the bunchers having Xi = 0 are “marginal”, indicated by Mi = 1 (e.g. they satisfy a FOC
at Xi = 0). Then suppose that all of the marginal bunchers bunch: P (Xi = 0|Mi = 1) = 1, and
that the distribution of the slope Y ′

i (0
+) of the treatment response function Yi(x) as x ↓ 0 is the

same as for the non-bunchers that have very small values of Xi:

Y ′
i (0

+)|Xi = x
d→ Y ′

i (0
+)|Mi = 1

where convergence in distribution is as x ↓ 0. Our parameter of interest β∗
m is then the average

derivative effect of increasing x from zero among marginal bunchers.
To identify the function fs(X)(·), we leverage the following additional assumptions:

Assumption 7. The following hold:

(i) As a function of both x and e on the domain (0,∞) × [0, 1], s is additively separable i.e.
s(x, e) = s(x) + ϕ(e) for some functions s(x) and ϕ(e).

(ii) s(x) is an analytic function of x on x > 0.

(iii) ϕ(·) is strictly increasing and there exists a continuous solution h satisfying the integral equation∫ ∞

−∞
ϕ−1 (y − s∗(x)) · h(x) · dx = FY (0)(y)

where s∗(x) is an analytic continuation of s(·) to the real line.

Recall that the function s is defined as s(x, e) = QY (0)|X=x(e). To resolve an arbitrary normalization
in the additively separable decomposition in Assumption 7, we let the x-dependent term s(x) capture
the conditional expectation of Yi(0) given Xi = x: E[Yi(0)|Xi = x] =

∫ 1
0 QY (0)|X=x(e) · de =∫ 1

0 s(x, e) = s(x). This implies that
∫ 1
0 ϕ(e) · de = 0.

To motivate item (i) of Assumption 7, observe the following

Proposition C.1. QY (0)|X=x(e) = s(x)+ϕ(e) for some functions s, ϕ iff {Yi(0)−E[Yi(0)|Xi]}⊥⊥Xi

Proof. In one direction, observe that if QY (0)|X=x(e) = s(x)+ϕ(e), then Yi(0)−s(Xi) = QY (0)|Xi
(Ei)−

s(Xi) = ϕ(Ei) + s(Xi) − s(Xi) = ϕ(Ei), and Ei ⊥⊥ Xi. To see the other direction, define s(x) :=
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E[Yi(0)|Xi = x] and Ei := Yi(0) − s(Xi). Then by definition we can write QY (0)|Xi
(Ei) =

Yi(0) = s(Xi) + Ei = s(Xi) + QEi|Xi
(Ei). The condition (Yi(0) − E[Yi(0)|Xi]) ⊥⊥ Xi implies that

Ei ⊥⊥Xi, so we can replace QEi|Xi
(Ei) with the unconditional QEi(Ei). Note that for any e ∈ [0, 1],

QY (0)|X=x(e) = s(x) +QEi(e) since QEi(·) is strictly increasing. Now define ϕ(e) = QEi(e).

Thus item (i) of Assumption 7 is analagous to item (iii) of Assumption 5, but for positive X∗
i .

Discussion of Assumption 7: The assumption of additive separability (i) cannot be directly verified
from the data, because s(x, e) = QY (0)|X=x(e) is only identified in the limit as x ↓ 0 and not
for multiple values of x. For x > 0, we can instead only identify QY (x)|X=x(e) = g(x, x, e) =

m(x, e) + s(x, e). However, additive separability between x and e in QY (x)|X=x(e) for x > 0 may
be construed as indirect evidence in favor of item (i). For example, if Yi(x)− Yi(0) is the same for
all i (homogeneous treatment effects), then additive separability of the observable quantile function
QY |X=x(e) (i.e. g(x, x, e)) holds if and only if additive separability of s(x, e) holds. We see this
in Figure 7 in our application, where the distribution of Y |X = x only differs substantially across
different values of x by a location shift: it is approximately normal with nearly identical variance
across x.

Item (iii) of Assumption 7 is high-level, but appears to be mild. The integral equation takes
the form of a Fredholm Integral of the First Kind. As an analytic function, s∗(x) is continuously
differentiable, and if s∗(x) is furthermore strictly monotonic with inverse x(·), then by a change of
variables ∫ ∞

−∞
ϕ−1 (y − t) · h(x(t))

s∗′(x(t))
· dt = FY (0)(y)

which takes the form of a convolution equation, which typically has a solution.

The useful property of Assumption 7 for identification is that it will allow us to define a new
probability space in which X is extended to take negative values, and such that fs(X)(·) is identified
through a deconvolution operation on that probability space.

Given the analytic function s : R+ → R on the positive part of the real line, there exists a
unique function s∗ : R+ → R such that s∗(x) = s(x) for all x ≥ 0, referred to as the analytic
continuation of s. Now define s∗(x, e) = s∗(x) + ϕ(e).

Given our initial probability space with probability P defined over (Xi, {Yi(x)}x≥0), let us define
a new probability measure P ∗ over random variables (X∗

i , Y
∗
i (0)) using s∗(x, e). In particular:

• We let the conditional distribution of Y ∗
i (0) given X∗

i be described by the quantile function
Q∗

Y ∗(0)|X∗=x(e) = s∗(x, e) for all e ∈ [0, 1] and x ∈ R.

• We let the marginal distribution of X∗ according to P ∗ be described by CDF F ∗
X∗(x) =

∫ x
∞ h(x)

for x < 0 and H(x) = FX(x) if x ≥ 0, where h is a solution to the equation in item (iii) of
Assumption 7.
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Under this construction, the following holds with probability one according to P ∗:

Y ∗
i (0) = Q∗

Y ∗(0)|X∗(E∗
i ) = s∗(X∗

i ) + ϕ(E∗
i ) (24)

where Ei := F ∗
Y (0)|X∗(Yi(0)) satisfies E∗

i ⊥⊥X∗
i with E∗

i ∼ Unif[0, 1] according to P ∗.
We note that the function s∗(x, e) can be defined constructively from s(x, e) provided that the

radius of convergence of its Taylor series about x = 0 is infinite. In this case, the Taylor series
of s∗(x) converges and se(x) can be expressed as s∗(x) =

∑∞
k=0

xk

k! · s
(k)(0), where for any k times

differentiable function f we define f (k)(x) := dk

dxk f(x). However this stronger condition is not needed
for what follows.

The following additional properties of the probability measure P ∗ will be key:

Proposition C.2. Under Assumption 7, {Y ∗
i (0)−E∗[Y ∗

i (0)|X∗
i ]} ⊥⊥X∗

i according to P ∗.

Proof. Given (24), we have that with probability one according to P ∗

Y ∗
i (0)−E∗[Y ∗

i (0)|X∗
i ] = {s∗(X∗

i ) + ϕ(E∗
i )} − s∗(X∗

i ) = ϕ(E∗
i )

Then, since E∗
i ∼ Unif[0, 1] according to P ∗ and Y ∗

i (0)−E∗[Y ∗
i (0)|X∗

i ] is a measurable function of
E∗

i , it follows that {Y ∗
i (0)−E∗[Y ∗

i (0)|X∗
i ]} ⊥⊥X∗

i according to P ∗.

Proposition C.3. Given Assumption 7, the distribution of Y ∗
i (0)|X∗

i ≤ 0 under P ∗ is the same as
the distribution of Yi|Xi = 0 under P .

Proof.

P ∗(Y ∗
i (0) ≤ y|X∗

i ≤ 0) =
1

P ∗(X∗
i ≤ 0)

·
∫ 0

−∞
dx · h(x) · P ∗(Y ∗

i (0) ≤ y|X∗
i = x)

=
1

P ∗(X∗
i ≤ 0)

·
∫ 0

−∞
dx · h(x) · P ∗(s∗(x) + ϕ(E∗

i ) ≤ y|X∗
i = x)

=
1

P ∗(X∗
i ≤ 0)

·
∫ 0

−∞
dx · h(x) · P ∗(E∗

i ≤ ϕ−1(y − s∗(x)))

=
1

P ∗(X∗
i ≤ 0)

·
∫ 0

−∞
dx · h(x) · P ∗(E∗

i ≤ ϕ−1(y − s∗(x)))

=
1

P (Xi = 0)
·
∫ 0

−∞
dx · h(x) · ϕ−1(y − s∗(x))

using that E∗
i ⊥⊥X∗

i and that E∗
i ∼ Unif[0, 1].

By the same steps and using that h(x) = fX(0) and QY (0)|X=x(e) = Q∗
Y ∗(0)|X∗=x(e) for all
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x > 0:

P (Yi(0) ≤ y|Xi > 0) =
1

P (Xi > 0)
·
∫ ∞

0
dx · fX(x) · P (Yi(0) ≤ y|Xi = x)

=
1

1− P (Xi = 0)
·
∫ ∞

0
dx · h(x) · P ∗(s∗(x) + ϕ(E∗

i ) ≤ y|X∗
i = x)

=
1

1− P (Xi = 0)
·
∫ ∞

0
dx · h(x) · ϕ−1(y − s∗(x))

Using both of these results, we have by item (iii) of Assumption 7 that,

FY (0)(y) =

∫ 0

−∞
ϕ−1 (y − s∗(x)) · h(x) · dx+

∫ ∞

0
ϕ−1 (y − s∗(x)) · h(x) · dx

= P (Xi = 0) · P ∗(Y ∗
i (0) ≤ y|X∗

i ≤ 0) + (1− P (Xi = 0)) · P (Yi(0) ≤ y|Xi > 0)

Meanwhile, by the law of iterated expectations we also have that

FY (0)(y) = P (Xi = 0) · P (Yi(0) ≤ y|Xi = 0) + (1− P (Xi = 0)) · P (Yi(0) ≤ y|Xi > 0)

and therefore P (Yi ≤ y|Xi = 0) = P (Yi(0) ≤ y|Xi = 0) = P ∗(Y ∗
i (0) ≤ y|X∗

i ≤ 0) for all y.

By Proposition C.3 and Equation (24), we have that Yi|Xi = 0 ∼ Y ∗
i (0)|X∗

i ≤ 0 ∼ s∗(X∗) +

ϕ(E∗
i )|X∗

i ≤ 0. Thus the distribution of s(X∗) + ϕ(E∗
i ) conditional on X∗

i ≤ 0 is pinned down from
the observable distribution of Yi|Xi = 0.

Note furthermore that Yi|Xi = 0+ ∼ s(0+) + ϕ(E∗
i ), so ϕ(E∗

i ) ∼ {Yi −E[Yi|Xi = 0+]}|Xi = 0+.
Since ϕ(E∗

i )|X∗
i ≤ 0 ∼ ϕ(E∗

i ), we have that ϕ(E∗
i )|X∗

i ≤ 0 ∼ {Yi − E[Yi|Xi = 0+]}|Xi = 0+. It
follows from Proposition C.2 that {(Y ∗

i (0) − E∗[Y ∗
i (0)|X∗

i ]) ⊥⊥ X∗
i }|X∗

i ≤ 0, so we can then work
out the distribution of s(X∗

i ) conditional on X∗
i ≤ 0 via deconvolution as in Section 3.
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D Supplemental Empirical Results

Figure 9: Birth Weight QQ Plots Conditional on Maternal Smoking
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Note: Each panel plots the estimated QQ plot for birth weight conditional on a different value of maternal cigarettes
smoked per day. The closer the plot is to the 45-degree line, the closer to normal is the conditional birth weight
distribution. Data taken from Almond et al. (2005).
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E Proofs

E.1 Proof of Proposition 2.1

Note that E[Yi(x̄)|Xi = x] = E[Yi|Xi = x]−ATT (x). The limit E[Yi|Xi = x̄+] exists by Assumption
1 (ii) and ATT (x̄+) exists by Assumption 1 (iii). Therefore E[Yi(x̄)|Xi = x̄+] exists as well, and by
ATT (x̄+) = 0 must be equal to E[Yi|Xi = x̄+]. Therefore,

ATT(x) = E[Yi|Xi = x]− E[Yi(x̄)|Xi = x]

= (E[Yi|Xi = x]− E[Yi|Xi = x̄+])− (E[Yi(x̄)|Xi = x]) + E[Yi(x̄)|Xi = x̄+]) := m(x)− s(x),

which completes the result for the ATT(x).
Using again that E[Yi(x̄)|Xi = x̄+] = E[Yi|Xi = x̄+]:

AME+
x̄ := lim

x↓x̄

E[Yi|Xi = x]− E[Yi(x̄)|Xi = x]

x− x̄

= lim
x↓x̄

{
E[Yi|Xi = x]− E[Yi|Xi = x̄+]

x− x̄
− E[Yi(x̄)|Xi = x] + E[Yi(x̄)|Xi = x̄+]

x− x̄

}
= lim

x↓x̄

E[Yi|Xi = x]− E[Yi|Xi = x̄+]

x− x̄
− lim

x↓x̄

E[Yi(x̄)|Xi = x] + E[Yi(x̄)|Xi = x̄+]

x− x̄

= lim
x↓x̄

m(x)−m(x̄+)

x− x̄
− lim

x↓x̄

s(x)− s(x̄+)

x− x̄
:= m′(x̄+)− s′(x̄+),

where the third line follows from the two limits existings separately, and the final line by m(x̄+) =

s(x̄+) = 0 (which follows immediately from their definitions), and then the definitions of m′(x̄+), s′(x̄+).
That the two limits above exist follows from item (ii) from Assumption 1, Assumption 2 and

the mean value theorem. Specifically, because E[Yi|Xi = x̄+] exists and is finite and E[Yi|Xi = x]

is differentiable by item (ii) of Assumption 1, the mean-value theorem applies, and therefore

E[Yi|Xi = x]− E[Yi|Xi = x̄+]

x− x̄
=

d

dx
E[Yi|Xi = x]

∣∣∣
x=ζ(x)

, (25)

for some ζ(x) ∈ (x̄, x). The limit of the RHS exists by item (ii) of Assumption 1, thus the limit of
the LHS also exists. The argument for s is analagous using Assumption 2.

E.2 Proof of Theorem 2.1

We begin by establishing local monotonicity of s(x) on an interval I = (x̄, x̄+ δ) where δ > 0. By
Assumption 2 limx↓x̄ s

′(x) ̸= 0, or equivalently that for any ϵ > 0, there exists a δ > 0 such that
x ∈ (x̄, x̄+ δ) implies |m′(x)− k| ≤ ϵ, where we let k := s′(x̄+). Now consider ϵ = |k|/2 and define
I = (x̄, x̄+ δ) for the corresponding value of δ. Then x ∈ I =⇒ |m′(x)−K| ≤ K/2, which implies
that m′(x) has the same (non-zero) sign as k does for all x ∈ I.

Thus, s admits an inverse function u−1(t) for all t ∈ s(I). Given Assumption 2, s′(x) exists
for all x ∈ (x̄, x̄ + min{δ, ε3}), and so s−1 admits the derivative function d

dts
−1(t) = 1/s′(s−1(t)).
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Suppose first that s is strictly increasing. Then, for any t:

P (s(Xi) ≤ t|Xi ∈ I) = P (Xi ≤ s−1(t)|Xi ∈ I)

Since fX|I(x) = d
dxP (Xi ≤ x|Xi ∈ I) = fX(x)/P (Xi ∈ I) exists for all x ∈ I, this implies that

fs(X)|I(t) exists for any t ∈ s−1(I) and is d
dtP (Xi ≤ s−1(t)|Xi ∈ I) = fX|I(s

−1(t))/s′(s−1(t)), using
the chain rule. The case in which s is decreasing aside from the introduction of a minus sign.
Combining both cases, we have that |s′(x)| = fX|I(x)/fs(X)|I(s(x)) for any x ∈ I.

E.3 Proof of Theorem 2.2

We have by Theorem 2.1 that s′(x) = sgn(s′(x)) · fX|I(x)/fs(X)|I(s(x)) for any x ∈ I. The second
term above is then s′(x̄+), using that sgn(s′(x)) is constant for x ∈ I (and hence equal to θ). The re-
sult then follows by Proposition 2.1, s(x̄+) = 0, and that limx↓x̄ fs(X)|I(s(x)) = limv↓s(x̄+) fs(X)|I(v).
To ease the notation of Theorem 2.2, we then simply define fs(X)|I(0) as the limit limv↓0 fs(X)|I(v).
We note that the proof of Corollary 3.1 is self-contained and does not depend on this definition.

E.4 Proof of Lemma 1

Under Assumption 1, ATT(x̄+) = 0, so E[Yi|Xi = x̄+] = E[Yi(x̄)|Xi = x̄+]. Denote y0 :=

E[Yi(x̄)|X∗
i = x̄]. Now consider first E[Yi|Xi = x̄] = E[Yi(x̄)|X∗

i ≤ x̄] = E[E[Yi(x̄)|X∗
i ]|X∗

i ≤ x̄].
The inner expectation is E[Yi(x̄)|X∗

i ] = y0 + s(X∗), and thus(
E[Yi|Xi = x̄+]− E[Yi|Xi = x̄]

)
= −E[s(X∗

i )|X∗
i ≤ x̄]

By item (ii) of Assumption 3, sgn(s(x)) = −θ. Suppose that θ = 1. Then s(x) < 0 for all x ≤ x̄,
and sgn (E[Yi|Xi = x̄+]− E[Yi|Xi = x̄]) = 1. If on the other hand θ = −1, then s(x) > 0 for all
x ≤ x̄, and sgn (E[Yi|Xi = x̄+]− E[Yi|Xi = x̄]) = −1.

Finally suppose that, in violation of Assumption 2, s′(x̄) = 0 so that θ = 0. In this case,
s(x) = 0 for all x < x̄ by Assumption 3, and the expression of Lemma 1 still holds. This is useful
in establishing that the expression in Theorem 3.1 holds even when there is no selection at x̄.

E.5 Proof of Corollary 3.1

Assumptions 2 and 3 together allow us to extend Theorem 2.1 to include x̄, i.e.:

∣∣s′(x)∣∣ = fX∗|I∗(x)

fs(X∗)|I∗(s(x))
. (26)

for any x ∈ I∗, where I∗ = [x̄, x̄+ δ) now includes the bunching point x̄ exactly.
Next, we show that we can transform this equation so that it no longer depends on fs(X∗)|I∗(s(x)),

but it depends instead on fs(X∗)|X=x(s(x)). Note that the point x̄ belongs to the intersection of I∗
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and the set (−∞, x̄], and with Assumption 4 and item (ii) of Assumption 4, this implies that

fs(X∗)|I∗(s(x)) =
P (X∗

i ≤ x̄)

P (X∗
i ∈ I∗)

· fs(X∗)|X∗≤x̄(s(x)).

Similarly, with item (i) of Assumption 4, fX∗|I∗(x̄) = P (X∗
i ≤ x̄)/P (X∗

i ∈ I∗) · fX∗|X∗≤x̄(x̄) and
thus all together we have that

s′(x) = θ · fX∗(x)/FX(x̄)

fs(X∗)|X=x̄(s(x))
, (27)

noting that fs(X∗)|X∗≤x̄ = fs(X∗)|X=x̄ and P (X∗ ≤ x̄) = P (X = x̄) = FX(x̄), since X = x̄ if and
only if X∗ ≤ x̄. This expression is useful because the quantity P (X∗

i ∈ I∗) for the unknown interval
I∗ cancels out.

Evaluating at x = x̄, we have that s′(x̄) = θ · fX∗|I∗(x̄)/fs(X∗)|I∗(s(x̄)) and thus

AME+
x̄ = m′(x̄+)− θ · fX(x̄+)/FX(x̄)

fs(X∗)|X=x̄(s(x̄))
= m′(x̄+)− θ · fX(x̄+)/FX(x̄)

fs(X∗)|X=x̄(0)
,

where we’ve used item (i) of Assumption 4 to obtain fX∗(x̄) = fX∗(x̄+) = fX(x̄+), and s(x̄) = 0.

E.6 Proof of Theorem 3.1

Combining Eq. (7) with Lemma 2, we have

AME+
x̄ = m′(x̄+)− 2πθ

(∫
E[eiξYi |Xi = x̄]

E[eiξYi |Xi = x̄+]
dξ

)−1

· fX(x̄+)

FX(x̄)
,

To see that m′(x̄+) = limx↓x̄
d
dxE[Yi|Xi = x], take the limit of Eq. (25) in the proof of Proposition

2.1 as x ↓ x̄. The expression for θ follows from Lemma 1.

E.7 Proof of Theorem 4.1

Assumption 6 implies that s is also analytic on I. Let Ī = [x̄, x̄ + I], the closure of (x̄, x̄ + I)

in R. Taking a direct analytic continuation from (x̄, x̄ + I) to Ī, we can take s to be analytic on
all of Ī with s(x̄) = 0. Then, there exists a ε > 0 such that s(x) =

∑∞
k=1 s

(k)(x̄) · (x−x̄)k

k! for any
x ∈ [x̄, x̄ + ε]. Analyticity of s on Ī implies that s(k)(x) is continuous on Ī for each k and thus
s(k)(x̄) = s(k)(x̄+). The expression for the remainder follows from the Taylor theorem.

E.8 Proof of Corollary 4.1

Differentiating Equation (27)

s(k)(x) =
θ

FX(x̄)
· dk−1

dxk−1

fX∗(x)

fs(X∗)|X=x̄(s(x))
,

46



for any x ∈ I∗, from the proof of Corollary 3.1. Working out the derivative and and evaluating at
x̄, we have

s(k)(x) =
θ

FX(x̄)
·
k−1∑
ℓ=0

(
k − 1

ℓ

)
f
(k−1−ℓ)
X∗ (x̄) · dℓ

dxℓ
{fs(X∗)|X=x̄(s(x))}−1

∣∣∣∣
x=x̄

The derivatives of 1/fs(X∗)|X=x̄(s(x)) evaluated at x = x̄ can be worked out recursively knowing
fs(X∗)|X=x̄(s(x̄)) and f

(ℓ)
s(X∗)|X=x̄(s(x̄)) for each ℓ. These derivatives are identified since by Eq. (10),

fs(X∗)|X=x̄(v) is identified for every v ∈ s((−∞, x̄)), e.g.:

d

dv
fs(X∗)|X=x̄(v) =

1

2π
· d

dv

∫
E[eiξYi |Xi = x̄]

E[eiξYi |Xi = x̄+]
e−iξvdξ

which can be differentiated again and again as needed. The power series converges for each x ∈ Iε

by analyticity of s(x).

E.9 Proof of Corollary 4.2

Given Equation (12):

ATT(x) = m(x)−
∞∑
k=1

s(k)(x̄+) · (x− x̄)k

k!

The Cauchy–Hadamard formula yields the radius of convergence of the power series appearing on

the RHS is R =

(
lim supk→∞

∣∣∣ s(k)(c)k!

∣∣∣1/k)−1

.
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