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Abstract

Many identification results in instrumental variables (IV) models hold without

restrictions on the distribution of potential outcomes, or how those outcomes are

related to selection behavior. This enables IV models to allow for arbitrary hetero-

geneity in treatment effects and the possibility of selection on gains in the outcome.

I show that when the available instruments take a finite number of values, a condi-

tion that is easily seen to be sufficient for identification without restricting outcomes

is also necessary. The condition generalizes the LATE monotonicity assumption,

and I provide a new characterization of it that reveals a common structure behind a

wide variety of known IV identification results for binary and discrete-valued treat-

ments. The characterization yields an approach to enumerate all models of selection

that allow for the identification of local average treatment effect type parameters

without restricting outcomes. This search uncovers new selection models that yield

identification, and provides impossibility results for others. An application con-

siders the identification of complementarities between two cross-randomized binary

treatments, obtaining a necessary and sufficient condition on selection for local av-

erage interaction effects to be identified without imposing restrictions on outcomes.

*Department of Economics, University of Calgary. I thank Simon Lee as well as Pat
Kline, Eric Mbakop and Adam Rosen for helpful conversations about these ideas. Email:
leonard.goff@ucalgary.ca.



1 Introduction

To leverage instrumental variables with heterogeneous treatment effects,

researchers often make assumptions about selection into treatment, such

as the “monotonicity” assumption of the local average treatment effects

(LATE) model (Imbens and Angrist, 1994). Given this monotonicity as-

sumption, the average treatment effect among compliers is point identified,

with no restrictions imposed on the distribution of potential outcomes be-

yond them being independent of the instrument.

In this paper I analyze how a similar result holds broadly across in-

strumental variables (IV) models, when the treatment is not necessarily

binary. I first show that if restrictions on selection behavior are sufficient

to establish a particular generalization of the monotonicity assumption,

then corresponding local average treatment effect parameters are identi-

fied. When the instruments have finite support, this sufficient condition

for IV identification can be seen as a consequence of existing results by

Heckman and Pinto (2018) and Navjeevan et al. (2023).

The main theoretical contribution of this paper is to show that the iden-

tification result, strikingly, has a converse. Consider any parameter that

takes the form of an average treatment effect among a subgroup of the

population defined by their selection behavior. For this treatment effect

parameter to be point identified without the researcher imposing further

restrictions on the joint distribution of potential outcomes, the selection

model must permit the above generalization of monotonicity to hold. I es-
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tablish this result using a novel geometric representation of monotonicity-

type assumptions, which relates the parameter of interest to a vector space

that depends on the model of selection maintained by the researcher.

Together, the above results yield a necessary and sufficient condition

for identification of a given treatment effect to avoid reliance on ad-hoc

assumptions about the outcome such as treatment effect homogeneity:

what I call outcome-nonrestrictive identification. Outcome-nonrestrictive

identification allows for what Heckman et al. (2006) call essential hetero-

geneity: not only can gains from treatment be heterogeneous, but selection

behavior may in part depend on an individual’s idiosyncratic gains.

Using this condition I show that it is straightforward to check whether

there exist any local average treatment effect parameters that are iden-

tified without restricting outcomes, given a model of selection. By then

enumerating over alternative selection models, the researcher can build

a transparent map between assumptions about selection and identified

parameters. I propose algorithms to implement this insight and build

an exhaustive catalog of outcome-nonrestrictive identification results for

treatment effects with binary or ternary instruments and treatments. In

an application to settings with two-cross randomized binary instruments, I

show that the necessary and sufficient condition for the interaction between

two treatments to be identified without outcome restrictions is substantive

but economically meaningful. Using this I revisit two empirical studies.

My results show quite generally that the price of outcome-nonrestrictive

identification is the need to make assumptions about selection. This trade-
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off appears to be quite appealing to researchers in practice. In “design-

based” studies the researcher often has contextual knowledge about factors

that affect treatment uptake in a given setting (Card, 2022), but may be

reluctant to make assumptions about the very causal effect being studied

(e.g. that it is homogeneous across individuals). Outcome-nonrestrictive

identification results also have the practical benefit of paving the way for

analysis to be repeated across multiple outcome variables, with the same

assumptions about selection in a given (natural) experiment aiding identifi-

cation for each outcome.1 This is particularly useful in experimental work,

when many outcome variables can be collected at minimal additional cost.

The perspective of outcome-nonrestrictive identification turns out to

unify a wide variety of existing IV identification results in the literature.

My positive identification result provides a simple and unified proof of

point identification for settings including: i) the original LATE model (Im-

bens and Angrist, 1994); ii) the marginal treatment effect (Heckman and

Vytlacil 2001; Heckman and Vytlacil 2005) and its generalization to mul-

tivalued treatments (Lee and Salanié, 2018); iii) unordered monotonicity

(Heckman and Pinto, 2018); iv) vector monotonicity with multiple instru-

ments (Goff, 2024); v) restrictions on choice and/or knowledge of second-

best options (Kirkeboen et al., 2016); vi) interaction effects between two

treatments (Blackwell, 2017); and vii) notions of monotonicity that are

1An outcome-nonrestrictive identification result is not fully indifferent to which variable one uses
as an outcome: one must make the standard independence and exclusion restrictions for each. But in
settings where treatment is as-good-as-randomly assigned and there are limited opportunities for the
assignment to affect anything except via treatment (e.g. many experimental settings), exclusion may be
quite natural without much further justification specific to each outcome.
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only required to hold between particular pairs of instrument values (Sun

and Wüthrich, 2024; van’t Hoff et al., 2023; Sigstad, 2024). I contrast

the above results with other identification results from the IV literature

that weaken assumptions about selection while leveraging additional as-

sumptions about outcomes and are therefore not outcome-nonrestrictive

(Kolesár, 2013; de Chaisemartin, 2017; Comey et al., 2023).

In the other direction, this paper is to my knowledge the first to demon-

strate a necessary condition for local average treatment effect parameters

to be identified at a high level of generality. Without also establishing ne-

cessity of the condition, the interplay between assumptions about selection

and identification cannot be fully discerned. In recent work, Navjeevan,

Pinto and Santos (2023) give a necessary and sufficient condition for the

identification of unconditional moments in IV models, but do not demon-

strate that this condition is necessary to identify moments of potential

outcomes that condition on selection. I show that their condition is equiv-

alent to mine, and that their condition is thus indeed also necessary to

identify local average treatment effect parameters.

These results are relevant both theoretically and for empirical practice.

For researchers designing experiments or seeking a quasi-experimental re-

search design, the map between selection restrictions and identified param-

eters outlines what instrument variation would yield identification that is

robust to the failure of often poorly-motivated assumptions like treatment

effect homogeneity. Given the available instrument variation and a selec-

tion model, the results yield a simple way to check whether any treatment
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effects are identified, and if so for which subgroups of the population. On

a theoretical level, this paper reveals the structure of the trade-off between

assumptions about selection and assumptions about outcomes. When re-

searchers prefer the former, my results show the upside to being flexible

about one’s parameter of interest (e.g. settling for a LATE). If instead one

is interested only in e.g. an overall average treatment effect, I show that

point identification is typically not possible without restricting outcomes.

2 Setup and a general identification result

2.1 Notation and basic IV assumptions

Let treatment t take values in a finite set T . Denote potential outcomes as

Yi(t, z) and potential treatments as Ti(z), where Zi are instruments with

support Z. I’ll refer to Zi as “the instruments”, since in general it can be a

vector of instrumental variables. The index i corresponds to observational

units, i.e. “individuals”.

Let D
[t]
i (z) = 1(Ti(z) = t) be an indicator that i takes treatment t

when the instruments are equal to z. I impose throughout the exclusion

restriction that Zi only affects Yi through Ti = Ti(Zi), so that Yi(t, z) =

Yi(t) for all i and z ∈ T . The observed outcome Yi is then:

Yi = Yi(Ti(Zi)) =
∑
t∈T

D
[t]
i (Zi) · Yi(t) (1)

Let Gi : Z → T the function that yields individual i’s counterfactual

treatment value for each possible instrument value z. Following Heckman
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and Pinto (2018), call Gi individual i’s “response type”. Let us denote

the full set of conceivable functions from Z to T as T Z . I refer to any

subset G ⊆ T Z as a selection model or choice model, where G denotes

a set of response types that are admissible according to the model (i.e.

supp{Gi} ⊆ G). When G is a strict subset of T Z , it reflects a substantive

restriction on the response types that are allowed.

I will also assume throughout that the instruments are exogenous in

the sense that

Zi ⊥⊥ (Ỹi, Gi) (2)

where Ỹ = {Yi(t)}t∈T is a vector of potential outcomes across all treat-

ments t. Eq. (2) says that potential outcomes and response types are

jointly independent of the instruments. In applications, researchers often

defend a conditional version of (2), i.e. {Zi ⊥⊥ (Ỹi, Gi)}|Xi, where Xi are

observed covariates unaffected by treatment. Since my focus in this pa-

per is on identification and not estimation of treatment effects, I suppress

throughout conditioning on any such covariates for ease of exposition, and

consider them in the empirical application and in Appendix J.2.

2.2 Outcome-nonrestrictive IV identification

I say that a causal parameter is outcome-nonrestrictive identified if iden-

tification of that parameter holds without restrictions on the distribution

of (Ỹi, Gi) apart from independence from the instruments (2). That iden-

tification not restrict the distribution of Ỹi is often implicit in work that
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leverages for identification assumptions about selection, e.g. Imbens and

Angrist (1994) and Heckman and Pinto (2018).

Specifically, we say that a parameter θ is outcome-nonrestrictive identi-

fied if the identified set for θ is a singleton, for all distributions of (Ỹ , G, Z)

that are compatible with the model M . Here the model M imposes that

Eq. (2) and supp{Gi} ⊆ G hold, but places no restrictions on the distribu-

tion of (Ỹ , G).2 For a parameter to be outcome-nonrestrictive identified,

it must be point-identified for all distributions of observables that are con-

sistent with the model, and not just particular distributions that happen

to yield a singleton for the identified set. This is in line with typical defi-

nitions of a parameter being identified (Matzkin, 2007; Lewbel, 2019).

Defining the notion of outcome-nonrestrictive identification formally in-

volves accounting for possible restrictions on observables implied by a given

selection model G. This requires some notation that will not be necessary

for the main exposition of this paper, so I refer the reader to Appen-

dices A.2 and A.3 for the formal definition. The definition of outcome-

nonrestrictive identification does not restrict the support of Yi in any way

(e.g. that it be discrete or bounded), and the results of this paper do not

require such a restriction.

2.3 Parameters of interest

This paper focuses on parameters θ that take the form of a conditional

counterfactual mean µt
c := E[Yi(t)|c(Gi) = 1], a conditional treatment

2The definition of outcome-nonrestrictive identification in A.3 considers only distributions such that
E[Yi(t)|Gi = g] exists and is finite for each t, g and such that the parameter of interest is well-defined.
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effect ∆t,t′
c := E[Yi(t

′) − Yi(t)|c(Gi) = 1] = µt′
c − µt

c, or a probability

P (c(Gi) = 1), defined given a function c : G → {0, 1}. The function

c represents inclusion in a collection of response types. For example, in

the LATE model, the LATE is a conditional treatment effect ∆t,t′
c with

t′ = 1, t = 0 and c(g) = 1(g = complier).

Note that identification of µt
c and µt′

c immediately implies identification

of ∆t,t′
c , since ∆t,t′

c = µt′
c − µt

c. With outcome-nonrestrictive identification,

this implication goes the other way as well: outcome nonrestrictive iden-

tification of ∆t,t′
c requires outcome-nonrestrictive identification of each of

the terms µt
c and µt′

c . The intuition is that absent assumptions about the

joint distribution of potential outcomes, data from individuals with Ti = t

provide no information about Yi(t
′) for a different treatment t′ ̸= t, and

vice-versa. This idea is formalized in the following result:

Proposition 1. for t′ ̸= t is outcome-nonrestrictive identified if and only

if µt
c and µt′

c are.

Proofs of this and subsequent results are in Appendix B.

Although researchers are typically more interested in treatment effect

parameters like ∆t,t′
c than they are in counterfactual means, we can, given

Proposition 1, begin our analysis of outcome-nonrestrictive identification

with the simpler counterfactual mean parameters µt
c.
3

3The proof extends the conclusion of Proposition 1 to treatment effect parameters that involve any
number of separate treatment states. This is useful for the study of interaction effects in Section 5.
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2.4 Identifying counterfactual means

I begin with a simple argument establishing outcome-nonrestrictive iden-

tification of µt
c = E[Yi(t)|c(Gi) = 1] under a condition on c (given t). As

shown in Appendix D, this result can be seen as a corollary to Theorem

T-2 of Heckman and Pinto (2018), and to Corrollary 4.4 of Navjeevan et

al. (2023). This section constitutes a minor generalization of these results

in which the instruments themselves need not be discrete. This addi-

tional generality allows us to view identification results for the marginal

treatment effect (Heckman and Vytlacil, 2001; Lee and Salanié, 2018) as

limiting cases. This connection is developed explicitly in Appendix G.

Consider any finite collection of distinct instrument values zk ∈ Z for

k = 1 . . . K and corresponding coefficients αk. Observe that the following

quantity is then identified:

K∑
k=1

αk ·E
[
Yi ·D[t]

i |Zi = zk

]
=

K∑
k=1

αk ·E
[
Yi(t) ·D[t]

i (zk)|Zi = zk

]
= E

[
Yi(t) ·

(
K∑
k=1

αk ·D[t]
i (zk)

)]

where D
[t]
i = D

[t]
i (Zi) = 1(Ti = t) and the second equality follows from

independence (2).

Suppose that the zk and αk could be chosen in such a way to guarantee

that the linear combination
∑

k αk ·D[t]
i (zk) (in parentheses above) is equal
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to 0 or 1 for any given i. The above then simplifies to

K∑
k=1

αk ·E
[
Yi ·D[t]

i |Zi = zk

]
= P

(∑
k

αk ·D[t]
i (zk) = 1

)
·E

[
Yi(t)

∣∣∣∣∣∑
k

αk ·D[t]
i (zk) = 1

]

Meanwhile, by similar steps

K∑
k=1

αk ·E
[
D

[t]
i |Zi = zk

]
= P

(∑
k

αk ·D[t]
i (zk) = 1

)
(3)

Therefore, provided that P
(∑

k αk ·D[t]
i (zk) = 1

)
> 0, we have:

E

[
Yi(t)

∣∣∣∣∣∑
k

αk ·D[t]
i (zk) = 1

]
=

∑K
k=1 αk ·E

[
Yi ·D[t]

i |Zi = zk

]
∑K

k=1 αk ·E
[
D

[t]
i |Zi = zk

] (4)

Eq. (4) represents a generalization of the “Wald ratio” form common

among IV estimands, and turns out to nest a surprising variety of point

identification results from the IV literature.

Example 1 (LATE model). Consider the model of Imbens and Angrist

(1994) with a binary instrument, where Z = T = {0, 1} and we rule out

“defiers”, i.e. those who would have Ti(0) = 1, Ti(1) = 0. That is, G

consists of never-takers, always-takers, and compliers. Then (D
[1]
i (1) −

D
[1]
i (0)) ∈ {0, 1} for all i (1 for compliers and 0 for the other groups),

corresponding to K = 2 with (z1, α1) = (1, 1) and (z2, α2) = (0,−1). Thus,

by (4), E[Yi(1)|i is complier] =
E[Yi·D[1]

i |Zi=1]−E[Yi·D[1]
i |Zi=0]

E[D
[1]
i |Zi=1]−E[D[1]

i |Zi=0]
.

Example 2 (a model with both compliers and defiers). Continu-
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ing with the case of a binary treatment and binary instrument, consider

a model that allows defiers but instead rules out always-takers or never-

takers, i.e. imposes that all individuals’ treatment is altered by the instru-

ment. Then D
[1]
i (1) ∈ {0, 1} for all i (1 for compliers and 0 for defiers),

and thus E[Yi(1)− Yi(0)|i is complier] = E[Yi·Di|Zi=1]
E[Di|Zi=1] by Eq. (4).

Appendix G discusses several further examples from the literature, includ-

ing cases where the treatment is not binary.

Note that we can think of the coefficients αk in Eq. (4) as a function α

on Z, where the set of points z where α(z) differs from zero is finite. If Z

is itself finite, then the coefficients αk can in turn be represented simply

as a vector in R|Z|, a fact that I make use of in Section 3. Given a pair

(t, α) the value of
∑

k αk · D[t]
i (zk) depends only on the response type Gi

of individual i. We can therefore write the event that
∑

k αk ·D[t]
i (zk) = 1

as c(Gi) = 1, where c : G → {0, 1} is a function that depends on the

treatment value t and coefficient function α. The the parameter on the

LHS of Eq. (4) is therefore of the form µt
c introduced in the last section.

We can now summarize the result of Equation (4) as follows:

Theorem 1. Given independence Eq. (2) and a pair (t, α) with the prop-

erty that P
(∑

k αk ·D[t]
i (zk) ∈ {0, 1}}

)
= 1, the quantity P (c(Gi) = 1) is

identified by the LHS of (3). If additionally P (c(Gi) = 1) > 0, the con-

ditional counterfactual mean µt
c is identified by the RHS of (4). Since the

only restrictions used in deriving (4) are that (2) holds and that P (c(Gi) =

1) > 0, identification of µt
c is outcome nonrestrictive.
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The key to observing that the above identification of µt
c := E[Yi(t)|c(Gi) =

1] is outcome-nonrestrictive is that whether the requirement P (c(Gi) =

1) > 0 holds depends only on the marginal distribution of Gi, and whether

each zk ∈ Z depends only on the distribution of Zi. This implies nothing

about the distribution of potential outcomes or their relation to Gi.

2.5 From counterfactual means to treatment effects

While Theorem 1 yields identification of conditional counterfactual means

µt
c, we can furthermore identify treatment effects when two treatment val-

ues t and t′ admit of identification of counterfactual means that condition

on the same group of response types, i.e. c[t,α](·) = c[t
′,α′](·) for some α, α′,

where c[t,α] denotes the function corresponding to (t, α). Let c(·) denote

this common function. Then Theorem 1 implies that ∆t,t′
c = µt′

c − µt
c is

outcome-nonrestrictive identified as well. Appendix A.4 provides some

general results regarding when this can be done, and Appendix A.5 dis-

cusses how this typically leads to testable implications of the model. The

next section considers the identification of treatment effects in detail, when

the instruments have finite support.

In both Examples 1 and 2 above, treatment effects of the form ∆t,t′
c (and

not just counterfactual means µt
c) are outcome-nonrestrictive identified. I

return to these examples in the next section.

Note: By replacing Yi(t) by 1(Yi(t) ≤ y) we can also identify the con-

ditional distributions FY (t)|c(G)=1 and compute e.g. quantile treatment ef-
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fects or establish bounds on the distribution of treatment effects among

the c(Gi) = 1 group (Fan and Park, 2010), whenever a ∆t,t′
c is outcome-

nonrestrictive identified.

3 Necessity with discrete instruments

The remainder of the paper now specializes to settings in which the in-

struments Zi are discrete and take only a finite number of values Z. This

allows us to establish that the condition from Theorem 1 is also necessary

for outcome-nonrestrictive identification to occur. Combining with Theo-

rem 1 and Proposition 1, this provides a full characterization of outcome-

nonrestrictive identification, with a simple geometric interpretation.

When Z is discrete and finite, a function α can be associated with a

vector in R|Z|. Across a finite set of treatments, note that G can then

also only take finitely many values, i.e. |G| ≤ |T ||Z|. A function c : G →

{0, 1} defining a causal parameter like µt
c = E[Yi(t)|c(Gi) = 1] can now be

associated with a |G|-component vector c with components cg = c(g) for

each g ∈ G.

In this setting, we can also express the content of the selection model

G through a |Z| × |G| matrix A, where component Azg gives the common

treatment Ti(z) that all units i with Gi = g take, when the instruments

are equal to z. The restrictions imposed by selection model G correspond

to deleting columns from the |Z| × |T ||Z| matrix that would include all

|T ||Z| imaginable response types given T and Z.
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Define for any treatment t a matrix A[t] having binary entries [A[t]]zg =

1(Azg = t), which records the common value of D
[t]
i (z) for any individual

i having Gi = g. The matrix A[t] simply tells us whether units take

treatment t versus any other treatment. A matrix analogous to A[t] is

used heavily in Heckman and Pinto (2018).

Example 1 (continued from Section 2.4). In this example:

A[1] =

0 1 0

0 1 1

 and A[0] =

1 0 1

1 0 0


where the first row of each matrix represents z = 0 and the second z = 1,

while the columns correspond to never-takers, always-takers, and compli-

ers, respectively.

Example 2 (continued from Section 2.4). In this example:

A[1] =

1 0

0 1

 and A[0] =

0 1

1 0


where the first row of each matrix represents z = 0 and the second z = 1,

while the columns correspond to compliers and defiers, respectively.

In both of the examples above, the entries of A[0] are simply one minus the

corresponding entry of A[1]. This is a general property of the matrices A[t]

with a binary treatment, but does not extend to non-binary treatments.

In general, we instead have
∑

t∈T [A
[t]]zg = 1 for each z ∈ Z and t ∈ T .
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3.1 The Theorem 1 condition is necessary

Consider a parameter of the form µt
c. Recall from above the representation

of c(·) as a binary-valued vector c ∈ R|G| with cg ∈ {0, 1} for each g ∈ G.

For any matrix B let rowspace(B) or rs(B) denote its rowspace, and B′

its transpose. We have the following converse of Theorem 1:

Theorem 2. Suppose that Z and T are finite. Then if µt
c := E[Yi(t)|c(Gi) =

1] is outcome-nonrestrictive identified, then c ∈ rowspace(A[t]).

The rowspace of A[t] is the set of vectors c ∈ R|G| such that c′ = α′A[t] for

some α ∈ R|Z|. Note that in a setting with finite |Z| (and hence a finite

space of response types as well), the condition P
(∑

k αk ·D[t]
i (zk) ∈ {0, 1}}

)
=

1 from Theorem 1 occurs precisely when α′A[t] is a binary-valued vector in

R
|G|, i.e. when c[α,t] ∈ rowspace(A[t]).

Theorem 2 thus establishes that if the instruments are finite, then The-

orem 1 covers all instances in which a counterfactual mean that conditions

on response types can be identified in an outcome-nonrestrictive way.

Combining Theorems 1 and 2, we have in the case of finite discrete

instruments that given a selection model G, a conditional counterfactual

mean of the form E[Yi(t)|c(Gi) = 1] is outcome-nonrestrictive identified

if and only if the vector representation c ∈ {0, 1}|G| of c(·) lies in the

rowspace ofA[t]. Using Proposition 1, it then follows that a treatment effect

parameter E[Yi(t
′)−Yi(t)|c(Gi) = 1] is outcome-nonrestrictive identified if

and only if c lies in the rowspaces of both A[t] and A[t′], i.e. c ∈ (rs(A[t′])∩

rs(A[t])). Note that as an intersection of two vector spaces, (rs(A[t′]) ∩
15



rs(A[t])) is also a vector space in R|G|.

Example 1 (continued). The rowspaces of A[1] and A[0] can be found by

row-reducing each matrix, revealing that rs(A[1]) is the plane in R3 spanned

by the compliers and always-takers, while rs(A[0]) is the plane spanned by

the compliers and never-takers.

never-takers

always-takers

compliers

rowspace(A [1])

ro
w
sp
ac
e(
A

[0
] )

Figure 1: Identification in the LATE model with a binary instrument. The vector c =
(0, 0, 1)′ belongs to both rs(A[1]) and rs(A[0]) and hence the LATE parameter E[Yi(1) −
Yi(0)|i is a complier] is identified, and this identification is outcome-nonrestrictive. (0, 0, 1)′

is the only vertex of the unit cube that belongs to rs(A[1]) ∩ rs(A[0]), and is thus the only re-
sponse type for which average treatment effects can be identified without restricting outcomes.

By Theorem 1, we can thus identify the mean of Yi(1) among always-

takers or among compliers (or among both), and we can identify the mean

of Yi(0) among never-takers or among compliers (or both). As depicted in

Figure 1, these correspond to the non-zero vertices of the unit cube in R3

that take a value of zero in the never-takers “direction”, or a value of zero

in the always-takers “direction”, respectively.

Note that (0, 0, 1)′ the unique non-zero vertex of the unit cube in R3 that

belongs to both rs(A[1]) and to rs(A[0]). The local average treatment effect
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∆c is outcome-nonrestrictive identified for the compliers c = (0, 0, 1)′, be-

cause this c belongs to both rs(A[1]) and rs(A[0]). Theorem 2 demonstrates

that the LATE among compliers is the only treatment effect parameter ∆c

that is outcome-nonrestrictive identified in the LATE model.

Example 2 (continued). The rowspaces of A[1] and A[0] are the same

and both span R2. Thus we identify the LATE for compliers as well as the

LATE for defiers. For example, using α = (0, 1) for t = 1 and α = (1, 0)

for t = 0, we have that:

E[Yi(1)− Yi(0)|i is complier] =
E[Yi ·D[1]

i |Zi = 1]

E[D
[1]
i |Zi = 1]

− E[Yi ·D[0]
i |Zi = 0]

E[D
[0]
i |Zi = 0]

An analagous construction identifies the average treatment effect among

defiers: E[Yi(1)−Yi(0)|i is defier] = E[Yi·D[1]
i |Zi=0]

E[D
[1]
i |Zi=0]

−E[Yi·D[0]
i |Zi=1]

E[D
[0]
i |Zi=1]

. See Figure

4 in Appendix F.0.1 for a visualization similar to Figure 1.

Appendix D discusses how Theorems 1 and 2 relate to recent necessary

and sufficient conditions for identification in IV models by Navjeevan et

al. (2023) and by Heckman and Pinto (2018). While Theorem 1 can be

seen a corollary to results of both Navjeevan et al. (2023) and Heckman

and Pinto (2018), Theorem 2 is novel. Further, neither work obtains the

condition c ∈ (rs(A[t′]) ∩ rs(A[t])) for the identification of treatment effect

parameters. This observation enables an exhaustive search for outcome-

nonrestrictive identification results for treatment effects when |Z| is finite.

Remark: Theorems 1 and 2 both extend to the more general family of
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target parameters that can be defined by functions c that depend on Zi in

addition to response types Gi. This is useful to nest parameters like the

average treatment effect on the treated, or certain parameters that can

arise in settings with multiple instruments. See Appendix H for details.

3.2 Discussion of Theorem 2

Although Theorem 2 synthesizes a wide variety of existing IV identi-

fication results (detailed in Appendix G), the requirement of outcome-

nonrestrictive identification—rather than point identification in general—

is important.

Point identification, given a distribution Pobs of the observables (Y, T, Z),

requires that there not exist two distributions P and P ′ of the underly-

ing model variables (Ỹ , G, Z) such that both P and P ′ recover Pobs, but

θ(P) ̸= θ(P ′). The proof of Theorem 2 shows that if c /∈ rs(A[t]), there

always exist P ∈ M that enable us to construct such a P ′, where recall

that M is the set of permissible DGPs according to the model. If one

restricts the model space M by imposing further assumptions about the

distribution of potential outcomes (or how they are related to response

type Gi), the constructed distribution P ′ may violate those assumptions

and thus not belong to M , enabling identification even if c /∈ rs(A[t]).

For example, it is known that E[Yi(t
′) − Yi(t)]—the unconditional av-

erage treatment effect (ATE) between t and t′—is identified under an as-

sumption of “no selection on gains” (NSOG). NSOG imposes that Yi(t)−

Yi(t
′) be mean independent of Ti and Zi for all t, t′ ∈ T (Kolesár, 2013;
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Arora et al., 2021). Homogeneous treatment effects—that Yi(t) − Yi(t
′)

is the same for all i—is a special case of NSOG. In Appendix C, I show

that unconditional counterfactual means µt := E[Yi(t)] are identified un-

der NSOG, extending existing results for ATEs. Identification of µt under

NSOG requires no assumptions on selection beyond an order condition

that can be checked empirically.

Note that the parameter µt is a parameter of the form µt
c, where c =

(1, 1 . . . 1)′ with a one for every response type in supp{Gi}. Absent a sub-

stantive selection model G that rules out some of the conceivable response

types in T Z , the vector c = (1, 1 . . . 1)′ corresponding to µt will never

be in the row space of A[t]. In particular, as long as there is a “never-

takers” group g0(t) for treatment t such that Ti(z) ̸= t for all z ∈ Z when

Gi = g0(t), there will exist a zero in the corresponding entry of any c in

the rowspace of A[t]. I show explicitly in Appendix C.2 that the construc-

tion P ′ in the proof of Theorem 2 can only satisfy NSOG if G is such

that (1, 1 . . . 1)′ ∈ rs(A[t]) for all t ∈ T . That is, if (1, 1 . . . 1)′ /∈ rs(A[t]),

then although the distribution P ′ can be chosen to satisfy all of the other

assumptions of the IV model aside from NSOG and yield θ(P) ̸= θ(P ′),

the distribution P ′ necessarily violates NSOG. Thus µt
c = θ(P) can remain

identified under NSOG, even if c /∈ rs(A[t]). This illustrates how Theo-

rem 2 can coexist with identification results that operate by restricting

treatment effect heterogeneity rather than response type heterogeneity.4

4Intuitively, NSOG is strong enough to let the researcher impute the value of E[Yi(t)|Gi = g0(t)] if
such a never-taker group exists. This eliminates the dependence of any identifying estimand for µt on
the distribution of Yi among individuals such that Gi = g0(t) and Ti = t (which is unobservable).
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Further examples of IV identification results that are not covered by

Theorem 2, because they restrict outcomes or consider different types of

causal parameters, are discussed in Appendix C.3. These examples include

results from de Chaisemartin (2017), Comey et al. (2023), and Kline and

Walters (2016).

4 Making use of the equivalence result

This section shows how the necessary and sufficient condition c ∈ rs(A[t])

can be useful in understanding existing identification results for treatment

effects, generating new ones, and ruling out further opportunities for iden-

tification in a given selection model. We continue here our focus from

Section 3 on settings in which the instruments have finite support.

4.1 A geometric characterization of identification

Let C(t) be the set of c in the rowspace of A[t] that have entries of only

zero or one: i.e.5

C(t) = rs(A[t]) ∩ {0, 1}|G| (5)

It is always the case that C(t) ̸= ∅ provided that P (Ti = t) > 0.6 An

identified treatment effect in turn arises when C(t) ∩ C(t′) ̸= ∅.7 When

treatment is binary, this observation can be used to establish that ∆0,1
c is

5Melo and Winter (2019) study the cardinality of the intersection between the unit cube inRn and any
linear subspace ofRn. Their result implies that C(t) has a cardinality of at most 2k where k = rank(A[t]).

6To see this, note thatE[Yi(t)|Ti(z) = t] =
E[Yi·D[t]

i |Zi=z]

E[D
[t]
i |Zi=z]

, which considers all units that take treatment

t when Zi = z. This corresponds to Eq. (4) with αz′ = 1(z′ = z) and cg = 1(Tg(z) = t).
7For an example of a selection model in which C(t) ∩ C(t′) = ∅, and thus no identified ∆t,t′

c for t′ ̸= t
exist despite identified µt

c existing, see the model described in Proposition 8 of Lee and Salanié (2023).
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outcome-nonrestrictive identified if µ1
c is, with coefficients αz that add to

zero.

Proposition. Let 1n denote a vector of ones in Rn. If T = {0, 1} and

α′
1|Z| = 0 and A[1]′α ∈ C(1), then A[1]′α = −A[0]′α so that A[0]′(−α) ∈ C(0)

and hence E[Yi(1)− Yi(0)|cGi
] is outcome-nonrestrictive identified.

As an example, we saw in Example 1 (the LATE model), that using

Eq. (4) with with α = (−1,+1), t = 1 that E[Yi(1)|i is complier] =

E[Yi·D[1]
i |Zi=1]−E[Yi·D[1]

i |Zi=0]

E[D
[1]
i |Zi=1]−E[D[1]

i |Zi=0]
. This implies by the above Proposition that we

can simply flip the signs of the coefficients to α = (+1,−1) for t = 0

to obtain that E[Yi(0)|i is complier] =
−E[Yi·D[0]

i |Zi=1]+E[Yi·D[0]
i |Zi=0]

−E[D[0]
i |Zi=1]+E[D

[0]
i |Zi=0]

. Com-

bining and using that D
[0]
i + D

[1]
i = 1, we recover the familiar formula

that E[Yi(1) − Yi(0)|i is complier] = E[Yi|Zi=1]−E[Yi|Zi=0]
E[Di|Zi=1]−E[Di|Zi=0] where Di := D

[1]
i .

The above Proposition is a restatement of Proposition A.1 in Appendix A.8

The unconditional average treatment effect

With a binary treatment, a well-studied parameter of interest is the overall

unconditional ATE: ∆0,1 = E[Yi(1)−Yi(0)], i.e. ∆
0,1
c with c = (1, 1, . . . 1)′.

For non-binary treatments, an ATE ∆t,t′ := E[Yi(t
′)−Yi(t)] can be defined

between any two treatment values t, t′ ∈ T . As a Corollary of Theorems

1 and 2 we have the following result for unconditional ATEs:

Corollary 1. Suppose that Z is finite. Then the unconditional counter-

factual mean E[Yi(t)] is outcome-nonrestrictive identified given selection

8A simple proof is that since A[0] = 1|Z|1
′
|G| −A[1], so α′A[0] =

���α′
1|Z|1

′
|G| − α′A[1] = (−α′)A[1].
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model G if and only if (1, 1, . . . 1)′ ∈ rs(A[t]), and the average treatment

effect E[Yi(t
′) − Yi(t)] is outcome-nonrestrictive identified given selection

model G if and only if (1, 1, . . . 1)′ ∈ (rs(A[t′]) ∩ rs(A[t])).

Since the presence of never-takers with respect to treatment t implies

that (1, 1, . . . 1)′ /∈ rs(A[t]),9 Corollary 1 implies that ATEs and uncon-

ditional counterfactual means are never point-identified in an outcome-

nonrestrictive manner absent restrictions on selection.

Corollary 1 also relates my results to recent work by Bai et al. (2024)

on the partial identification power of monotonicity for these parameters.

Bai et al. (2024) show that selection models can have limited additional

identifying power for ATEs provided that they include a restriction that

the authors call generalized monotonicity, and the outcome is discrete and

bounded. I show in Appendix I.1 that under generalized monotonicty,

µt
(1,1,...1) can either be point identified for a given t without restrictions

on selection, or otherwise (1, 1, . . . 1)′ /∈ rs(A[t]) (and thus it cannot be

point identified without restrictions on outcomes). These results under-

score the upside to focusing on target parameters beyond the ATE (i.e.

c ̸= (1, 1, . . . 1)′) when one is willing to impose restrictions on selection.

4.2 Applying the characterization to search for identified treat-

ment effect parameters

Given Theorem 2, what can we say about the set of possible treatment

effect parameters E[Yi(t
′) − Yi(t)|cGi

= 1] for a given t′ ̸= t that are

9If such never-takers are allowed in G, this introduces a column of all zeroes in the matrix A[t].
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outcome-nonrestrictive identified, i.e where c ∈ rs(A[t])∩rs(A[t′])∩{0, 1}|G|?

For ease of notation, let us without loss of generality label the treatment

values of interest t′ = 1 and t = 0. Accordingly, denote α[t′] by α1 and

α[t] by α0 (each of these is a |Z|-component vector). Then for some c ∈

{0, 1}|G| and α0, α1 ∈ R
|G|, we have an identified conditional treatment

effect parameter when c′ = α′
1A

[1] = α′
0A

[0]. This occurs if and only if

(α′
1,−α′

0)

A[1]

A[0]

 := α′A[1,0] = 0|G| (6)

with c′ = α′
1A

[1], where we let A[1,0] denote a 2 · |Z|× |G| matrix composed

of the rows of A[1] followed by the rows of A[0], and α = (α′
1,−α′

0)
′ is a

2 · |Z| × 1 vector. For any α in the left null-space ns(A[1,0]) of A[1,0], let

c(α) denote the value c = A[1]′α1 = A[0]′α0 where α1 is a vector of the the

first |Z| components of α and α0 is a vector of minus one times each of

the last |Z| components of α. In general then C(t) ∩ C(t′) = {c(α) : α ∈

ns(A[t′,t])}∩ {0, 1}|G|, where A[t′,t] is composed from A[t′] and A[t] as above.

This characterization proves useful in the search for new IV identification

results to follow.

The following result greatly reduces the complexity of building an index

of outcome-nonrestrictive identified parameters, searching over vectors α:

Proposition 2. If c ∈ rs(A[t]) for some t and c ∈ {0, 1}|G|, then the

equation c′ = α′A[t] can be satisfied by a vector α having elements that

are rational and belong to the set Cn :=
{
a
b : a, b,∈ D|Z|

}
, where Dn :=
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{det(B) : B ∈ {0, 1}n×n} is the set of possible determinant values for an

n× n matrix B having entries in {0, 1}.

Proposition 2 implies that when searching for c = c(α), we can always

restrict the components of α to belong to the finite set D|Z|. For n ≤ 7,

the set Dn is known to consist of consecutive integers symmetric about

zero (Craigen, 1990). For example, D1 = D2 = {−1, 0, 1} and D3 =

{−2,−1, 0, 1, 2}.10 It follows that for |Z| ≤ 2, we can restrict a search

over αz to the set C1 = C2 = {−1, 0, 1}. For |Z| = 3, we can restrict to the

set C3 = {−2,−1,−1/2, 0, 1/2, 1, 2}, and so on.

4.3 Algorithms for enumerating identified treatment effects

In this section I implement a brute-force algorithm that uses Proposition 2

above to perform an exhaustive search for local average treatment effect pa-

rameters that are outcome-agnostic identified in settings with |Z|, |T | ≤ 3.

This search uncovers several novel identification results for treatment ef-

fects in IV models.11 This exercise has clear value within a particular

selection model G, as it may reveal new treatment effect parameters that

are identified given assumptions about selection that the researcher has

already accepted. By iterating over selection models G, it can also suggest

relaxations of assumptions regarding selection under which a given param-

eter remains identified. The search can also be useful to researchers de-
10Meanwhile, D4 = {−3, . . . ,−1, 0, 1, . . . , 3}, D5, = {−5, . . . ,−1, 0, 1, . . . , 5}, D6 =

{−8, . . . ,−1, 0, 1, . . . , 8}. For n ≥ 8, Dn remains a bounded set of integers for any given n, but Dn

generally skips some consecutive integers. For example, it is not possible for a 7 × 7 binary matrix to
have a determinant of 28 but one can achieve a determinant of 32 (Craigen, 1990).

11I am grateful to Simon Lee for suggesting this idea to me.
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signing experimental interventions, as the amount of instrument variation

in the experiment determines Z (and hence the number of rows available

to build rs(A[t])). To be clear, the existence of an outcome-nonrestrictive

identification result for a given G should generally not be used as a motiva-

tion to search for an ex-post justification of the selection model G. Rather,

the plausibility of the restriction to a given G should be evaluated on its

own merits.

I compare two versions of the algorithm, which are laid out explicitly in

Appendix E. The first is a “naive” approach that iterates over all possible

selection models G given Z and T and then finds identified ∆t,t′
c within

that selection model. For a given selection model G, there are 2|G| possible

values of the vector c, and a certificate of whether c corresponds belongs to

C(t) ∩ C(t′) for a given t′, t can be verified by testing whether c = c(α) for

some α in the left nullspace of matrix A[t′,t] defined in Eq. (6). A second

algorithm makes use of Proposition 2 to instead iterate over the possible

2 · |Z|-component vectors α, rather than over selection models G. This

comes at great computational benefit, as computations for a single α are

useful for studying many selection models at once. Given Proposition 2,

we can without loss of generality restrict the search over α to those having

components in the discrete and finite set C|Z|. Compared with Algorithm 1

above, which quickly becomes infeasible for |Z| ≥ 3, this second approach

runs on |Z| = 3 within minutes. The reason is that the number of possible

selection models 2|T ||Z|
scales much more quickly with |Z| than the number

(C|Z|)
2|Z| of possible α vectors, as shown in Appendix Table E.1.
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4.4 Overview of computational results

Table 1 below presents an overview of results of the two algorithms for set-

tings with |Z|, |T | ≤ 3.12Appendix F makes illustrative observations from

each combination (|Z|, |T |) in detail, and a full catalog of the identification

results is provided in Appendix K. While the settings reported in Table

1 are “small” (|Z|, |T | ≤ 3), they turn out to contain a rich structure of

identification results, which varies considerably by T and Z.

|T | |Z| # SMs # TEs Algorithm 2 run-time Algorithm 1 run-time

Initial search Organizing/Paring

2 2 2 4 0.08 seconds .06 seconds 0.11 seconds
3 2 5 5 0.08 seconds .12 seconds 13.9 seconds
2 3 11 30 55 seconds .20 seconds 4.3 seconds
3 3 251 251 18 minutes 65 minutes N/A (estimate: 22 days)

“# TEs” = number of distinct treatment effect parameters identified, “# SMs” = number of distinct
maximal selection models. See text below for precise definitions.

Table 1

The third column in Table 1 counts the number of distinct selection models

for a given support of the instruments and treatments, for which at least

one treatment effect parameter of the form ∆t,t′
c is outcome-nonrestrictive

identified. For instance, the first row finds that Example 1 and Exam-

ple 2 discussed in Sections 2-3 are the only selection models admitting

of outcome-nonrestrictive identified treatment effect parameters, with a

binary treatment and binary instrument.

The detailed description of Algorithm 2 in Appendix E describes how

starting from an identification result for a parameter ∆t,t′
c using some α ∈

R
2·|Z|, we can define a “maximal” selection model G(α) with the property
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that α now identifies ∆t,t′

c̃ for some c̃ ∈ {0, 1}|G| within any selection model

G ⊆ G(α) that is more restrictive that G(α).13

The fourth column in Table 1 counts the number of distinct vectors α

for a given support of the instruments and treatments. Each such α yields

a distinct identified treatment effect parameter ∆t,t′
c . Although a given

α may correspond to identified treatment effect parameters under more

restrictive selection models G ⊆ G(α) as well (as described above), Table 1

treats these as the same identification result. The preamble to Appendix

K provides a detailed example illustrating how the counting is done.

5 Application: interaction effects in cross-randomized

designs

This section applies Theorems 1 and 2 to study the identification of comple-

mentarities between two binary treatment variables, representing a setting

in which |T | = |Z| = 4 but where some additional structure is natural.

Appendix F.1 considers a second application with |T | = |Z| = 4, where

a different structure is natural: spillovers between pairs of observational

units and binary treatments.

12Run times are with R version 4.3.2 with a 3600MHz processor (AMD Ryzen Threadripper PRO
5975WX), 128GB RAM. While Algorithm 1 is parallelized across 31 cores, Algorithm 2 computation
uses a single core. Algorithm 2 is not trivial to parallelize across processors given the need to check for
redundancies, but does enable Algorithm 2 to be feasibly extended to |Z| = 4 on this computer setup.

13For example, let G be the choice model described in Section F.0.4 from case ii of Proposition 2 of
Kirkeboen et al. (2016). After removing two response types from G, a second treatment effect parameter
becomes identified, which is listed under a different selection model G′ ⊂ G counted in Table 1.
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5.1 Background and empirical practice

In many experimental settings, researchers cross randomize two treatments

A and B, and investigate whether there are interaction effects between

the treatments, i.e. whether the effect of receiving both A and B differs

from the sum of the effects of each of A and B alone. In some such set-

tings instrumental variables methods are not needed, because compliance

is perfect or the intent-to-treat effect is the policy-relevant effect of direct

interest (see e.g. Duflo et al. 2015; Mbiti et al. 2019). Intent-to-treat

(ITT) effects can be straightforwardly estimated by the regression:

Yi = γ0 + γ1 · 1(Zi = A) + γ2 · 1(Zi = B) + γ3 · 1(Zi = C) + νi (7)

where Zi = C indicates the treatment arm for both treatments A and

B. Such cross-randomized experiments are often referred to as “factorial

designs”.14

In many factorial designs, the treatment arms Zi ∈ {A,B,C} repre-

sent offers for A or B or both, respectively, and researchers obtain data

on whether A and B were actually received. For example, Angelucci and

Bennett (2024) study the effects of pharmacotherapy (medication) and

livelihood assistance (personalized training and support around income

generation), among adults with depression in Karnataka, India. Across

the three treatment arms of the experiment, roughly 65% of participants

actually undertake pharmacotherapy (defined as attending at least one

14See Muralidharan et al. (2023) for a review of empirical practice in factorial designs.
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psychiatric consultation), receive livelihoods assistance (attending at least

one livelihoods workshop), or both. Further many adults assigned to re-

ceive both pharmacotherapy and assistance undertake only one of the two

treatments, although they are offered both. In this setting, individuals

do not typically have access to pharmacotherapy or livelihoods assistance

except through the field experiment, so the non-compliance is one-sided.

When compliance is imperfect and researchers care about the effects of

A and B themselves as treatments (rather than as offers of treatment), it

is necessary to move beyond intent-to-treat regression (7). Denote the pos-

sible treatments as T = {0, A,B,C}, with associated potential outcomes

Yi(t) for t ∈ T . For example, Yi(0) is the outcome i would experience with

neither of the two treatments A and B.

Meanwhile, the instrument values are:

Z = {offered neither, offered just A, offered just B, offered both}

If subjects are offered both A and B, they may choose to take treatment A

only, treatment B only, or both (treatment C). Treatments A and B are

otherwise not available to participants, so non-compliance is one-sided.

For a single individual, we can say that A and B exhibit complemen-

tarity if the effect of both treatments is greater than the sum of the effects

of each treatment separately, i.e. {Yi(C) − Yi(0)} > {Yi(A) − Yi(0)} +

{Yi(B)− Yi(0)}. Of course, testing for complementarity at the individual
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is infeasible due to the fundamental problem of causal inference. Let

H0 : E[Yi(C)− Yi(A)− Yi(B) + Yi(0)] = 0 (8)

instead be the two-sided hypothesis of no interaction on average.15 Under

perfect compliance, H0 is equivalent to the hypothesis γ3 − γ1 − γ2 >

0 from the ITT regression (7). This test is employed for example by

Angelucci and Bennett (2024), using only data on assignment and ignoring

information about compliance. However, the interpretation of this test

may be misleading if compliance is not perfect:

Proposition 3. If there is imperfect compliance, the parameter γ3−γ1−γ2

in Eq. (7) may be zero even when H0 does not hold, and may be non-zero

even when H0 holds.

The intuition behind Proposition 3 is that regression (7) tells us nothing

about complementarity effects among individuals who do not align their

actual treatments Ti with their treatment assignment Zi. The result sug-

gests that the common empirical practice of using ITT regressions (rather

than focusing on treatment effects per-se) is problematic given that com-

pliance is often known to be far from perfect. However, there are limited

identification results for researchers to make use of to estimate interaction

effects with imperfect compliance and effect heterogeneity.

One solution is to restrict outcomes, assuming sufficient treatment ef-

fect homogeneity to get around Proposition 3. For example, if we assume

15The LHS of (8) is the average of the individual-level “interaction effect” {Yi(C)− Yi(0)}− {Yi(A)−
Yi(0)}+ {Yi(B)− Yi(0)} = Yi(C)− Yi(A)− Yi(B) + Yi(0).
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that no selection on gains (NSOG) holds, the four unconditional coun-

terfactual means E[Yi(C)], E[Yi(B)], E[Yi(A)], and E[Yi(0)] are identified

under general conditions given in Appendix C. Identification is construc-

tive and corresponds to the estimand of a two-stage least squares (2SLS)

regression of Yi on indicators for each of the four treatments (and no con-

stant), instrumented by indicators for each of the four treatment assign-

ment arms.16 We can then test H0 by testing β3 = 0 in the equation

Yi = β0 + β1 · 1(Ti ∈ {A,C}) + β2 · 1(Ti ∈ {B,C}) + β3 · 1(Ti = C) + ϵi,

estimated using the instruments 1(Zi = A), 1(Zi = B), 1(Zi = both) and

a constant.

Nevertheless, NSOG is a very restrictive assumption. It suggests for

example that individuals do not have any knowledge of their specific gains

from the various treatments which informs their selection behavior. When

NSOG does not hold, Kormos et al. (2024) detail how the 2SLS estimand

β3 generally mixes interaction effects with terms that simply reflect treat-

ment effect heterogeneity. It is thus desirable to pursue an alternative

approach that leads to an interpretable causal estimand without restrict-

ing outcomes.

16In particular, since there are four instrument values and four treatment values, we can use a result
derived in Appendix C under NSOG, that E[Yi(t)] =

∑
z Σ

−1
tz · E[Yi · 1(Zi = z)], provided that the

matrix with entries Σzt = P (Zi = z, Ti = t) is invertible. Some algebra shows that this coincides with
the two-stage least squares estimand mentioned above.
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5.2 Identifying the local average interaction effect among com-

pliers

We now use Theorems 1 and 2 to examine to what extent NSOG can

be meaningfully relaxed. Ex-ante, there are 2 × 2 × 4 = 16 response

types that respect one-sided non-compliance.17 However, assuming that

the weak-axiom of revealed preference (WARP) holds, we are left with

the nine response groups enumerated in Table 2.18 I refer to these nine

response types as GWARP . GWARP represents the weakest selection model

consistent with rational choice and one-sided non-compliance in a factorial

design.

offered ↓ n.t. complier A only B only only both A+ B+ favor A favor B

neither 0 0 0 0 0 0 0 0 0
just A 0 A A 0 0 A 0 A A
just B 0 B 0 B 0 0 B B B
both 0 C A B C C C A B

Table 2: Response types that satisfy WARP in the cross-randomized offer design. The columns
in black correpond to the response types allowed by Proposition 4, while the gray columns
correspond to the remaining response types that are compatible with WARP.

Given a selection model G and a function c : G → {0, 1}, let us refer to

LAIE(c) := E[Yi(C)−Yi(A)−Yi(B)+Yi(0)|c(Gi) = 1] as the local average

interaction effect among the subgroup of g ∈ G such that c(g) = 1. LAIEs

are causal quantities like the local treatment effect parameters introduced

in Section A, except that they involve the potential outcomes for all four

17These response types correspond to the choices individuals would make across three decisions:
whether to take treatment A if A only is offered, B if B only is offered, and which of the four treatment
combinations to take if both are offered.

18The reduction from 16 to 9 response types comes from the additional restrictions that
{Ti(offered both) = A =⇒ Ti(offered A) = A}, {Ti(offered both) = B =⇒ Ti(offered B) = B},
{Ti(offered both) = 0 =⇒ Ti(offered A) = Ti(offered B) = 0}, {Ti(offered A) = A =⇒
Ti(offered both) ̸= 0}, and {Ti(offered B) = B =⇒ Ti(offered both) ̸= 0}.
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treatments rather than just two. The terminology “LAIE” follows that

used in Blackwell (2017) and Kormos et al. (2024).

The following Proposition uses Theorems 1 and 2 to establish when

LAIE(c) is identified in a manner that does not restrict outcomes:

Proposition 4. Given one-sided noncompliance and WARP, LAIE(c) is

outcome-nonrestrictive identified if and only if c(g) = 1(g = complier) and

G ⊆ {n.t., complier,A only,B only}.

Proposition 4 follows from a brute-force enumeration over all of the 511

selection models G ⊆ GWARP , and the c ∈ {0, 1}|G| within each of them.

Given such a selection model G, Theorems 1 and 2 along with an extension

of Proposition 1 to parameters that involve more than two treatment states

(proved in Appendix B) shows that LAIE(c) is outcome non-restrictive

identified iff c ∈ rs(A[0]) ∩ rs(A[A]) ∩ rs(A[B]) ∩ rs(A[C]).

Proposition 4 establishes that identifying complementarities in a cross-

randomized design without outcome restrictions requires substantive re-

strictions on selection: many of the response types in GWARP not included

in {n.t., complier,A only,B only} are ex-ante plausible. For example, let

Ui(t) denote the interpret Ui(t) as the net utility of treatment t ∈ T rela-

tive to no treatment for individual i (thus normalizing Ui(0) = 0). Without

loss of generality, consider a random coefficients form for the utility func-

tion: Ui(t) = πAi · 1(t = A) + πBi · 1(t = B) + πCi · 1(t = C). If the vector

πi = (πAi, πBi, πCi)
′ has support in an open neighborhood of the origin in

R
3, all nine groups from Table 2 will be present in the population.
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Appendix J.1 shows that we can rationalize the restriction made in

Proposition 4 by supposing that individuals choose separately whether to

receive treatment A or B, rather than as a single joint decision. That

is, individuals choose as if they evaluate the costs and benefits of each

treatment A or B separately, and choose all treatments offered to them

for which benefits outweigh costs. For this reason, let us denote the largest

selection model in which the local average interaction effect among compli-

ers is identified as Gsep := {n.t., complier,A only,B only}. Given one-sided

noncompliance, the selection model Gsep is also equivalent to what Black-

well (2017) calls a “treatment exclusion” restriction that the instrument

for treatment A does not affect uptake of treatment B (and vice versa).

Blackwell (2017) shows that in this case the interaction coefficient β3 from

a 2SLS regression identifies the local average interaction effect among com-

pliers. Proposition 4 shows that treatment exclusion is furthermore nec-

essary to identify this parameter without restricting outcomes. That is,

given WARP and one-sided noncompliance, the assumption of treatment

exclusion cannot be relaxed without restricting outcomes.

Estimating treatment effects and interaction effects among com-

pliers: The function c corersponding to the LAIE among compliers is

c(g) = 1(g = complier), or in vector notation c′ = (0, 1, 0, 0)′. Let us
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denote the functions α[t](z) in vector form as αt, in which case

α0 = (1,−1,−1, 1)′, αA = (0, 1, 0,−1)′,

αB = (0, 0, 1,−1)′, αC = (0, 0, 0, 1)′ (9)

One can verify directly that for each t ∈ R, α′
tA

[t] = (0, 1, 0, 0) where the

matrix A is defined from the first four columns of Table 2. For brevity,

let us denote LAIE((0, 1, 0, 0)′) = E[Yi(C) − Yi(A) − Yi(B) + Yi(0)|g =

complier] as simply LAIE (with this c implicit).

Applying Eq. (4) with the coefficients in (9) implies a cumbersome

expression for LAIE, but some simplification shows that LAIE = θITT/p,

where p = P (Gi = complier) and θITT := γ3 − γ1 − γ2 is the measure of

average complimentary from the intent-to-treat regression Eq. (7). This

delivers the following useful consequence of Proposition 4:

Corollary 2. Given G ⊆ Gsep, the sign of the local average interaction

effect among compliers LAIE is the same as γ3 − γ1 − γ2 from the intent-

to-treat regression (7).

The algebra that leads to LAIE = θITT/p is given in Appendix J.5, where

it is also extended to the case in which covariates are included in Eq. (7).

Thus while the ITT condition γ3 − γ1 − γ2 cannot be used to test the

hypothesis of overall unconditional complementarity (without outcome re-

strictions), it can by Propisition 2 be used to test for the sign of local

average interaction effect among compliers. This latter interpretation re-

quires no outcome restrictions, but instead the non-trivial selection model
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G ⊆ Gsep. Corollary 2 thereby formally justifies the test for complemen-

tarity used by Angelucci and Bennett (2024) within this selection model.

I note finally that the selection model G ⊆ Gsep yields three overiden-

tification restrictions for the share of compliers, obtained by applying Eq.

(3) with (9).19 This testable implication is new to the literature and can

be used to assess the substantive assumption G ⊆ Gsep.20

5.3 Empirical application

I use the replication data from Angelucci and Bennett (2024) as an em-

pirical implementation of the above findings. First, I assess the testable

implication above of G ⊆ Gsep. Unable to reject the over-identifying re-

strictions, I estimate LAIE following Proposition 4.

In Appendix J.7 I consider a second empirical setting, from Angrist et

al. (2009), in which students were cross-randomized into academic support

and financial incentives for good grades. In that setting, I find by contrast

that the testable implication of G ⊆ Gsep is rejected, and therefore local av-

erage interaction effect parameters cannot be identified absent restrictions

on outcomes. This illustrates that the general over-identifying restrictions

highlighted in Section A.5 have power in an empirically relevant way.

19The restriction is

p := P (Ti = C|Zi = both) (10)

= P (Ti = A|Zi = just A)− P (Ti = A|Zi = both)

= P (Ti = B|Zi = just B)− P (Ti = B|Zi = both)

= 1 + P (Ti = 0|Zi = both)− P (Ti = 0|Zi = just A)− P (Ti = 0|Zi = just B)

for some value p ∈ [0, 1] which identifies P (Gi = complier).
20These are stronger than testable implications mentioned by Blackwell (2017), which give

P (A or C|both) = P (A|just A) and P (B or C|both) = P (B|just B) in the case of one-sided noncompli-
ance. Those do not imply the last line of Eq. (10).
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Since the experiment reported in Angelucci and Bennett (2024) strat-

ifies randomization into nine strata (defined by district and terciles of a

village poverty index), implementation requires some extensions to the ba-

sic results of this paper that allow randomization to hold based on observed

covariates Xi. As described in Appendix J.3, conditional expectations that

need to be estimated are assumed to be additively separable between in-

struments Zi and indicators for the strata Xi for simplicity.

Testable implications of G ⊆ Gsep: Each of the four expressions the

proportion p of compliers in Eq. (10) can be estimated using regressions

of the various D
[t]
i on instrument indicators as well as indicators for strata

Xi. The extension of (10) to the case with strata fixed effects is given

in Appendix J.3. Following Angelucci and Bennett (2024), I use cluster

robust inference by village (the level of treatment assignment).

The point estimates for p := P (Gi = complier) are 36.7%, 40.2%,

39.7%, and 43.7%, respectively. A chi-squared test for equality of all four

estimates of p yields a p-value of 65%. This indicates that we cannot

reject these overidentification restrictions at all conventional levels. This

provides evidence in favor of the choice model G ⊆ Gsep.

However, the equality restrictions (10) are not the only observable im-

plications of G ⊆ Gsep. In Appendix J.6, I describe how all of the observable

first-stage information can be aggregated into a system of linear equations

Ax = β, where A is a known matrix defined from the A[t], β is a vector

of observed treatment choice probabilities, and x is a vector of the (non-
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negative) unobserved occupancies xg = P (Gi = g) of each response type.

Maintaining the weaker assumption of G ⊆ GWARP , we can test whether

G is furthermore a subset of Gset by computing a lower bound on the sum

of the components of xg for g ∈ GWARP − Gsep, subject to the constraints

that Ax = β, each xg ≥ 0 and the xg sum to unity.21

Solving this linear program with point estimates of the observed treat-

ment choice probabilities suggests that P (Gi ∈ GWARP − Gsep) is at least

6.3% (and is no more than 80.8%). In the absence of sampling uncertainty,

this would provide some evidence against the restriction G ⊆ Gsep. How-

ever, this lower bound for P (Gi ∈ GWARP −Gsep) is not statistically signif-

icant. Fang et al. (2023) provide a method for testing whether there exists

componentwise non-negative solutions x to systems of the form Ax = β

like the above, when β is estimated from the data. This method yields

a 95% confidence interval of [0, 0.83] for the share of offending response

types. We therefore cannot reject that G ⊆ Gsep within the weaker assump-

tion G ⊆ GWARP , even using the full observable information on treatment

uptake. Appendix J.6 provides further details.22

21In principle, this exercise could be implemented by strata to test G ⊆ Gsep among the individuals
within each. To increase statistical power given the small sample, I pool the data across all strata for
this exercise. This is valid under the assumption that the response-type distribution is common across
strata.Note that this resrtiction does not require potential outcomes to be uncorrelated with stratum.

22I implement the FSST method using the R package lpinfer. This method does not involve any
clustering and is designed for i.i.d. data, so the confidence interval reported above may undercover the
parameter P (Gi ∈ GWARP − Gsep) if one considers uncertainty as arising from treatment assignment as
well. Since the proportion of each cluster (in this case village) that is sampled is small (on average about
two individuals), results for OLS suggest that the influence of clustering in treatment assignment may
be minimal, even considering both uncertainty arising from clustered treatment assignment as well as
sampling (Abadie et al., 2022). Similar results are provided using alternative methods for inference on
linear systems introduced by Romano and Shaikh (2008) and Cho and Russell (2024).
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Estimates of local average interaction among compliers: The data

from Angelucci and Bennett (2024) follow 1,000 respondents over five sur-

vey waves. I use their main outcome variable, which is a standardized

version of the PHQ-9 score for depression, with higher values indicating

more severe depression. I focus on longer-run outcomes in the fourth and

fifth survey waves, which occured between one and two years after treat-

ment. In these longer waves, the authors estimate γ3−γ1−γ2 from the ITT

regression to be marginally significant at the 10% level with a p-value of

.10. Meanwhile, they find that the combination (treatment “C”) of phar-

macotherapy (treatment “A”) and livelihoods assistance (treatment “B”)

reduces depression symptoms even after the intervention that is significant

at the 95% level, while the effects of treatments A or B alone are insignif-

icant (cf. their Table 2, panel B). These estimates however come from an

ITT regression that ignores actual treatment uptake, and may be attenu-

ated or otherwise distorted when interpreted as effects of the treatments

themselves rather than as effects of assignment.

Column (1) of Table 3 implements this ITT regression of the outcome

on instrument indicators (and strata fixed effects). Departing slightly from

Angelucci and Bennett (2024), I focus on a minimal specification and do

not control for baseline values of the outcome. However, the findings are

qualitatively the same and quantitatively similar. In line with Angelucci

and Bennett (2024) only the effect of treatment C (pharmacotherapy and

livelihoods assistance) is statistically significant. Column (2) uses data on

treatment uptake and implements a 2SLS regression as described in Section
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(1) (2) (3) (4)
ITT 2SLS Eq. (4) GMM

E[Y (C)− Y (0)|c(G) = 1] -0.28∗∗ -0.68∗∗ -0.49∗ -0.29∗

(0.08) (0.22) (0.21) (0.11)
E[Y (A)− Y (0)|c(G) = 1] -0.05 -0.09 -0.07 -0.09

(0.08) (0.15) (0.21) (0.21)
E[Y (B)− Y (0)|c(G) = 1] -0.03 -0.04 0.13 0.25

(0.08) (0.10) (0.24) (0.17)
Interaction effect parameter AIE AIE/LAIE LAIE LAIE
Interaction point estimate -0.20 -0.55 -0.56 -0.50
P-val: no complementarity 0.10 0.08 0.07 0.15
c(G) compliers/all all individuals compliers compliers
p(c(G)=1) 1 1 .4 .41
Identifying assumption perfect compliance NSOG G ⊆ Gsep G ⊆ Gsep

Sample size 1650 1650 1650 1650

Table 3: Treatment effects and interaction effect estimates, where A is pharmacotherapty
(“PC”), treatment B is livelihoods assistance (“LA”), and treatment C is receiving both. Out-
come variable is the PHQ-9 depression score, expressed in units of its sample standard deviation.
ITT effect estimates can be interpreted as effects of receiving treatment under perfect compli-
ance, though this is rejected by the data. 2SLS estimates assume no-selection-on-gains (NSOG).
The interaction effect estimated in columns (1) or (2) is the overall average interaction effect
(AIE) appearing in Eq. (8), and in (3) and (4) are the local average interaction effect (LAIE)
among compliers. All columns include strata controls and cluster standard errors by village.

5.1. These treatment effects estimates are larger in magnitude and have the

same pattern of significance, which is intuitive given imperfect compliance.

However the main treatment effect estimates (besides the LAIE) in Column

(2) invoke the strong assumption of no-selection-on-gains (NSOG) to be

interpreted causally.23

By contrast, none of the estimates reported in Columns (3) and (4) re-

quire no restrictions on outcomes to be causally interpreted and compared.

Column (3) uses simple sample estimators of the expectations from Eq. (4)

(extended for strata fixed effects) along with the α vectors in Eq. (9) that

isolate compliers. (see Appendix J.3 for details). Column (4) re-estimates

23Thm. 2 of Blackwell (2017) shows how the various 2SLS coefficients average effects over different
groups of response types even given G ⊆ Gsep, making them not comparable to one another without
outcome restrictions like NSOG.
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Column (3) while further imposing the overidentification restrictions (10)

for the share of compliers, using a generalized method of moments (GMM)

estimator (see Appendix J.4 for details). While the GMM estimator does

not reduce the standard error of LAIE in this setting, it yields a statisti-

cally significant estimate of E[Yi(C)−Yi(0)|i is complier] at the 95% level.

The three estimates of LAIE in columns (2)-(4) are valid under the

same assumption that G ⊆ Gsep, and suggest that pharmacotherapy and

livelihoods assistance are complementary: they have an interaction effect

of about half of a standard deviation of PHQ-9 among compliers. 2SLS

provides the most precise estimate of this parameter, which is signficant

at the 10% level.

The large positive magnitude of the effect of livelihoods assistance

(treatment B) in columns (3) and (4) raises the question of whether this

intervention may in fact exacerbate depression symptoms among compli-

ers, when it is not accompanied by pharmacotherapy (treatment A). This

finding is not evident in the ITT estimates from Angelucci and Bennett

(2024) that do not adjust for non-compliance, or from 2SLS results. The

estimate is not quite significant at the 10% level even with the GMM es-

timator however (t-statistic 2.47/1.67 = 1.48), so this finding should be

caveated accordingly. The estimates reported in Table 3 otherwise confirm

the qualitative findings of Angelucci and Bennett (2024), while offering

quantitative treatment effects that account for the partial compliance.
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6 Conclusion

This paper has shown that given discrete instruments, outcome non-restrictive

identification using instrumental variables is equivalent to the existence of

linear combinations of counterfactual treatment indicators that add up

to zero or one for all response types in the assumed selection model. A

selection model only allows for treatment effects to be identified in an

outcome-nonrestrictive way when a matrix that summarizes the selection

behavior allowed by the model satisfies a particular geometric property.24

This insight yields a systematic approach to enumerating all selection

models that afford identification of treatment effects in a manner that does

not restrict outcomes. The search delivers a multiplicity of new identifi-

cation results, despite its computational complexity scaling rapidly with

the size of support of the instruments and treatment. Perhaps more im-

portantly, it traces out the limits of point identification leveraging restric-

tions on selection alone. This is illustrated in the application to cross-

randomized assignment to two binary treatments, where I establish that

substantive restrictions on choice cannot be relaxed without sacrificing

point identification of the local average interaction effect.
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