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A Defining outcome-nonrestrictive IV identification

A.1 Notation

Let P denote the joint distribution of the model fundamentals (G;,Y;, Z;). Given Eq.
(2), we can decompose P as
P = Platent X Pz,

where P, denotes the distribution of the instruments Z; and Pj,en: denotes the distribu-
tion of the latent variables of the model Y and G

A generic causal parameter of interest 6 is a functional 6(P) of the distribution P
of model variables. Let P, denote the distribution of observable variables (Y;, T;, Z;).
Note that Pz is a marginalization of P, over Y; and T;. I make use of the following

notational convention: for a sub-vector Wy of a random vector W, let Py, (Pw) be the

1By P = Piatent X Pz, I mean that for any Borel set By of values for (Gi,f’i) and Bz of values for Pz we have
P(BL X Bz) = Piratent(BL) - Pz(Bz), where Br, X Bz is the Cartesian product of By, and Bz.



distribution of W, that arises after marginalizing distribution Py, over the components
of W not included in Wy. In this notation, for example, Pz = Pz(Pops)-
Define 2410t (G) to be the set of Piyen: compatible with a given selection model G

and admitting of finite moments:

<@latent(g> = {Platent € 9}76’ : Supp(Pg(Platent)) g g} (1)

where we let 2., denote the set of all distributions over (Y;, G;), such that E[Y;(t)|G; =
g] exists and is finite for each t € T and g € G. Employing a similar notation, we let &
be the set of distributions over instrument values that embed any maintained support
restrictions (e.g. that Z; is binary with P(Z; = 1) € (0,1)).

Note that for any P = Piatent X Pz, Eq. and T; = T;(Z;) imply a distribution of
observables. Let ¢ denote this map so that Py, = ¢(P). The set of possible distributions

of observables given a selection model G is

@obs(g) = {¢(Platent X 7DZ) : Platent € L@latent(g)a7jZ S @Z}

All together, we can think of the basic IV model as the set of distributions M = {Pasens X
Pz : Pratent € Pratent(G), Pz € Pz}. In this notation note that P2,,(G) = ¢(M).

A.2 Observable restrictions implied by the model

In general, Z,,5(G) is a strict subset of the set of all joint distributions of (Y;, T3, Z;),
i.e. restrictions on G coupled with Eq. imply testable implications on P,,s. These
testable implications have been studied in the case of the classic LATE model (see e.g.
Kitagawa 2015; Mourifié and Wan 2017; Kédagni and Mourifié 2020}, see also Jiang and
Sun [2023)). Such restrictions are discussed further in Section [A.5|

A.3 Outcome nonrestrictive IV identification

Given a function ¢(-) introduced in Section , denote the subset of P4eni(G) for which
P(c(G;) = 1) > 0 given the distribution Pg of G; as:

c@latent,c<g> = {Platent € c@latemf(g) and P(C(G’) - 1) >0
according to Pg(Platent)} (2)

Similarly, let Pops.c(G) := {O(Pratent X Pz) : Platent € Pratent,c(G): Pz € Pz} Pobs,e(G)
consist of the distributions of observables that respect selection model G and put positive
probability on the groups g € G such that ¢(g) = 1. These sets are used in defining
outcome-nonrestrictive identification as a simple guarantee that the target parameters
pt and AbY are well-defined. But causal parameters that condition on a probability-
zero event—such as the marginal treatment effect—can also be accommodated in this

framework, as limiting cases of a sequence of parameters for ¢; satisfying P(c;(G;) =
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1) > 0 (see Appendix [G]).
We are now ready to give a definition of outcome-nonrestrictive identification, where

the target parameter 6 is expressed as a function § = 6(P) of the data generating process

P:

Definition 1. Given a choice model G, we say that parameter 6 with conditioning function

¢ 18 outcome-nonrestrictive identified under G if the set

{0(P) : ¢(P) = Pops and P = (Piatent X Pz) for some
Platent S glatent,c<g> and 7)Z S QZ}

is a singleton for all Pops € Pops(G).

Point identification in general says there is a unique value 6(P) compatible with Eq.
and ¢(P), for all P in some set defined by the model. The key requirement that
identification be outcome-nonrestrictive is that this model is broad enough to include
all of %atmt’c(g).ﬂ The set Patent.-(G) allows what Heckman et al. (2006) call essential
heterogeneity. The only restrictions on outcomes amount to IV independence (imposed by
taking the product measure P = Pjgtens X Pz), exclusion (implicit in the notation Y;(t)),
and finite group-specific means of Y; (imposed through Py in ) Thus Patent.c(G)
is compatible with any marginal distribution Py of ¥ = {Yj(t)}ser or selection-type
conditioned distributions Pﬁgzg across various g € G whatsoever (provided that they
have finite means), so there is no assumption that e.g. treatment effects are homogeneous

across units, or are unrelated to counterfactual selection behavior G;.

A.4 Binary combinations and binary collections

We begin by establishing a terminology to refer to situations in which the identification

result for counterfactual means in Eq. can be applied.

Definition. Given selection model G, a binary combination is a treatment value t € T
and a function a : Z — R of finite support Zx = {2 }& | such that S | a(z;) -Dl[ﬂ(zk) €
{0, 1} for all 7, according to G.

Now consider a collection of binary combinations that apply to at least two distinct
values t € 7. Let us denote set of coefficients o in each binary combination by al¥, in-
dexed by the treatment value ¢ it will be applied to. In this notation, a,[:] is the coefficient

on z; in the binary combination corresponding to treatment ¢.

2Definition [1] represents a case of point identification as defined in Lewbel (2019) (see also Matzkin [2007), where the
known information (¢ in Lewbel’s notation) is the distribution P,ps, the model value (m € M in Lewbel’s notation) is
P = Piatent X Pz, and the model M is the Cartesian product of Zj4ient,o(G) and Fz.

3%atm,c(g) does restrict the marginal distributions of G; and Z;: through G, P(c(G;) = 1) > 0, and Zz.



Definition. A binary collection is a set of binary combinations {(t,a!)},c, for treat-
ment values in set ¢ C T where || > 2, with the property that given the selection model

t,alt [t

G, the functions c! " and el are identical, for any t,t" € 1.

For a given binary collection, let us for brevity denote the common function clted]
for all t € 9 as c¢. It follows immediately from Theorem [1I| that treatment effects
E[Y;(t') — Yi(t)|e(G;) = 1] = E[Yi(t)|c(G;) = 1] — E[Yi(t)|e(G;) = 1] are identified

for any pair t,t € 1.

When treatment is itself binary, we can generate binary collections from any binary

combination where the coefficients sum to zero:

Proposition A.1. Let T = {0,1}, and suppose (t,«) is a binary combination such
that >, ou, = 0. Then there exists a binary collection with ¢ = T. In particular, the

coefficients for t =0 are simply —1 times the corresponding coefficients for t = 1.
Proof. See alternative statement of this result in Section [3] O
The restriction that ), ay = 0 is a natural one, in the following sense:

Proposition A.2. Let ALY = E[Y;(t') — Yi(t)|c(G;) = 1] be outcome-nonrestrictive iden-
tified from a binary collection with t' # t. Then if G contains a group go that always takes
treatment t, it must be the the case that ), aLt] =0.

Proof. Since P(T; = t'|G; = go) = 0, the data provide no information on Y (¥)|G; = go,
so we must have ¢(gg) = 0 (see proof of Proposition. Thus ¢(g0) = >, ag] (T (2) =

)=, al =0 O

For example, in the LATE model of Imbens and Angrist (1994), allowing for “always-
takers” (who always take treatment ¢ = 1, regardless of Z;) implies that ) ol = 0, while
allowing for “never-takers” (who always take treatment ¢t = 0) implies that ) ¥ =

Consistent with this, identification of the compliers LATE follows from the binary col-

lection in which a[ll] =1, oz([)l] = —1, a[lo] = —1, and a([)o] = 1.

A.5 Using binary combinations and collections for testing the model

The existence of binary combinations with K > 1 generally yields overidentification
restrictions that can used to test the IV model (including exclusion, independence, and
the choice of selection model G). In particular, suppose that |G| < co and note that for

any Borel set B of R and binary combination (¢, «), we have that:

ax - P(Yi € BT, = t|Z; = ) = P(Yi(t) € B, c(Gy) = 1) (3)
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using Eq. and that P(Y;(t) € B Ti(z) = t) = > ,cq P(Gi = g) - P(Yi(t) € B|G; =

qg) - A,[z,lvg. Smce the RHS of Eq. (3) represents a probability, the LHS must be weakly
positive. Provided that not all of the ay, are positive, the implication that Zszl a,-P(Y; €
B, T, = t|Z; = z;) > 0 is not guaranteed and therefore can be used to test the model
assumptions.

Furthermore, finding binary collections may yield further overidentification restrictions
that make use of the “first stage” data alone. Depending on the selection model, the
equality Zk 1 a ‘B [D t]|Z = zk} Zk 1a[t] [Dl[tl]|Zi = zk} may not be trivially
satisfied, even in the case of a binary treatment. See Section |5 for an example of such
equality restrictions in the context of an empirical application, and Appendix for
further linear inequality constraints that are based upon first stage empirical moments.
Still further testable restrictions hold if one has a binary collection and Eq. holds

conditional on observed covariates X;. See Appendix for details.

B Proofs

B.1 Proof of Proposition

To ease notation, write ALY as A, ut as pu(t), and u! as pu(t'), with ¢ fixed. It is apparent
that if p(¢') and p(t) are outcome-nonrestrictive identified, then A = pu(t') — u(t) is too.

Now let us consider the other direction. Suppose that p(¢) is not outcome-nonrestrictive
identified (an analogous argument holds if p(¢') is not outcome-nonrestrictive identified).
Then for some Pops € Popse(G), the set {0,4)(P) : P € M and ¢(P) = Poys} has
at least two elements, where M = {Piatent X Pz : Piatent € Piatent.c(G), Pz € Pz}
and we let 0,(-) be the map that yields the value of u(t) as a function of Pﬁ Ac-
cordingly, let Py, P, € M where 0,4 (P1) = a and 0,4 (P2) = b where a # b despite
¢(P1) = ¢(P2) = Povs.

Let us decompose P; as ({Py(s)|gzg}seT,Pg,PZ), which is possible because P;
g€eg

satisfies independence Eq. between the instruments and the latent variables. Let

P(0) denote a degenerate distribution at zero in R. Now consider the distribution
= ({P(O)}geg, {Py(tﬂgzg}sefn#t/ . Pa, PZ>. That is, Y;(t') = 0 with probability one
Y

according to Py, but the joint distribution of Z;, G; and all of the other potential outcomes
s # t' are the same under P; as they are under P;. Note that given this construction:
0,0 (P1) = 0,5 (P1) = a, since p(t) only depends on the distributions Py (1 g—, and Pg,
and t # t'. Note as well that from P; € M we know that Plaent(P1) € Patent.o(G). Since
P¢ has not been changed in defining P; from Py, and a degenerate random variable at
zero has a finite expectation, it follows that Platemg(ﬁl) € Patent.(G) as well. Since Py
has also not been changed, we further have that P, € M.

4Note that the set M will vary with ¢, but since we are considering a fixed c this is left implicit to ease notation.



Define P, analogously from Py, and observe that similarly 6,(P2) = 0. (P2) = b
and again that P, € M.

Observe furthermore that Oa(P1) = 0,1 (P1) — O,y (P1) = 0 — a = —a, and similarly
OA(P2) = 0,1y (Pa) — 0,5 (P2) = 0 — b = —b. Thus since since b # a:

Oa(P1) # 0a(P2) (4)

I now show that this contradicts A being outcome-nonrestrictive identified.

To see this, decompose P, as ({PYT_S,Z_Z}SeT, {PT|Z:Z} ez ,PZ> and define 750b5 =
zEZ Z

({P(O)}Zez, {Py|T:$,Z:z}s€T7s#/ , {PT|Z:Z}Z€Z ,PZ) where the {P(0)}.cz indicate that
zZEZ 5
PY; =0|T; =t,Z; = z) = 1 for all z € Z according to Pys. That is, the marginal

distribution Py, and the conditional distributions Py|p—s z—. for all s # t' and z are
unchanged from P, but Y; = 0 with probability one conditional on T; = t'.

The next step is to observe that ¢(P;) = Pops and ¢(Ps) = Pops. To see this, note
that Y;(t') = 0 with probability one implies that Y; = 0 with probability one conditional
on T; = t' (provided that P(T; =t) > 0). Now since P; and P, only differ in Py 11)1G=g
(leaving Prz and and Py g, z—. for all s # t' and z unchanged), it follows from ¢(P;) =
Pops that ¢(751) = Pops, and analogously for Ps. This further implies that Py, € Pobs.c(G).

Since A is outcome-nonrestrictive identified and Py, € Pops.c(G), the set {0 (P) :
P € M and ¢(P) = P} must be a singleton. Given that ¢(P;) = ¢(Py) = Pops and
P1, Py € M we must then have GA(751) = QA(752). This yields a contradiction with .

We can generalize Proposition (1] as follows. For any vector of coefficients p; for each
t € T, define 62 := 5" p, - ul. pul is a special case of ¢5 in which p; is equal to one for a
single treatment, and zero for all others. Similarly, Ai’t/ is a case of 62 in which py =1,
pr = —1, and all other components of p are equal to zero. In Section [f, the local average
complimentarity parameter A\, = u — p2 —pZ + 10 is an example of 62 where po = py = 1
and py = pp = —1.

In general, let ¥(p) C T be the set of treatments for which p, # 0. Clearly 67
is outcome-nonrestrictive identified if pf is for each ¢ € 9(p). The above argument
articulated for treatment effects extends immediately to show that 67 is also outcome-
nonrestrictive identified only if pf is for each ¢t € 1)(p). To see this, we again begin with
a value ¢t € 1(p) such that x(t) is not outcome-nonrestrictive identified, i.e. 0,4 (P1) = a
and 0, (P2) = b with a # b, where P; and P, are the corresponding latent variable
distributions in M such that ¢(P1) = ¢(P2) = Pops. Let dy = ZS# ps + Ou(s)(P1) and
dy = Zs# Ps * Bu(s)(P2) such that 62 = p, - a + dy under Py and 62 = p; - b+ dy under P;.

Suppose that 67 is outcome-nonrestrictive identified. In this case, we must have that
dy = di+py- (a—0b). Now consider the distributions Py, P, and P,,, defined above, where
we take t' # t to be any other treatment in ¢ (p) other than t. We have already seen
above that P, € Povs.c(G), P1, Py € M and ¢(P1) = ¢(P2) = Pops. Thus we must have



that 07 is the same under both P, and P,. Instead, we have that under P, 0? is equal
to p - a+dy — py - 0,y (Pr), and under Py, 67 is equal to

pe-b+da—pir -0, (Pa) = pr-b+di+pi- (a—b) = py -0,y (P2) = {pr-a+di} —pp -0,y (P2)

Thus we must have that 0,,)(P2) = 0, (P1). This argument can be repeated for every
t' € Y(p), t' #t, and we then have that d; = dy. This in turn implies that p; - (a —b) = 0,

which contradicts a # b with p; # 0. We have thus arrived at a contradiction.

B.2 Proof of Theorem
Setup and notation

Let Y C R be the support of Y. Forany y € Y,z € Z andt € T, define Fiy pyz=-(y,t) :=
E[1(Y; < y)I(T; = t)|Z; = z]. This function acts like a CDF for Y; and a probability
mass function for 7, conditional on Z; = z. We begin with the observation that knowing
the distribution Peys of (Y;,T;, Z;) is equivalent to knowing the value of F(y p)z=-(y,t)
for all (y,t, z) along with the observable distribution of the instruments Py.

By the law of iterated expectations over G; and using independence (2):

F(YD)|Z:z(y>t) = E{E[1(Yi(t) < y)U(Ti(2) =t)|Zi = 2, Gi]}
= Y P(Gi=g) ELYi(t) < y)|Gi =]

t

g:ALé:l
= Z P(Gi=g) - Fyuc=(y) == ZAZ]; - P(Gi=g) - Fy)ic=4(¥) (5)
Sy P

I use the following Lemma to assume that Al has full row rank, without loss of generality:

Lemma 1. [If u; 18 outcome-nonrestrictive identified given instrument support Z, it re-
mains outcome-nonrestrictive identified using data from Z; € Zy, where Zy C Z is a
subset of instrument values for which the rows of AY for z € Zy are linearly independent

of one another.

A special case of Lemma (1| is an observation by Heckman and Pinto (2018)) that one
can remove any rows of Al that is an exact copy of another row (i.e. there are two
instrument values for which all response types behave the same regarding whether they

choose treatment ¢ or not), and there is hence a direct redundancy over instrument values.

Outcome-nonrestrictive identification

Now define F(ypyz(y) to be a |T|-|Z| x 1 vector of Fiypyz=:(y,t) over z and t and G*(y)
to be the unknown |7 - |G|-component vector of P(G; = g) - Fy)jc=¢(y) over g and ¢, for
a fixed . Now let G* represent the whole vector-valued function G* : ) — RI7I19! and
define F(y pyz similarly as the function ) — RI7I12! yielding the vector F(yp)z(y). Note
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that Pz and F(y p)z encode the entire distribution P, of observables (Y, T, Z) while Py
and G* encode the entire distribution P of model primitives (37, G, 7).
The relationship between the two can be characterized by writing Eq. as:

Fuyp)z =A0G (6)
where A is the linear map of functions ) — RI7119l to functions Y — RI7HZl defined by:

(Ao p(y) }:A% 1(y

holding for each y, for any vector-valued function g : Y — RI71191.
Let 0 = E[Y;(t)|c(G;) = 1] be the parameter of interest. Note that similar to (), ¢
can also be written as a linear map applied to the function G*. In particular § = © o G*,

where for any function p : Y to RI7M9 © o p is the scalar:

Z W : /yy : du(y)t,g (7)

geg

The set of such p that recover the distribution of observables can be written as:
S={p:Aop=Fyp)z}

However, some such candidate values pu € S for G* may correspond to Fy ()g=4(-) that

do not represent valid CDFs. Accordingly, let us define

R = {p: [n(y))y/P(G; = g) is a proper CDF for each t € T and g € G s.t. P(G; = g) > 0}

The remainder of this section establishes that for 6 to be outcome-nonrestrictive identified,
the set S MR must map to a singleton under ©.

Note that the sets R and S as well as the map © depend on the distribution Pjuen:
(through F(yp)z for & and through the P(G; = g) for R and @)ﬂ Let us denote
this dependence by S(Puent); R(Pratent) and O(Platent), though T will later leave this
dependence implicit to ease notation.

Definition || of outcome-nonrestrictive identification, translated into this notation, says
that

{@(Platent) op S R(Platent) and M S S(Platent)} Is a Singleton v/]Dlatent S @latent,c(g)
(8)
The following regularity condition will prove to be useful later in the proof:

Condition REG. Fiz at € T. For some g* € G, there exists a L > 0 and L < oo such

5Note that the map © depends on ¢ and the vector c as well, also left implicit for ease of exposition.



that for any ¢' € G and y' > y:

Fywic=¢ V') — Fywic=y (y)
Fyw\a=¢-(¥") = Fy@)|c=¢(¥)

L< <L

Note that whether or not Condition REG holds is a property of Pjuen:. A sufficient
condition is that Y is discrete and finite and the support of Y (¢)|G = g is the same
for all g. Another sufficient condition is that i) Y is continuously distributed with the
support of the density fy()q=¢(y) the same for all g and ¢; ii) the density on this set Y
is bounded from below by M > 0 for all g, and iii) similarly sup,ecy fy(jc=g(y) < M for
some M < oo, for all gﬁ A mixture of distributions satisfying the above will also satisfy
REG.

Let Patent.c(G) denote the set of distributions Plasent € Platent.o(G) that satisfy Con-
dition REG. @lam,c(g) is never empty (given G # ()), since we have seen above that
for any |G| > 0 there are always distributions that satisfy REG (with examples for each
of discrete, continuous or mixed Y'). Further, Zatent (G) only limits the support of G
and places no constraint on the distribution of Y'|G. Note from that if 6 is outcome-
nonrestrictive identified, {© - pu} (S (Prarent) R (Praseny) TIUSE be a singleton for all Pygient
such that SUPP{PG (Platent)} C G, including any Platent € & latent,c(g )

The remainder of the proof of Theorem shows that if ¢ ¢ rs(AM), it is always possible
to find Pratent € Platent.o(G) such that {O(Prasent) - p1} (S (Prasent) R (Praseny) 18 1O in fact a
singleton.

A candidate for G* that recovers observables

To see this, we will explicitly construct a functional G of Pjyiens, that generally differs
from G* and lets us define an “alternative” to Pjen: but still recovers observables.

Consider the vector-valued function G, where the ¢, g component of G(y) is:

P(Gi=g) Fyuc(ylg) if max,ez 1(7,(z)
Zz[(A[t])ﬂg,Z] : F(YD)|Z<y7 tlz) if max.cz H(Tg<z)

f
£

QW) = ’
1

and (AM)* indicates the Moore-Penrose pseudoinverse of the matrix Al

The reason for separating out the two cases in the definition of G is that if there
exists a group ¢ that acts as a “never-taker” with respect to treatment t such that
max.cz 1(T,(z) = t) = 0, then this corresponds to a column of all zeros in All. A
property of the Moore-Penrose inverse is that if column ¢ of Al is all zeros, then the
corresponding row g of (A")* is also all zeros (see e.g. Hung and Markham [1975)) which
would leave [G(y)], , = 0 for all y if we did not separate out this case. This would make

it impossible for G to represent a possible candidate for G* (i.e. G € R). The above

6In the discrete case, let L = minyey geg P(Y(t) = y|G = g)P(Y(t) = y|G = g*) and L = 1/ minyey P(Y(t) = y|G =
max g€Gsubyey fy (1)|G=g W) NI/M and L = min g€Ginfyey fy(p)je=¢®) < M /N

* : T —
g*). In the continuous case let L = min g0 Ty ey Iy (1) G—g (V) max gEG sUby ey fy (t)|Gog (V) —
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construction avoids this problem by simply replacing such problematic combinations of
(g,t) by using the actual [G*(y)]:, (which are unknown). Note that if the first case holds
for all g € G, then the matrix AY is simply the zero matrix, and outcome-nonrestrictive
identification cannot hold, by Lemma [[ Thus, we can continue under the assumption
that the second case holds for at least some g € G.

Let use see now that G “recovers observables”, by which I mean that Aopu = Fypyz
and hence G € §. Indeed:

Ao G =Y _ Al [G(y)]

gmax ez 1L

+ Z ZA[t (A g Foypyz(y. tl2')

gmax,cz 1(Ty(z)=t)=1 2’

- ZAt] gz’F(YD)|Z<y7t|Z,)

_ZA[t (A, 2 Fiy )z (y, t12") = [Foy by z(0))i:

where the second and third equalities use that A[j}g = 0 for all z, if ¢ is such that
max,cz 1(T,(z) =t) = 0. The final equality follows from A(A)* = [z, which in turn
follows from (Al)+ = AL (A ALY~ gince we can by Lemmaassume that Al has full
row rank.

G may still however not be in R, as its definition above does not ensure that each
Fyw)c(ylg) is necessarily weakly increasing in y with a limit of unity as y 1 co. Note
that [G]:,/P(G; = g) does have the final two properties of a CDF": right-continuity and
a left limit of zero. To see this, substitute @ into the definition of G, to rewrite as:

P(Gi = g) - Fyuc(ylg) if max,cz 1(Ty(z) = 1)
S AMTAN, - P(Gi = ¢) - Frwie(ylg)  if max.ez 1(Ty(z) = t)

G, = ’
1
0)

/—\II

Right continuity of each element of G(y) in y follows from right-continuity of the Fy )¢ (y|g’).
Note that lim,|« [G(y)],, = 0 follows from each of the CDFs F(yp)z approaching zero
as y | —oo, given that the components of A and P(G; = g) are finite.

Let B4 := limyoo [G(y)], ,- For any ¢, g such that max.cz 1(T,(2) = t) = 0, it follows
from the definition of G that 8,, = P(G; = g), since each of the Fy ) c(y|g) are valid
CDFs. For the other t, g, use @ to see that

Brg = lim Y _[(AT)F A, - P(Gi = o) - Franelyly’) = Y I(AN)7 A, - P(Gi= o)

yToo " -

g

= [(A)r Al P,

11



where P is a vector of P(G; = g) for all g € G.

Unless [(Af)* A P], = P, for all g € G, the functions [G(y)]; , may thus not represent
properly normalized CDFs. In fact, they may not even be monotonic in y. However, we
can still use G as a building block to construct another set of functions that satisfy all

of the properties of a CDF.

A broader class of candidates that also recover observables but represent
CDFs

Given some fixed g* € G, let us define a vector valued function D : Y — RI7H9 with

components:
D )iy = (Py = Big) - Fraia(ylg®) = [{1 = (A)TAUY Ply - Fyyelylg®)  (10)
Now let us define for any A € [0, 1] the convex combination of G + D and G*:
G*=A(G+D)+(1-NG"=G*"+)1{G - G*+D} (11)

Our first observation will be that Ao G* = F(yp)z, i.e. G* still recovers observables and
thus G* € S. To see this, note that:

[Ao G )i = [Ao Gyl + A+ [A0{G — G" + D} (y)]sy

= [Fopyz(y)le: + A [Ae G TAG (Y)lg + A+ [AoD(y)]ey
= [Fiypyz(y)]se + A~ ZAt] (AYFAN], - P(Gi = ¢') - Frae(ylg®)

= [Foypyz(@)]e,. + A sz,g/ -P(G; =4¢") - Fywc(ylg")

= [F(YD)\Z(y)]t,Z

since Ao G* = Ao G and All(AM)+All = Al

Now, we verify that for a small enough A, G* yields Fy () (y|g) that satisfy the proper-
ties of a CDF and hence G* € R. First, note that [G)‘(y)} to is right-continuous in y, since
each of [G(y)]tg, (G*(Y)]tg, and [D(y)]:, are. We also have that lim,| o [G’\(y)hg =0,
since

lim [G(y)],, = lim [G*(y)],, = lim [D(y)],, =0

yd—o0 yi—oo y—o0
Note as well that

lim [G(y )], =lim [G*(y)],, + A zl;nglo {G-G"+D}(y),,

yToo 9 ytoo

=y {1 GO, — i (6 (), + lim DO,

yToo

:Pg"‘)"{ﬁt,g_Pg"‘(Pg_ﬁt,g)'1}:

12



matching the correct normalization, i.e. limyjeo [G*(Y)]; , = Py - limyree Fy(ja=¢(y) = Fy-
It only remains to be seen that for a small enough value of A, [G’\(y)] tg is weakly

increasing in y. This is always possible given that Pj,en: satisfies Condition REG:

Proposition B.1. Given Condition REG, [G)‘(y)}tg s non-decreasing in y for any

A € (0, )], where A = 55— > 0.

L
2[G|-L

Given Proposition , we have shown that for A < A\, G* € R and hence G* € (SNR).

Outcome-nonrestrictive identification implies c € rs(Alf)

Consider now any Piient € 2, ¢(G) and choose the g* € G in the definition of D so that
REG holds for that g*. We know that there exist A > 0 small enough that G* € (SN'R).

For any such A, outcome-nonrestrictive identification of # now requires that © o G* =
© o G*. This in turn requires, by Eq. (L1]), that © o {G — G* + D} = 0. Now:

@o{G—G*+D}

_ ch { y - dG(y /yy-dG*(y)t,g+/yy-dD(y)t,g}

_ ch Z (AYF AW, - P(Gy = o) - E[Y(0)|Gs = ¢]
G =) 2 e 2l ~ A A) Pl P(Gi= ) BIG()1G: =

(12)

Note that although the map © depends on the distribution Pg, the constructions G, D
and G* all use the same distribution Pg from the actual distribution Pjgen;. It is for this
reason that P(c(G;) = 1) factors out in Eq. (12), and the RHS can only be non-zero if
the sum over ¢’ appearing in it evaluates to zero.

Suppose that ¢ ¢ rs(Af) so that /(I — (A)* Afl) = & for some non-zero vector é.
Provided that P(G; = ¢') - {E[Y;(t)|G; = ¢'] — E[Y;(¢)|G; = g*]}, thought of as a vector

across ¢’ € G, is not perfectly orthogonal in RI9! to & we will have that
> &, P(Gi=¢) - {EY:(t)|Gi = ¢ — E[Y;(1)|Gi = g"]} #0
g/
There is always a Piatent € Platent.«(G) such that this non-orthogonality holds, because the
13



relative magnitudes of P(G; = g) and level-differences E[Y;(t)|G; = ¢'] — E[Yi()|G; = ¢*]
in Y;(t) can be varied without violating REG or changing the support of G;. Thus if
c ¢ rs(A), we can obtain © o {G — G* + D} # 0 for some Piutens € Pejatent(G), and 0

is not outcome-nonrestrictive identified.

B.2.1 Proof of Proposition B.1

The key to ensuring monotonicity will be to choose A small enough that any decreases with
y in the components of G* are dominated by increases in the corresponding components of

G*, so that each [G’\] ' is monotonically increasing. For [G’\(y)} to be monotonically

t.g
increasing in y we need that for any ¢y’ > y: [GA(y’)]tg — [G’\(y)}tg >0, i.e. that

G ()], =[Gy 2 A [(G" = G)(¥) = (G" = G)(y)],, — (D)), — D)} (13)

Let us turn first to [(G* — G)(y)],,- Fix a g and ¢, and any y’ > y. Then, by ©:

P(Gi=g) {FyuicW'lg) — Fymic(ylg)}

S (ANTAR o P(Gi = ¢')  {Frwia(¥'l9) — Fraie(ylg) }
(14)

where the first line indicates the case that ¢ is such that max,cz 1(T,(2) = t) = 0, and

the second that max.cz 1(Ty(2) = t) = 1. Thus [(G* - G)(¥)],, — (G" = G)(y)],, is

equal to 0 if max,cz 1(T,(2) =¢) =0, and

(GG W),y =

ZU — (AT AW, - P(Gi = ¢) - {FywicW'ld) — Frweld)}

gl

if max,ez 1(T,(2) =1t) = 1.
Thus we have by REG that

(e -e)w)],, - (e - &),

Z[] (AT AM PG =g) - {Fyiiey'ld) — FY(t)G(yg/)}‘

={Fywic'lg) — Frawcllg)} -

F W'y’ — Fywclg)
[— (A AW PGy = g) - WIS
Z,[ (4™ Jog - P ) FywyeW'g*) — Fywc(ylg®)

g9

)2 ( FywicW'lg’) — Fywic(ylg) )2

S )3 y/g* _ I yg* _g1/2‘ PG, =
roeWls) = Froeble)} 16l ; ( Fywyc(¥'l9") — Fyw)a(ylg?)

<A{FyucW'lg") — Fywicylg)} - 1G] 'Hf,LXP(G' g')-m

Fywc(W'lg') — Fyw)a(ylg) ‘
Fywic@'lg*) — Fywia(ylg*)
FY(t)|G(y l9") — Fywicwlg’)
FY(t)\G Y'19*) — Fy @y c(ylg*)

‘]

<A{FyrwicW'9") = Fruycylg)} 1G] -m

using that [I—(AM)* AM] is a projection (so that |[I—(AH)* Ald]y| < |v| for any vector v €
RI9!) and by the Cauchy-Schwarz inequality. Let 67 (y/,y) := FywicW'g*) — Fyuc(vlg®).

14



Then, by REG:

(G = )W, ~ (G = G| <5 )-19]- T

Now consider [D(y)]t’ ;- Fix a g and ¢, and any y' > y. Similarly, we have that

> - (AT A, o P(Gi = ¢') {Fy6(197) — Frwelg™)}

g’

<{FywcW'lg") — FywicWlg)} - |P|
<{FywicW'lg") — Fyrwicylg")} 1G]

So, using Condition REG:

D), — D),

We can thus put an upper bound on the RHS of

<6 (.y) 1G] L

AAIG = G) () = (G" = G) ()], — (lim [D(y)],, — [D], )} <2\ 67y y) - |G| - L

y'ly

Meanwhile, by REG:
{I6" W), ~ 16" W), |

* * Fy G(y/|g’) — Fy G(y]g/)
= {Fric9") — Fraiayle’)} - 0

Fywia@'9*) — Fyue(ylg®)
Thus inequality then holds provided that 87 (v/,y) - L > 2\ -6 (v, y) - |G| - L, which
holds trivially if 6; (v, y) = 0 and if and only if A < sz o (v',y) > 0.

A visualization of the intuition behind this result is depicted in Figure [T}

>6;(y,y) - L

0 Y
Figure 1: Depiction of Proposition The blue sinusoidal function depicts an example of a [(G + D)A(y)] to
that is not weakly increasing. The orange curve depicts [G*(y)]
depicts [G)‘(y)]t’g,
1 — X = 0.9, respectively. This value of X is small enough that the black curve is weakly increasing everywhere.

¢, Which is weakly increasing. The black curve

which is a linear combination of the blue and orange functions with weights A = 0.1 and

B.3 Proof of Lemma

Suppose that Al does not have full row rank. This implies that for some Z, C Z, each

of the remaining rows of A for z ¢ Z, can be written as a linear combination of the
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rows of Al for z € Z,. Take such a z* ¢ Z,, and accordingly let

Al =39 Al forallgeg

zZEZy

Note then that Eq. implies that

F(YD)|Z:z (y> ) - ZAM ’ (Gi = 9) ’ FY(t)|G=g(y)

geg
- Z (Z Ve Ag}g) - P(G = g) - Fyie=¢(y)
geg 2EZy
- Z V2 ZAM : = 9) - Fy(t)|a=( Z Y. - Fiypyz=:(y,t)
zE€EZy geg ZEZy

where the RHS on the last line does not depend on the distribution of observables for ¢
such that Z; = z*. Thus, F(yp)z=.+(y,t) adds no information that is not contained in
Fiypyz=:(y,t) for z € Z,. If ,ug is outcome-nonrestrictive identified, it must be using the

distribution Py zez, rather than the full unconditional distribution P,ps = Py1yz.

B.4 Proof of Proposition
Suppose first that |G| > |Z| and A = Al has full row rank of |Z|. Then since A has

full row-rank of |Z|, there exists a subset of |Z| columns that are linearly independent
from one another. Write A = [A, A°] where A is an invertible |Z| x | Z| matrix of these

columns, and A, are the others. Write the system A’a = ¢ in this notation as

()

where ¢ denotes the |Z| components of ¢ corresponding to the columns of A put into

121/
1[1/

in A, and ¢, are the remaining entries cg of c. Then a = A'~'¢, which can be seen by
left-multiplying the above equation by the | Z| x |G| matrix [A'~1, 01ZXI91=1Z]] " Intuitively,
the system A’ = ¢ is over-determined, so we only only need the components ¢ of ¢ to
uniquely determine the vector a.

Now consider the case in which |G| < | Z], so that the system A’ = ¢ is now undeter-

mined. Suppose for now that the rank of A is |G| so that it has full column rank. One

solution « can then be obtained by writing A = where A is an invertible |G| x |G|

A 1
matrix representing |G| linearly independent rows of A. Now consider oo = (0 (12| g|)x1>

where note that A~'¢ is |G|—component vector. This represents a solution to A'a = ¢

A-1le - A-le
! _ —
A (0(Z|g|>x1> =4, A (ouzwm) =¢

since



We can combine the constructions in the two special cases considered above to relax
any assumptions about the cardinality of Z and G or the rank of A. Let the rank of A
be k < min{|Z],|G|}. Write A = Ag[l, M| where A is a k x |G| matrix composed of
k linearly independent columns of A, and M is (|G| — k) x k matrix that expresses the

remaining (|G| — k) columns of A as linear combinations of the columns of A represented

¢
in Ag. Write ¢ = ~k where ¢ collects the corresponding k components of c. Note
Ce

that if ¢ = /A has a solution, then ¢ = &.[I), M], since ¢ = (o} Ag)[I, M| where the k

components of ¢’ corresponding to the columns in A are o) Ay, so ¢, = o Ax. Now split

A -
the rows of A, as A, = | - ] where A is a square invertible k x k matrix representing k
C

- & AL
linearly independent rows of A and A.is (|Z|—Fk) x k. Now o = (0 (Tg’l— k)xl) represents

A

a solution to ¢ = /A because [¢ A~1,01Z1-R]4 = [ A1 o< (Z1-h)] [T, M] =

c
Gellk, M) = .

In all of the three cases considered above, we can write any non-zero elements o,
of a «a yielding a binary combination as components z, of x = M~'b, where M is an
invertible n x n binary matrix (i.e. having entries of 0 or 1), and b an n-component

binary vector. Equivalently, x represents the unique solution to Mx = b. Cramer’s rule
det(M>)
det(M) ’
matrix that replaces the column z of the matrix M with the vector b. Since both M and

for such a solution establishes that the x, can be written as x, = where M, is a

b are composed of binary entries, the matrix M, is always binary as well. The result now

follows as stated in Proposition [2[since 0 is always a possible value of det(M.,).

B.5 Proof of Proposition

Given E[y;|Z; = 0], the parameter 3 — ; — 7y, is given by

Y3 — 71— EYi|Z; = C] - E[Yi|Z; = A] - E[Y;|Z; = B] + E[Y;|Z; = 0]
= E[Yi(T3(C)) = Yi(Ti(A)) — Yi(Ti(B)) + Yi(Ti(0))]
= E[Yi(C) - Yi(4) - Yi(B) + Yi(0)] + E[Y;(T3(C)) — Y3(C)]

— E[Y;(Ti(A4)) — Yi(A)] - E[Yi(Ty(B)) — Yi(B)] + E[Yi(Ti(0)) — Y;(0)]

Each of the last three terms in the final line can differ from zero in ways that do not
offset one another, provided that imperfect compliance is allowed, i.e. P(T;(z) # z) > 0

for some z € Z.
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C Extended analysis of identification under NSOG

It is known that unconditional means E[Y;(¢)] of a given potential outcome Y;(t) can
be point-identified, given an order condition on the instruments, under an assumption
of “no-selection on gains” (NSOG) (see e.g. Kolesar (2013)) and Arora et al. (2021)) for
versions of this result)[] Note that identification of E[Y;(¢)] and E[Y;(t')] immediately
implies identification of unconditional average treatment effects E[Y;(t") — Y;(t)] as well.

NSOG says that treatment effects are mean independent of actual treatment, given

any realization of the instruments:

Assumption NOSG (no selection on gains). For any t,t',t1,to € T and z € Z:
EYi(t) = Yi(OIT; = t1, Zi = 2] = E[Yi(') = Yi()|Ti = t2, Z; = 2]

NSOG implies that if we consider any fixed treatment value 0 € 7, then E[Y;(t') —
Yi(0)|T; =t,7Z; = z] = E[Yi(t') — Y;(0)|Z; = 2] for any t, z, which coupled with indepen-
dence (2)) in turn implies that E[Y;(¥') — Yi(0)|T; = t, Z; = 2] = E[Y;(¥) — Y:(0)] := Ay,
where note that Ay does not depend on z or ¢. This normalization against an arbitrary

treatment 0 € T allows us to carry around one less index in our expressions.

C.1 Identification under NSOG

This subsection first shows that E[Y;(¢)] can be point identified for each ¢ € T under
NSOG, given rich enough support of the instruments. The proof essentially follows that
of Arora et al. (2021)), which adapts an argument from Kolesar (2013)) to cases in which

the treatments T are not necessarily ordered.
NSOG implies that:

E[Y; — Y,(0)|T; = t, Z = 2] = E[Y,(t) — Yi(0)|T} = £, Zs = 2] = A,

Averaging over the conditional distribution of T; given Z; = z, we have by the law of

iterated expectations that

EY; - Yi(0)|Zi = 2] =) _P(Ty =t|Z; = 2) - A, (15)
teT
To now see that E[Y;(¢)] can be identified under NSOG given rich enough instrument
support, let us assume that | Z| > |7 | and suppose that there exists a set of | 7| instrument
values Z C Z such that the |T| x | 7| matrix ¥ with entries X,; = P(Z; = z,T; = t) over
all z € Z is invertible, with P(Z; = z) > 0 for each z € Z.
Eq. can be re-written by multiplying both sides by P(Z; = z) as

E[Y: - Yi(0)} - 1(Z = Y- A

teT

"Kolesar (2013)) calls this “constant average treatment effects”, and does not use the term NSOG.

18



for each z € Z. Equivalently, using independence:

EY; - 1(Zi = 2)] = P(Z; = 2) - E[Y;(0)] + ) _ Sui - A,

teT
=P(Z=2)-EY;0)]+ Y T4
teT ,t#0
:{P(Zi:z,T,»:O)—i— > Ezt}-lE[Yi(O)]Jr > S A,
teT t#0 teT t#0
= P(Zi=2T,=0)-EYi(0)] + Y Zu-ENO)]+ Y Su-A
teT t#0 teT t£0
=P(Z=2T,=0)-EY;(0)]+ Y . E[i()]
teT t£0

=) Su-E[i(t)]
teT

using that Ay = 0 in the second equality. This yields a system of |7 | equations in the
|7] unknowns E[Y;(¢)] with identified coefficients ¥,;. Given that X! is invertible, we
have then that

EYi(t)] =) S EYi - 1(Z = 2)] (16)

z€Z

Note that if | Z] > |T| there may be overidentification restrictions implied by NSOG, that
the RHS of is the same for different possible choices of Z C Z (note that ¥ also
depends on the choice of Z). Furthermore, the RHS of is the estimand of a two-
stage least squares regression of Y; on indicators for the mutually-exclusive treatments in
7 (and no constant), instrumented by indicators for the mutually-exclusive instrument

values in Z.

C.2 How Theorem |2| does not cover NSOG

Since the result of the last section makes no assumption about which response types
can show up in the population, it is compatible with any selection model G C {0, 1}72,
including for example the full powerset {0, I}TZ of possible response types 7Z.

Whatever G is, unconditional means like [E[Y;(#)] correspond to the choice ¢ = (1,...,1)’
in RI9I. As long as G allows never-takers with respect to treatment ¢, this choice of ¢
will not lie in the rowspace of Al!l. The unrestricted selection model G = {0, 1}TZ, for
example, features such never-takers for any ¢ € 7. Thus the result of the last section
demonstrates that it is possible to achieve point identification of pf without ¢ € rs(Af),
if we impose NSOG and that X271 exists.

Note that the imposing of NSOG makes this identification not outcome-nonrestrictive.
However, it is illustrative to see where the proof of Theorem [2| breaks down in the case of
the NSOG identification result. Let NSOG denote the set of distributions P for which
Piatent(P) satisfies NSOG. In this notation, the last section establishes that {#(P) : P €
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(M N NSOG) and ¢(P) = P} is a singleton for all P, that satisfy the rich support
condition that X7! exists, which requires that there be no P, P’ € M N NSOG such that
&(P) = ¢(P’) but §(P) # 6(P') and such that 3! exists under P or P’.

To see that there is no contradiction with Theorem 2] I below show that given a
P € (MNNSOG), the alternative distribution P’ defined from it in the proof of Theorem
does not lie within NSOG when (1,...1)" ¢ rs(Al). In partcular, the remainder of this
section shows that if (1,...1)" ¢ rs(Al) for any given t € T, the construction P’ utilized
in the proof of Theorem 2 I cannot lie in NSOG. If on the other hand (1,...1)" € rs(Af),
then Eq. in the proof of Theorem [2] shows that §(P) = 6(P’ ), consistent with ¢
being identiﬁed.

Recall that the way in which the proof of Theorem [2[ builds a candidate P’ from the
actual distribution P is to construct from the set of true potential outcome CDFs G*
(G*(Y))tg == P(Gi = g) Fy)|g=4(y) a new set of such CDFs G*. For continuity with the
notation used in this discussion so far, let P’ correspond to the collection of CDFs G*, and

let us make explicit whether outcome expectations are with respect to the distribution
P or P’ E| Then we have by integrating Eq. @D that:

P(Gi = g)Ep[Yi(1)|Gi = g] = P(Gi = g) - Ep[Yi(1)|Gi = g]
A = (ANTAN] - P(G = ¢) - {ER[Yi(1)|Gs = o] = Ep[Yi(1)]Gi = 7]}

g/
Then using independence (2)):
Ep[Yi(t) = Yi(0)|Gi = g, Z; = z] = Ep/[Y;(t)|G; = g] — Ep[Yi(0)|G; = g]
= Ep[Yi(t) — Yi(0)|G; = g]

- Ll (A A =) B l(0]Gs = o) - EpV(0IG: = 7]
Al 0 P(Gi=¢) o o
X DM = (A A = - (B OIGs = )~ B O0)IGi = )

8The response type probabilities P(G; = g) are the same for both P and P’ so I leave this implicit for ease of exposition.
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Therefore, for any ¢, € T

Ep [Yi(t) = Yi(0)| T} = t1, Zi = 2] = Bp/[Yi(t) — Y;(0)| ALY, = 1,2; = 2]
=Y P(Gi = gAY, = 1) - Ep[Yi(t) - Yi(0)|Gi = g, Zs = 4]
g

1
= ST & PG = ) AL En () = Y0)IG: = 0.2 = 2
Z,Gi - g
1
= m : ZP(Gi =9) 'A[zt,lg] | Ep[Yi(t) - Yi(0)|G;i = g]
z,G; g

#a Tl = (A AT v = ER01G: = o)~ Bl (]G = 5]

A3l (Alyean v DEZ9) L [vi(0)[Gi = ) - Bl >|G—g]}]

P(Gi=yg)
= # [l 7 _ ( Alt]\+ glt] . _ _
M Al = [;[A (1= (A A g PG = g) {BRYi(0)]Gr = o] - Ep[Yi(1)|G: = 971}
_Z[A[tl}(]—(A[O])+A[0])]Z’g,.p(Gl ¢) - {Ep[Yi(0)|G: = ¢'] — Ep[Yi(0)|G, _g]}] an

where A; := Ep[Y;(t) — Y;(0)]. Note that we can simplify the denominator as P(A[Ztlc]; =
1)=> ,P(Gi=g)- A[tll [A1P],, where P is a vector of response type probabilities
P,=P(G;,=g). Since ¥y =P(Z;=2T,=t)=P(Z;==z2)-P(I, =t|Z;=2) = P(Z; =
z) >, PG =g)- Al = P(Z; = z) - [AP],. We can thus rewrite P(AEIG] =1) as
S./P(Z; = 2).

For us to have P’ € NSOG, it must be the case that the RHS of does not depend
on z or ty, and equals Aj(\) := Ep/[Y;(t) — Y;(0)] for any P € (M N NSOG). In the
notation A}(A) we make explicit that the value of Ep/[Y;(t) — Y;(0)] could depend on A.
In the case of t; = t, expression for AL(\) simplifies to

S P(Z = 2)- Y AN - AYA) AT PGy = ) {ERIYi0)IGs = o |~ EpV0)G = )

g/

Ay —

using that Af(AM)* Al = Al Similarly, taking ¢; = 0, we have that A}()) is equal to

A

A
t+2zt

P(Z;=z)- ) [AD - AP(A YAV, - P(G = ¢) - {ERYi(1)|Gi = ¢'] - Ep[Yi(t)|Gi = 7]}

g/

Note that for any P, there exists a small enough A > 0 that P’ € M. For the above

equations to simultaneously hold for any such A > 0, we must have for any z such that
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DA = (A% Ay - PG, = o) (B H(0IG, = o)~ ESli()]Gi = )

+ZA“ — (A APy - P(Gi = ¢) - {Ep[Yi(0)|Gi = ¢'] - Ep[Yi(0)|Gi = ¢']} = 0
(18)

forall P € MNREGNNSOG. Consider a distribution P for which P has full support Z,
and for which conditional average treatment effects take the separable form E[Y;(t)|G; =
gl = Ay + Ay, where A := 0. Defining )\ = Ag — Ag+, Eq. (18]) reads in this case:

DA (A A PIGi = ) g+ AT = (AN Ay PG = ) -y =0

7
Given that Ay can be freely chosen such that P(G; = ¢') - Ay = 1(¢’ = g) for any
g € G and Pg, this can only be true when A1 — (AY*Al) = AM (T — (AL])+AL])
entry by entry as matrices. We’ll now see that this can only be true for all ¢t € T if
c=(1,...1) € rs(Al) for all t € T

Note that the matrix (Af)* A is an orthogonal projector onto into rs(Alfl), and
(A)* Al is an orthogonal projector onto into rs(A%), and the required condition is

AW (1 — (A0 A0l = — A0 (7 — (Al + Al

z

for all z € Z, where the row-vector A[Zty denotes row z of the matrix AY, and similarly for
Al Note that the row-vector A[Zt]/(I — (A?)* A% belongs to the orthogonal complement
of 7s(Al%) in RI9!. It is thus orthogonal to any row of A%} including A,[ZO]/. But —ALO]/(I —
B) cannot be orthogonal to ¢, unless A[ZO]/(A[t)+A[t] = A" 5o that —A,[ZOV(] — (Alt)y+ Al
is the zero vector. In that case, note that A[zt]/(f — (A9)* AL s the zero vector as well,
so we have that A ¢ rs(A%) and A ¢ rs(AM). Compiling over all z € Z, we have
that A% and AlY have the same row-space. Repeating this argument over all t € T, we
have that rs(Al") is the same for all t € T

Now let us see that this in turn implies that (1,...1)" € rs(Al). Note that Y, . A A~
(1,...1)" for any z, because all response types take one and only one treatment when
Z; = z. But since AV € rs(AF1), it must also be in the rowspace of Al
A;l]/ € rs(Al) for each t', the linear combination Zt,eTA[t]/ = (1,...1) is also in
rs(AM). Thus we have shown that P’ € NSOG implies that (1,...1)" € rs(Al) for all ¢.

Since

C.3 Further examples to which Theorem [2| does not apply

Another example of an IV identification result that is not covered by Theorem [2] is the
“compliers—defiers” result of de Chaisemartin (2017) that the local average treatment
effect among a subset of compliers is identified in a setting with a binary treatment and

instrument, if there are more compliers than defiers and a subset of the compliers have the

22



same average treatment effect as the defiers. Again, this additional assumption places
restrictions on the joint distribution of response types G; and potential outcomes Y.
Further, the identified parameter conditions on an event (a particular subgroup of the
compliers) that is less course than the groups G; that are defined simply by counterfactual
selection behavior, so does not fit the form A% = p — it that Theorem[2and Proposition
speak to. Similar considerations apply to recent results of (Comey et al., 2023)) that
show identification of the local average treatment effect among “supercompliers” in a
setting in which Y = T = Z = {0,1}, where the supercompliers are defined as the
subset of compliers that have a strictly positive treatment effect. This model imposes
monotonicity in the outcome equation, and the conditioning event for the supercomplier
LATE conditions both on selection behavior and a property of outcomes, namely that
Y;(1) > Y;i(0).

Another type of identification result that is not covered by Theorem [2]above—although
it is outcome-nonrestrictive—is identification of a treatment effect parameter that does
not maintain two fixed treatment values ¢t and ¢’ across all units included in the parameter.
An example of this kind arises in Kline and Walters (2016)), in which the identified causal
parameter compares the effect of Head Start to one of two next-best alternatives (either
traditional pre-school or no pre-school). This estimand combines two response types for
which this next-best alternative is generally different. See Section for details.

When ¢ ¢ rs(Al), Theorem [2 establishes that the parameter ! is not point identified
in an outcome-nonrestrictive manner. However, the data may still provide identifying
information about the value of uf if auxiliary conditions are maintained, for example
that the support of Y; is bounded with known bounds. Appendix [[] considers partial
identification of uf in such settings, and also relates the results of this paper to recent
results by Bai et al. (2024), who focus on bounding the ATE and unconditional means

in particular.

D Relationship to recent work

This section discusses how the results of this paper relate to recent results characterizing
identification in IV models by Navjeevan, Pinto and Santos (2023) (NPS) as well as
Heckman and Pinto (2018)).

D.1 Relationship to Navjeevan, Pinto and Santos (2023

NPS consider unconditional expectations of functions taking the form E[¢(Y;, G;)], which
in general are allowed to mix potential outcomes and potential treatments, as well as
covariates. NPS do not define or explore in depth a notion of “outcome-nonrestrictive”
identification, as their framework allows the researcher to impose restrictions on outcomes
of the types discussed in Section [C.3]|

NPS do mention conditional average treatment effects as a motivation for specializing
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their general result to cases in which ¢ takes the separable form Y;(t) - ¢(G;), for some
t € T (see their Section 4.4). In these separable cases, NPS derive results that are related
to but distinct from my Theorems (1| and [2| (which were obtained independently).

In particular, Corollary 4.4 of NPS assumes discrete instruments and supposes that
no additional restrictions are placed on the distribution of unobservables aside from the
existence of finite first moments. This model is thus essentially the same as the model
M (see Footnote [2)) I use to define outcome-nonrestrictive identification. From Corollary
4.4, NPS derive two important implications. Firstly, they find that the conditions on
function ¢(-) for identification of E[Y;(¢) - ¢(G;)] are equivalent to those for identification
of E[f(Y;(t))-c(G;)] for any bounded function f(-). This implies that E[f(Y;(?))-c(G;)] is
identified if and only if P(c(G;) = 1) is (take f(-) = 1). Second, NPS find that a moment
of the form E[f(Yi(t)) - ¢(G;)] is identified if and only if the function ¢(g) can be written
as E[k(Z;) - 1(T; = t)|G; = g] for some function x. Though NPS do not characterize it in
this way, one can see that this is equivalent to ¢ € rs(AM) by applying the law of iterated

expectations over Z; [

E[Y;(t) - «(G;)] identified

NPS C4.£

c € rowspace(Altl) NPS C4.4 = E[Yi(¢)|e(G;) = 1] identified

NPS Ci2

P(c(G;) = 1) identified

Figure 2: On left, <= symbols (in purple) depict implications Corollary 4.4 of NPS, for parameters of the
form E[Yi(t)|c(Gi) = 1]. On right, = symbol (in black) depicts an implication of E[Y;(t)|c(G:) = 1] =
B0 ()]

These results of NPS are summarized in Figure[2] Taken together, they imply Theorem
but not Theorem [2| of this paper. Since E[Y;(f) - ¢(G;)] and P(c¢(G;) = 1) are both
identified when ¢ is in the rowspace of Al the results of NPS readily establish that
E[Y;(t)|c(G;) = 1] is identified provided that P(c¢(G;) = 1) > 0, in the case of a binary
valued function c¢. However, their results do not establish that the conditional expectation
E[Yi(t)|c(G;) = 1] is only identified when ¢ € rs(Afl) holds. Instead, they show that
E[Yi(t) - ¢(G;)] and P(c(G;) = 1) can only be identified separately if ¢ € rs(AM) holds.

By contrast, Theorem [2| establishes the necessary direction of ¢ € rs(Af) for when
E[Y;(t)|c(G;) = 1] is identified (given discrete instruments), as depicted in Figure 3 below.
While Theorem (1] establishes that E[Y;(t) - ¢(G;)], P(c¢(G;) = 1) and E[Y;(t)|c(G;) =
1] are all identified if ¢ belongs to the rowspace of Al Theorem [2| establishes that
E[Y;(t)|c(G;) = 1] is only identified if ¢ belongs to the rowspace of Al.

Beyond Theorem [2] the present paper also differs from NPS by its exploration of the

9The closest way in NPS of stating this condition to ¢ € rs(Al) scems to be Eq. (28) from their discussion of the
2
selection model of Kline and Walters (2016). In my notation their Eq. (28) reads as min_p|z| (c(g) ->. azA,[;(]]> =0,

which is equivalent to ¢ € rs(Alt]).
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E[Y;(t) - ¢(G;)] identified

c € rowspace(Al!) E[Y;(t)|c(G;) = 1] identified
Thm. 2

P(c(G;) = 1) identified

Figure 3: Implications of Theorems [2[ (in blue) and 1| (in orange) of this paper.

implications of ¢ € rs(Alf) for the identification of conditional average treatment effects,
in the case that c is binary-valued. This requires finding functions ¢ that belong to the
intersection of rowspaces of A and Al for ¢ # t together with the unit cube, as we
saw in Section This analysis shows, in the positive direction (Theorem [I), how
c € rs(AM) synthesizes many identification results for treatment effects from the litera-
ture (Appendix . In the other direction (Theorem , this allows one to exhaustively

catalog identification results for a given support of 7; and Z;, as described in Section [4]

An illustrative example: To appreciate the difference between E[Y;(t)|c(G;) = 1] being
identified and E[Y;(¢) - ¢(G;)] being identified, consider a setting with a binary treatment
and binary instrument in which G allows all four response types: always-takers, never-

takers, compliers and defiers. The choice model G is represented by the matrix A = AM:

n.t. comp. def. a..
z=0| 0 0 1 1
z=1 0 1 0 1

Since ¢ = (0, 1,0,0)" does not belong to the rowspace of A, treatment effects or counter-
factual means among compliers are not outcome-nonrestrictive identified. Similarly, the
proportion of compliers is not identiﬁedm However, it is straightforward to see that if
one maintains the assumption that compliers and defiers share the same average treat-
ment effect, then the average treatment effect among compliers becomes identified and
is equal to the conventional Wald ratio (Angrist et al., |1996) (E[Y;|Z; = 1] — E[Y;|Z; =
0))/(E[D;|Z; = 1] — E[D;|Z; = 0]). This example demonstrates that a parameter like
E[Y;(1) — Y;(0)|G; = comp.] can in general be identified even when P(G; = comp.) and
E[{Y;(1)-Yi(0)}-1(G; = comp.)] are not, if restrictions are imposed on outcomes[”] Theo-

rem [2l shows that this however cannot occur when identification is outcome-nonrestrictive.

10The difference E[D;|Z; = 1] — E[D;|Z; = 0] instead identifies P(G; = comp.) — P(G; = def.). We can also identify
the quantities {P(G; = comp.) + P(G; = a.t.)}, {P(G; = def.) + P(G; = a.t.)}, {P(G; = comp.) + P(G; = n.t.)} and
{P(G; =def.) + P(G; = n.t.)}, but not P(G; = comp.) + P(G; = def.).

1 Note further that although we can also write E[Y;(1)—Y;(0)|G; = comp.] = E[}%&gg(fﬁ:ﬂi;ﬁf” - E[%E]?zg.(fé;i:f?f‘)]
none of the quantities E[Y;(1) - 1(G; = comp.)|, E[Y;(0) - 1(G; = comp.)], or E[1(G; = comp.)] are identified in isolation,
even with the outcome restriction that E[Y;(1) — Y;(0)|G; = comp.] = E[Y;(1) — Y;(0)|G; = def.].
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D.2 Relationship to Heckman and Pinto (2018

Theorem T-2 of Heckman and Pinto, |2018| (henceforth HP) states, in my notation, that
the following hold:

1. If ¢ (I— (A" A1) = 0 for a vector ¢ € R!9!, then >4 o E[Yi(1)|Gi = g] is identified.
2. If /Ky = 0 for a vector ¢ € R!9!, then >y Co - P(Gi = g) is identified.

where A" is the Moore-Penrose pseudo-inverse of the matrix A", and Ky = I — (ATA)
with A a matrix that stacks A" row-wise over the t € T

A property of the Moore-Penrose pseudo inverse is that the matrix (AWFAW) projects
onto the rowspace of Al and similarly (A*A) projects onto the rowspace of A. The
condition ¢ € rs(AM) implies that ¢ € rs(A), and thus combining elements 1. and 2.
above we have by Theorem T-2 that ¢ € rs(Af) implies that both the numerator and the
denominator of the RHS of Eq. (4], Zgj{f%égﬁ;jg]

for a parameter of the form p! can be seen as a corollary of Theorem T-2 of HP, in

the case that the vector c¢ is binary-valued so that Zggi[?((g_‘f;):g} can be interpreted
9 v

, are identified. Thus my Theorem

as a conditional counterfactual mean pf = E[Y;(t)|c(G;) = 1] (when ¢ € R!9! generally,

Zggi[?((g_‘f;):g] may not have an interpretation as a single conditional mean). While HP
g v

apply their Theorem T-2 to consider parameters of the form pf in the specific setting of
the LATE model, they do not appear to highlight the general importance of binary-valued
¢ for their Theorem T-2.

E Algorithms to enumerate outcome-nonrestrictive identifica-

tion results

Algorithm 1:

Begin with a given instrument support Z and set of treatments 7, and t' # ¢ in T:

mi_o|T]1 2!
1. Loop over all possible choice models G given Z and 7. There are 2!9 =271

of these, where we let G™ denote the set of all | 7|/l conceivable response types

(mappings from Z to T)
2. Given the results of Section find a basis for the left null-space ns( A1)

’ A[tl} /
of APt .= [ via a QR decomposition of A /. Represent this basis by a

Altl
k x 2| Z| matrix N4, where k is the dimension of ns(A®*1). For any vector
a € ns(AFY) et oy (@) = [I)z), 012/« 2] be its first | Z| components, and let
Ct'l = {A o) () : o € ns(Al')} be the subspace of RI9 corresponding to
these a.. Clt* is a k-dimensional vector space with a basis represented by the

k x |G| matrix Bl = AFVNEA[] 210z 2]

3. If k > 1, we now determine the intersection of C!*! with the unit cube. This
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is done by looping over the 2/9/ — 1 non-zero vectors c in {0,1}9, and checking
whether ¢ € C%*1 (when B has full row rank, this can be done e.g. by checking

that BT Bl'lc = ¢, where B* is the Moore-Penrose pseudo-inverse of B).

Note that since the computational problem as a whole is symmetric with respect to permu-
tations of the (arbitrary) treatment labels, we can focus on binary collections containing
the two treatment values ' = 1 and ¢ = 0, and then generate new binary collections by

then applying all re-labelings to the treatment values.

ITI 12| || ICz  # o’s (ie. (ICz)?*2) g™ =|T|®l  # selection models (i.e. 2/9™)

2 2 3 81 1 16
32 3 81 8 256
2 3 7 117,649 9 512
3 3 7 117,649 27 1.34-108
4 3 7 117,649 81 2.42.10%
4 4 16 4.29 -10° 256 1.16-1077

Table E.1: Comparison of the computational complexity of Algorithms 1 and 2

Table compares the complexity of Algorithms 1 and 2. It does not account for the
full computational cost of running each algorithm (e.g. computations within each choice
of o in the case of Algorithm 2, or within a selection model in the case of Algorithm
1), but it is nevertheless clear that Algorithm 1 quickly becomes infeasible, while there
remains hope for Algorithm 2 with |Z| = |T| = 4.

Algorithm 2:

Begin with a given instrument support Z and set of treatments 7.

Part One: generate binary collections by «

1. Loop over all vectors 2 - |Z|-component vectors o having components in the
set Cz| (there are (|C z[)??! of these)

2. With ¢ = 1 and ¢ = 0 fixed (as with Algorithm 1), construct the matrix

/ A[tl} A
A= Al where now each of Al*] and A representing the full set of
conceivable response types G™ (having |G™| = |T|IZl columns). Compute for

each « the row vector o/ A4,

3. Consider the columns ¢ of o/ A¥Y that take the value of 0, and call this set
G%(a). Note that G°(a) is the set of g for which [a;(a) AF]], = [ag(a) AW],

(using the notation introduced in Algorithm 1).

4. Now find the set G(a) € G°(a) such that [a; ()’ Al")], € {0,1} for all g € G(a).
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Only response types ¢ in the set G°(a) can exist in a binary collection having
ol = ag(a) and ol = a1(a). Further, the set G(a) is mazimal (given «)
in the sense that we get a binary collection from « for ¢,t’ for any selection
model G C G(a).

5. Some of the binary collections (indexed by «) constructed in this way will be
redundant in the following sense. Define c(a) = ()’ A, and let vectors o
and [ be two 2| Z|-component vectors such that c¢(«) = ¢(5) but G(a) C G(5).
Then S delivers the same largest complier group as o but while allowing for a
strictly larger selection model. In this case remove «, since the identification
result for § nests that of a. If ¢(a) = ¢(B) as above and « and g deliver the
same maximal selection model, i.e. G(a) = G(/3), then drop whichever vector
has more non-zero elements than the other, i.e. drop « if ||a||o > ||5]|o where
|| - [lo indicates the ¢y norm. If ||c||o = ||B]|o, then keep whichever vector has

a smaller ¢, norm is kept (this choice is arbitrary).
Part Two: organize by selection model and pare redundancies

1. Extend the binary collections obtained in Part One of the algorithm for (#',¢) =
(1,0) to all other choices of ¢’ > ¢. Binary collections can now be indexed by
the tuple (¢',t,a). Any (1,0, «) obtained in Part One above yields a binary
collection for (¢, ¢, &) with the same vector «, with the response types suitably

re-defined based on relabeling the treatment values.

2. Now collect all binary combinations that share a maximal selection model G,
which based on the last step may allow treatment effects that contemplate
differing treatment contrasts (e.g. treatment value 2 vs. 0 or treatment 1 vs.

0) to be associated with the same selection model.

3. We now have a list of selection models G that admit of at least one binary
collection, and for each such G a list of these binary collections. Recall that
each selection model can be expressed by the matrix A. To distill out selection
models with a unique structure, eliminate any redundancies where one selec-
tion model can be transformed into another by re-labeling treatment values, or

by permuting the labels of the instrument values and re-ordering the columns
of A.

F Illustrative examples from the brute force search

F.0.1 Binary treatment and binary instrument

With a binary treatment and binary instrument, the brute-force search reveals that there

are exactly two choice models that admit of outcome-nonrestrictive identification of treat-
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ment effects. The first is the classic LATE model of Imbens and Angrist (1994) (Example
1), and the second is Example 2 from the main text.

Consider first Example 1. Row reduction of the matrices AY and A% given in Example
1 in Section [3 yields:

0 0 0
rs(AM) = span 1(,]0 and  7s(A%) =span{ [0],]0
0 1 0 1

This leads to the two planes depicted in Figure [1}

Remark: 1In the binary-binary LATE model, the rank k of Al is k = |Z| = 2 for either
t =0ort =1, and in either case |rs(A") N {0,1}"| = 2. This does not meet the upper
bound of 2% = 4 from Melo and Winter (2019) (see Footnote . However the result does
imply that there can be no more than 2/Z! binary combinations, even though typically

2121 < 291 and there are 29! potential values of ¢ to consider ex-ante.

In the case of example 2[7 the matrix A becomes:

compliers defiers

z=0 0 1
=1 1 0

The rowspaces of Al and A% are the same and both span R%: rs(AlM) = rs(Al)) =

1 0
span { <0> , <1> } Thus, given the results of Section , we know that treatment effect

parameters that are outcome-nonrestrictive identified correspond to any non-zero vertex
of the unit cube in R?, as depicted in Figure[4 below. Note that by Theorem [l E[D;|Z; =
1] and 1 — E[D;|Z; = 0] are both measures for the same population parameter P(c(G;) =
1) = P(iis complier). Thus E[D;|Z; = 1] = 1 — E[D;|Z; = 0] can be used as an
overidentification restriction for this choice model (there is no such restriction for the
LATE model that simply rules out defiers).

F.0.2 3 treatments, binary instrument

Now suppose that the instrument is binary and 7 = {0, 1,2}. With no restrictions on
selection behavior, there are 32l = 9 conceivable response types. Table [1| reports that
in this case there are five selection models that afford a total of five distinct outcome-
nonrestrictive identification results. These results are all listed in Appendix [K]

As an example that may be empirically relevant, consider a selection model that has

T'(z) increasing in z, but rules out always-1 takers and individuals that skip from ¢ = 0

12Goff and Lee (2024) apply this choice model to study the effect of an NFL team deferring the kickoff on the game
outcome, with the kickoff coin flip that decides which team is given the option to defer as the instrument. If it is common
knowledge between the teams whether receiving the kickoff is beneficial in that particular game, then a simple model of
optimizing play would predict that each game will either be a “complier” or a “defier”.
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Figure 4: A geometric depiction of the model with compliers and defiers only. The vectors ¢ = (0,1)’, ¢ = (1, 0)’
and ¢ = (1,1)" all belong to both rs(A™) and rs(A°)) and hence the LATE for either response type or the ATE
are identified. As in Figure[4] the split-shading of a given vertex (red/green in color) of the unit square indicates
that it lies in 7s(A°)) N rs(A™M) and is not equal to the zero vector.

to t = 2 when z is increased from 0 to 1. This restriction leaves four response types:
always-0 takers, always-2 takers, individuals who move from treatment 0 to treatment
1, and individuals who move from treatment 1 to treatment 2. SM.3.2.1 reported in
Appendix [K| reveals that two treatment effects ALY are identified in this choice model.
For example, the quantity

E[Y; D|Z =1] E[Y;-D|Z = 0]~ E[Y; Dz =1]

E[DM|Z; = 1] E[D!Y|Z, = 0] — E[D"|Z; = 1]

corresponds to the binary collection with ag = (0,1)" and ag = (1,—1)’, and identifies
E[Y;(1) — Y;(0)|73(0) = 0,7;(1) = 1]. The treatment effect E[Y;(2) — Y;(1)|7;(0) =
1,T;(1) = 2] is identified by a similar estimand.

This selection model could represent a setting in which ¢ = 2 represents passing a test
outright, ¢ = 1 passing the test “provisionally”, and ¢t = 0 failing. Suppose that a reform
implemented for some schools lowers the score threshold 7, for an outright pass to the
old threshold 7, for a provisional pass, while further lowering 7,, as depicted below:

(z=0) < 75(0) 7,(0)
z=1) «——7,(1) To(1)

Students will then belong to one of the four types described above, depending on their
test score. The quantity E[Y;(1)—Y;(0)|T;(z) = z] represents the average effect of moving
from a fail to a provisional pass among the students who are brought in to a provisional

pass by the grading reform.

The selection model of Kline and Walters (2016): Another observation from the |7| =
3, |Z| = 2 setting is that the selection model of Kline and Walters (2016) (KW) does not
appear in the catalog of Appendix[Kl KW study a setting in which the binary instrument
is an offer to choose t = 2, while treatments ¢ = 0 and ¢t = 1 are always available even
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if z = 0. On the grounds of revealed preference, KW impose that 7;(1) # 7;(0) =
T;(1) = 2 which results in a selection model with five response types. KW show that the
parameter E[Y;(2) — Y;(7;(0))|T:(1) = 2,T;(0) # 2] is then identified. The quantity 7;(0)
represents an individual’s next preferred alternative to ¢t = 2, which may vary across those
i for whom T;(1) = 2,T;(0) # 2. As a result, this parameter does not fit the form of the
general family of treatment effect parameters ALY introduced in Section . Indeed, the
brute force search confirms that unfortunately no parameters of the form A%" between

two fixed treatmets t and ¢’ are identified in the KW selection model.

F.0.3 Binary treatment, 3 instrument values

Suppose now that treatment is binary and Z = {0,1,2}. Table || reports that in this
case there are 11 selection models that afford a total of 30 distinct outcome-nonrestrictive
identification results, listed in Appendix [K] One observation that emerges when we extend
the analysis to instruments that take more than two values is that, there now exist binary
collections that require coefficients «, that do not belong to the set {—1,0,1}. Although
this is entirely consistent with Proposition [2| for |Z| > 3, a reasonable conjecture ex-
ante might have been that a, € {—1,0, 1} always holds, given the preponderance of this
pattern in known identification results (see for example all of the results surveyed in
Appendix .

For the sake of exposition, let us consider a “judge-IV” setting in which defendants
1 receive a bail decision from a randomly-assigned judge z, with ¢ = 1 indicating that
the defendent remains incarcerated and t = 0 that they are released on bail. Suppose
that the defendants are one of three types g € G (typically unobserved to the researcher),
comprising the columns of the table below. “Prepared” defendants dress formally and
speak politely in their bail hearing, perhaps also presenting evidence that they are not a
danger to the community. “Unprepared” defendants do not make such efforts. A third
category of “flight-risk” defendants are thought to be particularly capable of and likely
to fail to appear for trial if they are granted bail (while this is not true of the first two
groups, e.g. due to strong personal ties to the jurisdiction or insufficient financial means

to leave town).

prepared unprepared flight-risk
z = 0 (standard) 0 0 1
z = 1 (character) 0 1 0
z = 2 (skeptics) 1 0 1

The above table summarizes selection behavior when the judges also belong to one of
three types, represented across rows. “Standard” judges are only concerned with failure
to appear, and keep only the flight-risk defendants incarcerated. “Character” judges
instead attempt to infer the risk of a defendant to public safety on the basis of the

defendant’s presentation and arguments to their character made in the bail hearing, but
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do not attempt to assess whether the defendant is likely to skip town. “Skeptic” judges
are also sensitive to judgments about presentation, but in the opposite direction: they are
suspicious of defendants precisely when they seem to be making a case that they are not
dangerous. They deny bail for the prepared defendants, and also deny bail for flight-risk
defendants[1]

Note that this model does not satisfy the strong LATE monotonicity assumption
typically invoked in judge-IV settings, which has been challenged on empirical grounds
(Frandsen et al., 2023; Sigstad, 2023). If there were no skeptic (z = 2) judges, then this
model would instead consist of compliers, defiers, and never-takers, which we have already
seen permits no outcome-nonrestrictive identification results for treatment effects. How-
ever, the presence of the skeptics aids here in identification, as we can then identify the av-
erage effect of incarceration among two groups E[Y;(1)—Y;(0)|G; € {unprepared, flight-risk}|
by BEDIZSED AT BRI L B, Comesponding to the bi-
nary collection with a; = (1,1,0) and ap = (—1,1,2)'[] Note that using this result

requires judge types to be observable, or estimable from judges each seeing many cases.

F.0.4 3 treatment values, 3 instrument values

In the case of Z = T = {0, 1,2}, the brute force approach returns 251 distinct binary
collections spread across 251 unique selection models. These results nest for example
two identification results presented in Kirkeboen, Leuven and Mogstad (2016) (KLM).
KLM consider an unordered treatment which represents a student’s field of study, where
students are “assigned” to a given field, i.e Z; = j represents an incentive to choose field
7. Proposition 2 of KLM presents three special cases in which a two stage least squares
estimand with indicators for treatments 1 and 2 instrumented by indicators for Z; = 1
and Z; = 2 recovers causally interpretable coefficients. While their first result (restricting
treatment effects to be homogeneous) is not outcome-nonrestrictive, the other two results
are.

For example, the second result in KLM Proposition 2 shows that if preferences are
further restricted so that D?](l) = D?](O) and DZ[H(Q) = Dz[l](()) for all ¢ (an offer to
one program does not affect whether or not the student chooses the other program),
then E[Y;(1) — ¥;(0)|D;"(1) > D(0)] and E[Y;(2) — Y;(0)|D{?(2) > D{?(0)] are cach
identiﬁedﬁ Let us consider how the first of these results appears in the comprehensive
search (the second result proceeds similarly). Upon a relabeling of treatment/instru-

ment values and removing one response typem selection model SM.3.3.63 in the cat-

13This selection model is equivalent to SM.2.3.4 in Appendix after permuting instrument/treatment labels. Note that
this model is merely illustrative: more types and nuance in their definitions could add some realism.

1A coefficient of two is inevitable for ¢ = 0, since we need a; = 1 (using the a, notation) for c(flightrisk) = 0,
ap = —aq to get c(prepared) = 0, but can only achieve c(unprepared) =1 if as + a1 = 1.

5 Throughout, KLM also maintain a version of unordered monotonicity (cf. Heckman and Pinto[2018) in which Dz[l] (1) >
Dz[l](O) and DZP] 2) > DEZ](O): an offer of admission never causes a student to select out of that field.

161n particular, label the treatments (0,1,2) as (1,0, 2), swap instrument values 1 and 2, and drop column 6. All results
for the 3 X 3 case are enumerated in a working paper version of this paper: https://arxiv.org/abs/2406.02835.
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000 1 2
alog amounts to the following: A = |0 1 0 1 2

0022121
seven response types, whereas the choice model considered by KLM contains only the

0 0
1 2. This selection model has

first six columns of A. In the larger selection model with all seven groups, the treat-
ment effect E[Y;(1) — Y;(0)|7;(1) # 7;(0)] is identified by the binary collection with
ap = (=2,1,1) and oy = (1, —1,0)’@ Thus, we have seen that KLM’s choice model
can be relaxed to allow an additional response type, with the same estimand that
identifies E[Y;(1) — Yi(0)|D1[1](1) > Dl[l](O)] in their more restrictive model identifying
E[Y;(1) = Y;(0)|T3(1) # T;(0)] more generally. Code available from the author allows one
to check in general whether a given selection model can be relaxed in this way, using the
catalog of identification results (available for [T, |Z] < 3).

F.1 4 treatment values, 4 instrument values: spillover effects within pairs

Although the |T| = |Z| = 4 case is not included in the brute-force search of Table
(due to the computational burden), it remains easy to check for outcome-nonrestrictive
identification in any given choice model using the results of Section [3] This section
presents an alternative application in the 4 x4 case to supplement the study of interaction
effects from Section [Bl

Consider a setting in which each unit ¢ has one “neighbor” n(i), and we allow for
violations of SUTVA within neighbor pairs (i¢,n(:)). This can be accommodated by
expanding the set of treatments 7 to accommodate values of such pairs, so that Y; =
Yi(T;, T,s)) where T, is the treatment of the neighbor of unit 7, indexed by n(i). I
consider the case in which treatment 7T itself is binary, so that ’fz = (T}, T ;) may take
one of four values (0,0), (1,0), (0,1), (1,1). Following the notation in Section[5] we denote
these pair-level “treatments” as 0, A, B, C, where T, = 0 indicates that neither unit is
treated, T, = A that only unit i is treated, T; = B that only their neighbor is treated,
and T, = C that both 7 and their neighbor is treated.

For each 7, let Z; be a binary instrument that reflects whether 7 is “assigned” to receive
treatment. See Kang and Imbens (2016) and Vazquez-Bare (2023) for related setups. Let
T;(z, 2') reflect the treatments for the pair as a function of treatment assignments (z, 2')
for the pair. Let Z, := (Zi, Zn(;)) be the pairs realized treatment assignment, which can
take any of four counterfactual values z € Z = {0, 4, B,C'}. I maintain throughout two
assumptions about selection: i) first, that the 7; component of Ti(z, 2') only depends on
z, and that the T),;) component of Ti(z, %) only depends on z’; and ii) secondly, that

each selection uptake is monotonic such that 7;(1) > T;(0), where we write T;(z, ') as
(Ti(2), Yo ()
E[Y;-D{|Z;=2+E(y; DIV | Z;=1)-2-E[v;-D[! | 2, =0)

17 Accordingl E[Y;(1) — Y;(0)|T3(1 T;(0 = -
ccordingly, [ 1( ) z( )| z( ) # z( )] ]E[D£”|Zi:2]+]E[D£1]\Zizl]—z-E[Dgl]\Zi:OJ

E[Y; D" |z,=1]-E[v; DI | Z,=0]

B0z B0 Ziz0] Identification of E[Y;(2) — Y;(0)|T3(2) # T;(0)] is analogous.
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These restrictions leave nine response types, enumerated in the table below:

assigned | | (nt,nt) (cmyem)  (cm,nt) (nt,em) (at,at) (at,em) (cm,at) (nt,at)  (at,nt)
0=(0,0) 0 0 0 0 C A B B A
A=(1,0) 0 A A 0 C A C B A
B=(0,1) 0 B 0 B C C B B A
C=(1,1) 0 C A B C C C B A

Given a function c¢(-), the local average direct effect of one’s own treatment on their

outcome is:

LADTE = ]E[Y;-(l, Zn(i)) — Y;(O, Zn(i))‘C(Gi) = 1]
= P(Zn = 1) - E[Yi(C) = Yi(B)|e(Gi) = 1] + P(Zn) = 0) - E[Yi(A) = Yi(0)[e(G) = 1]

using that P(Z,;) = 1|c(G;) = 1) = P(Z,4) = 1) by independence.

Similarly, the local average spillover (indirect) effect is

LASTE = E[Y(Z;,1)) = Yi(Z;,0)|c(G;) = 1]
= P(Z; =1)-E[Yi(C) = Yi(A)|c(Gi) = 1] + P(Z; = 0) - E[Yi(B) — Y;(0)|c(G;) = 1]

Since the distributions of Z; and Z,(; are identified, we can then point identify the
LADTE and the LASTE provided that we can identify puf for all of t € {0, A, B,C}. An
application of Theorems [1| and [2| shows that this is possible without restricting outcomes
in the above selection model if and only if ¢(g) = 1(g = cm, cm).

This can be shown by direct enumeration of the 2% possible functions ¢ : G — {0,1}.

The vector forms a; of the resulting coefficient functions alf!(z) are:
Qo = <+17_17_17+1)/7 ap = (_17+17+17_1)/
ap = (—1,+1,+1,-1), ac=(+1,-1,—-1,+1)

Similar to the case of complementarities, the selection model therefore implies the overi-
dentification restriction that

p:=P(T; =0]Z; = (1,1)) = P(T; = 0Z; = (0,1)) — P(T; = 0|Z; = (1,0)) + P(T; = 0|Z; = (0,0))
— _P(T, = AlZi = (1,1)) + P(T; = A|Zi = (0,1)) + P(T, = A|Z; = (1,0)) = P(Ts = A|Zi = (0,0))
=—P(T,=B|Z;=(1,1))+ P(T; = B|Z; = (0,1)) + P(T; = B|Z; = (1,0)) — P(T; = B|Z; = (0,0))
=P(T; =C|Z; = (1,1)) - P(T; = C|Z; = (0,1)) = P(T; = C|Z; = (1,0)) + P(T; = C|Z; = (0,0))

for some value p € [0, 1], which identifies P(g = cm,cm).
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G Recovering existing identification results as binary combina-

tions and collections

The notions of binary combinations and binary collections reveals a common structure

among several existing IV point identification results.

G.1 Example 1: LATE monotonicity and marginal treatment effects

Here I extend my analysis of the monotonicity assumption of Imbens and Angrist (1994)) to
cases with more than two instrument values. Treatment remains binary 7 = {0, 1}. Since
DZ[O](z) =1- Dl[l](z), we can focus on the single treatment indicator D;(z) := Dlm(z).
Imbens and Angrist (1994) assume that:

Assumption IAM. For all z,2' € Z: D;(z) > D;(2') for all i or D;(z) < D;(2') all i.

Suppose z, 2’ are a pair such that the former case of assumption IAM obtains, and define
a binary combination with K =2, z; = 2/, ay = 1, 20 = 2z, ag = —1. Then Eq. from

the main paper yileds

BYIDA) > Die) = =5 1p 17 = 2~ B (D7, = 4

(19)

and similarly

EY; - (1-Dy)|Z =2]-E[Y;-(1 - Di)|Z; = ]
E[(1—-Dy)|Z =2 -E[1-Dy)|Z = 2]

E[Y;(0)|Di(2") > Di(z)] =

Combining, we have that E[Y;(1) — Y;(0)|D;(2') > D;(2)] = ]IEE[[E ?zj :% E’lezlfj}, which is
Theorem 1 of Imbens and Angrist (1994)).

Suppose that Z is continuous and for all u € [0,1] there exists a z € Z such that
P(z):=P(D; =1|Z; = z) = u. Let U; = inf,cz{P(2) : D;(z) = 1}. Given IAM, U; plays

the role of GG;, indicating the “first” instrument value (as ordered by the propensity score

function P(z)) at which i would take treatment. For any given u, let z be a point in Z
such that P(z) = u and take a sequence z; in Z such that z; — z as j — oco. Taking the
limit of Eq. we have that:

EY;()|U; =u] = li — —EIY:-D,|P(Z) =

and similarly for ¥;(0), allowing us to identify marginal treatment effects (cf. Heckman
et al. (2006)).
G.2 Example 2: Vector monotonicity (Goff 2024)

Goff (2024) considers a binary treatment and finite Z C 2 X Z5 x ... Z;, and the

following monotonicity assumption.
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Assumption 2 (vector monotonicity). There exists an ordering >; on Z; for each
Jje{1l...J} such that for all z,2' € Z, if z > 2’ component-wise according to the {>;},
then D;(z) > D;(Z") for alli.

Theorem 1 of Goff (2024)) shows that average counterfactual means are identified under
vector monotonicity for groups defined by the condition ¢(G;, Z;) = 1, where ¢ satisfies
a condition called “Property M” and Z; has full rectangular support. His Proposition 6
shows that Property M is equivalent to ¢(Gi, Zi) = Son, ay, - D,L[t](zk(ZZ-)) where K is an
even number no greater than J/2 and a; = (—1)* with 2;41(2) > z,(2) component-wise
according to the orders >}, for all k. In what follows I for simplicity focus on the special
case of target parameters in which ¢ depends on G; only, and not additionally on Z;. See
Appendix [H| for a discussion of other parameters.

In the case of two binary instruments J = 2, there are six selection types compatible

with vector monotonicity, with names introduced by Mogstad et al. [2021;

Z1 comp. Zy comp. eager-comp. reluctant-comp. n.t. a.t.
z = (0,0)’ 0 0 0 0 0 1
z = (1,0) 1 0 1 0 0 1
z = (0,1) 0 1 1 0 0 1
z=(1,1) 1 1 1 1 0 1

With this table defining matrix A™, some algebra shows that for example ¢ = (1,0,0,1,0,0)’
occurs in the rowspace of both Al and A%, One way to see this is to work out the row

reduced echelon forms of AN and Al which preserve their row-spaces and are:

100 1 0O 100 1 0O
010 1 00 010 1 00

rref(AM) = rref(A) =
AT 001 —-100 A7) 001 —-100
000 0 10 000 0 01

From the first row of each of the reduced echelon forms, we can see immediately that e.g.
the average treatment effect among Z; and reluctant compliers is outcome-nonrestrictive
identified. Adding all four rows we see that the average treatment effect among all of the
four compliers types is outcome-nonrestrictive identified, what Goff (2024) calls the “all-
compliers LATE”. Goff (2024)) shows how these and similar point identification results

generalize to any number of instruments under vector monotonicity.

G.3 Example 3: Unordered Monotonicity, Heckman and Pinto (2018)

Heckman and Pinto (2018) (HP) consider a finite Z and assume what they call unordered

monotonicity (UM) for a multi-valued treatment:

Assumption UM. For anyt € T and 2,2 € Z, either Dz[t](z) > DZM(Z’) for all i or
D12y > DY (2) for all i.
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Given UM, let us fix a t € T and label the points in Z as z, for m = 1,2...|Z|,
where the points are labeled in increasing order of the propensity score for treatment ¢:
Pi(zmy1) > Pi(Zy,), where we define Py(z) = ]E[Dl[-t”Zi = z]. The order is not important
in the case of ties. Let ¥y = [{z € Z : T;(2) = t}| be the number of z € Z for which ¢
takes treatment t. Note that Xy is exactly equal to |Z| —m + 1 for the smallest m such
that Dz[t](zm) = 1. Thus we have a binary combination for any treatment ¢ and value
s €{0,1,...|Z[}: in particular DI(z,,) — D(z,,_1) € {0,1} for all i, and is equal to i
for those units having ¥, = s.

It then follows immediately from Eq. , as in the IAM case with a binary treatment

(cf. Eq. [19), that E[Y;(t)|Sy = s] is identified for any s = 1...|Z] as:

E[Yi- DI Zi=2m] ~E[Vi- D\ Zimzm 1

E[Dz[t”zizzm]*]E[Dl[t]lZz:zm_l] if s < |Z]

E[Y;-D}|Zi=2)
E[ D) 2=z |

E[Y;(t)[3y = s] = (20)

if s =|Z]

where m = | Z| — s + 1.
This provides a simple proof of HP’s Theorem T-6, which shows that E[Y;(t)|3; = s]
is identified. HP show that

AT
EYi(0)|Sy = 5 =S4 Q2
C/A[t} PZ

(21)
where B is the Moore-Penrose pseudo-inverse of a matrix B, @)z is a vector of E[Y; Dz[t] |Z; =
z] across z and Py is a vector of ]E[DZM\Zi = z] across z. Here ¢ corresponds to our pa-
rameter of interest (indexed by the pair (¢,s)), with an entry of one if ¥;, = s for that
selection type and zero otherwise.

To see the equivalence between this result and , we can take advantage of the
structure of A under UM to replace it with a smaller matrix whose inverse is very simple.
Note that any two selection types g sharing a value of ¥ will have identical entries in
¢, and will have identical corresponding columns in the matrix A[. This implies that
they will have identical rows in AT We can remove the redundant columns of Al by
indexing columns by values of ¥;; rather than by full response vectors g, and similarly

indexing elements of ¢ by values of ¥;;. This yields the same vector ¢ AT

as before, up
to a scalar factor that counts the number of values of ¢ such that ¥;; = s. However, this
factor cancels out in the numerator and denominator of . With this modification,
Al is now a |Z| by |Z| + 1 matrix and ¢ is now a standard basis vector equal to one in
its st element (and zero elsewhere).

Let us now order the rows of this modified A according to z1, 2o, etc, and it’s columns
in decreasing order of ¥,;. With this ordering, A" is simply a lower triangular matrix of
ones, appended to the right by a single column of zeros. It can then be verified that rows

s=2...(|Z] = 1) of AU are of the form (0,...,—1,1,...0) with s — 2 zeroes on the
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left (while the first row is composed of a single 1 in the first column, and the last row is
all zeros) Note that given the definition of ¢, ¢ AM picks out the s row of AU in
, and we have that and are equivalent.

Remark 7.1 of HP observes that given the above, treatment effects can be identified if
(in my notation) for some s, s" and t,¢' € T, 1(Xy = s) = 1(Xy; = ') almost surely, since
then we can identifiy E[Y;(t') — Y;(¢)|Xy; = ] = E[Y;(¢)|Xy: = &) — E[Yi(t)|2u = s].
The idea of binary collections can be though of as a generalization of this type of result

beyond the case of unordered monotonicity.

G.4 Example 4: Lee and Salanié (2018)

Lee and Salanié (2018) (LS) consider a class of models in which unit i’s selection type
depends upon a J-dimensional vector V; € [0, 1]7 and a vector valued function Q : Z — Q

where @ C R”7. Selection is assumed to follow:

DIy = Y o T]1vii < Qs(2) (22)

IC{1..]} jel

for some set of coefficients ¢! defined over the subsets of {1...J}, for each t € T, and
where Vj; is the j" component of V;, and @; the j* component of ). This model nests
the marginal treatment effects (MTE) framework when we have a binary treatment and
J =1, in which case we may let Q(z) = E[D;|Z; = z] be the propensity score function.
The second part of LS’s Theorem 3.1 shows that under support/regularity conditions:

ﬁEsz{t”Q(Zi) =q
o _EIDMQ(Z;) = q]

By -0a,

EY.(0)Vi = q] =

(23)

Now let’s see how this result can also be obtained through Theorem [I} For any vector
q € R, let Si(q) :={j € {1...J}: V;; < q;} be the set of indices for which V}; < g;.
Then Dz[ﬂ(z) = > icsi(a(=y ¢~ Note that Dl[t](z) only depends on z through Q(z). Thus,
we could for each g consider an arbitrary value z € Z such that Q(z) = ¢, call it Q~1(q),
and think of Dzm as a function Dzm(Qfl(q)) of q.

Let us consider a binary combination constructed to capture all units such that V;
belongs to a rectangle (¢, g+h1] x (g, g+hs] - - - x(q, g+h ;] in R’ for some “corner” location
q € R” and widths hy ... hy. Forany s C {1...J},let hy := Y. hje;, where e; is the 5"
standard basis vector. This takes the form of a binary combination («,t) having K = 27
and coefficients o = (—1)I**//\ for a certain scalar A. The corresponding instrument
values are z, = Q '(q + h,) given an arbitrary ordering s;...sx on the K distinct

subsets of {1....J}. Below we will verify that the corresponding linear combination of

100 0 0 o0 0o
18E.g. the modified forms with |Z| = 4 are Alt] = } } (1) 8 8,AW+: 0 -1 1 of.
o 0 -1 1

11 1 1 0 o o0 o0 o
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the DI(Q~1(q)) is equal to ¢(G;) with probability one, where we let ¢(G;) be an indicator
for V; € (¢,q+ hi]--- x (q,q + hy]. Via Eq. in the main text, we can thus identify
EY;(0IVi € (g4 + Ml -+ x (g, g+ hi]] as

Sucin (=D B[V D2 = @7 (g + b))
EY;(0)le(Gy) = 1] = (24)

ZSQ{L..J}(_U ol [ t]|Z Qg+ hs):|

The scalar A depends on the selection mechanism (22) andis A := 37 ;1 (—1) HD D cf.
We now verify that with this notation ¢(G;) = Zk L O D[ ](zk) That is:

C(Q)Z% > (-pH.pf (Q‘l(q+2hjej)> Zi R G S Y

sC{1..J} jes sC{1..J} 1CS;(q+hs)

(25)

Note that for any S C S, Si(q + h') C Si(q + hg). Thus S;(¢ + hgi...5y) is the “largest”
Si(q+ hs) and S;(q) is the smallest. Define:

Ai = Silg+ho.ny) = Silg) ={jef{l...J} ¢ < Vi <q+hp.n}

A; is simply the set of dimensions in which Vj; falls within the rectangle starting at g
with widths hg. 73. Now comes the crucial step: we’ll now show that is zero for any
individual i for which A; does not contain all of {1...J}. Indeed, if there were any j ¢ A;,
each set S in the first summation of that did not contain j would be canceled out by
the set S U j, because (—1)5Y = —(=1)I%I while S;(¢ + hs) = Si(¢ + hsy;). Pairing all
sets in this way, we see that evaluates to zero unless A; ={1...J}. Now, 4, ={1...J}

implies that S;(¢) = 0, and we can now write ¢(G;) as:

DT =Dy | = 1A ={1...J})

sC{1...J} ICs

> =

observing that we’'ve defined ¢ to be equal to the quantity in parentheses, which depends

on the selection model but not on «.

9We can simplify this expression of A as follows. Note that given the coefficients cf must be such that ;- cf € {0,1}

for any s C {1...J}. Let S¢ be the collection of s such that it is equal to one. This is the collection of subsets of the
thresholds that when crossed correspond to taking treatment ¢. Then \ = Zses,(*l)‘s‘~ We can derive an alternative

expression for A by making use of the identity that for any chs(*l)‘f' =0 for any S # 0. Then:

A= > dd (-1l = (DI g VE Dl (-l
IC{1...J} s2I lC{l J} T..J} lC{l J}
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LS’s Theorem 3.1 considers the J* order derivative

1
= lim : LD
hi..hsl0 Hj:l hj Z ( )

sC{1...J}

and takes the ratio:

6q1(.9..JBqJ B[Y;DQ(2:) = q i ng{l...J}(_l)‘s‘ B [Y;Dl[t] QUZ) = a+2je, hjej}

= 11m
il BN Q(Z) =) b s (<) E | DY

Q(Zi) =q+ X, hjea}

LS’s result thus considers the limit of Eq. as the width of the rectangle goes to

zero in all dimensions.

G.5 Example 5: Unordered (generalized) partial monotonicity

We can define a generalization of vector and partial monotonicity to settings with multi-

valued treatments, also nesting unordered monotonicity:

Assumption UPM. For any t € T, there exists a partial order =; on Z, such that if
2=y oz, Dz[t](z’) > Dl[t](z) for alli.

Note that even in the case of a binary treatment, UPM represents a generalization of
partial monotonicity (PM), defined by Mogstad et al. (2019) for settings with multiple
instruments. UPM allows for an arbitrary partial order on Z, while PM considers a
partial order that is based on holding all instruments but one at fixed values.
Assumption UPM implies that for any such z, z": Dz[t](z’ ) — Dz[ﬂ(z) € {0,1} and thus

E[Y:D"|Z; = '] - B[;D)|Z; = 4]
E[D}"|Z; = 2] - E[D]|Z; = 2]

E[Y;(t)| D/ (') > DI ()] =

UPM holds, for example, when instruments correspond to choice sets and agents choose
rationally from them, as in Arora et al. (2021). In such a setting instrument values z
are subsets of the treatments T that are available to the agent, and Dl[t](z) > Dl[t](z’ )
whenever (z/t C 2//t and t € z if t € 2'). In words, Dl[t](z) is weakly increasing with
respect to the inclusion of ¢ in z (since ¢ can only choose t if it is available), and weakly

decreasing with respect to the inclusion of any ¢’ # ¢ in z (since ¢ may prefer ¢’ to t).

G.6 Example 6: Pairwise notions of monotonicity

Sun and Wiithrich (2024) proposes a notion of IV-validity that is specific to two values
z, 2" of the instrument (which may be a vector). This includes the standard LATE model
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assumptions (independence, exclusion, and monotonicity). However, if independence and
exclusion are maintained, the notion of pairwise valid instruments reduces to what we
might call pairwise-monotonicity, i.e. that Dl[t](z’ ) > Dl[t](z’ ) almost surely, or vice versa.

van’t Hoff, Lewbel and Mellace (2023)) consider a notion of “limited monotonicity” for
settings with multiple binary instruments and a binary treatment, which in the notation
above corresponds to a setting in which 2’ = (1,...1) and z = (0,...0). van’t Hoff (2023))
extends this notion to ordered treatments that need not be binary.

In the context of “judge designs” where the instrument is a scalar continuous measure
of “leniency” with respect to a binary treatment, Sigstad (2023)) and Sigstad (2024)
introduce a notion of “extreme-pair” monotonicity D;(j) > D;(j) almost surely, where j
is the strictest judge, and j the most lenient.

In the case of a binary treatment D;, the above papers point out that under a lim-
ited version of “monotonicity” between a pair of values z,z’, a particular local average

treatment effect can be identified from a simple Wald estimand:

Ww—ﬂ ~ B[z, =

E[Y;(1) = Yi(0)|Di(2) > Di(2)] =

This corresponds to a binary collection in which o, =1 and a, = —1 for t = 1 , while
oy =—1and a, =1 for t = 0.

H Letting local causal parameters depend on Z;

Let z, : Z — Z be a function that maps an instrument value Z; to some possibly different
value in Z. Non-constant functions zp(-) will allow us to nest parameters such as the
average treatment effect on the treated, as well as some parameters from Goff (2024)).
In that paper z(z) could for instance change one component of z, and the ay and z(+)
can be chosen so that ¢(G;, Z;) :== >, ay - (zk(Z )) only takes values of zero or one,
ie. a, = {ax, z(2)}, yields a binary comblnatlon for any z € Z. Then, by the law of
iterated expectations: I [Y;(t) [c(Gy, Z;) = 1] = ..z P(Z; = z) - E[Y;(t)|c(Gs, Z;) = 1]
where each term in the summand is identified by and the distribution of Z;.

Let us maintain the assumption that the support of the instruments Z is discrete and
finite. Consider any counterfactual mean of the form 6 = E[Y;(¢)|c(G;, Z;) = 1] where
now ¢ : G x Z — {0,1}. By the law of iterated expectations over Z; and independence
Eq. (2), we can write § as:

0=> P(Z = z|c(Gi,2) = 1) - BIYi(t)|c(Gy, 2) = 1, Z; = 2]

z2€Z

=Y P(Z; = 2) ElY;(t)|e.(G;) = 1] (26)

ZEZ

where we let c.(g) denote c(g,2). Eq shows that 6 can be written as a convex

combination of | Z| counterfactual means of the form g considered by Theorems|l]and [2]
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with complier groups ¢, (-) that depend on z. It is clear then by Theorem [I], a sufficient
condition for # to be outcome-nonrestrictive identified is that c, lies in the rowspace of
matrix Al for each z € Z.

Theorem [2| similarly extends to the more general class of functions ¢(G;, Z;), provided
that the family &2, of distributions over the instruments allows for degenerate distribu-
tions at each value of Z;. Then ¢, must lie in the rowspace of AY for all z € Z. If it
were not, then for some z € Z, ¢, ¢ rs(Al) and hence pt_ is not outcome-nonrestrictive
identified, by Theorem . For a degenerate distribution Pz that sets P(Z; = z) = 1,
0 = u!_ and hence 6 is not outcome-nonrestrictive identified if ¢, ¢ rs(Af). With this
extension Theorem [2| of this paper nests Theorem 2 of Goff (2024) as a special case, and
expands its reach even in the case that vector monotonicity is maintained, if the outcome

variable is continuous.

I Partial identification when ¢ ¢ rowspace(AY)

I.1 Relationship to Bai, Huang, Moon, Shaikh and Vytlacil (2024))

Bai et al. (2024) (BHMSV) study the identifying power for ATEs and unconditional
counterfactual means of a restriction on selection that they call generalized monotonicity
(GM). In my notation, GM says that for a given Py ey and each ¢ € T, there exists an

instrument value z* = 2*(¢, Platent) such that
P(D;(z*) # t and D;(z) =t for some z € Z) =0 (27)

according to Piyens- That is, no individual takes treatment ¢ when z # z* unless they
also do when z = z*. BHMSV show that GM or any strengthening of it (that does not
restrict outcomes) does not reduce the size of identified sets for unconditional parameters
of the form E[Y;(¢)], when the outcome variable has finite support ) and the instruments
are also finite.

While GM nests many notions of monotonicity from the literature that have been used
for positive point identification results, it generalizes them in a different way than the
criterion ¢ € rs(Af) of the present paper does. While ¢ € rs(Al) ensures point iden-
tification of E[Y;(t)|ce, = 1], GM represents a double-edged sword when the parameter
of interest is an unconditional mean or ATE with ¢ = (1,1,...1)". Using Theorem 2| of
this paper, we can see that GM is in fact sufficient to establish either that i) E[Y;(¢)] is
point identified in an outcome-nonrestrictive way; or ii) that it is not point identified in
an outcome-nonrestrictive way. Which of these cases i) or ii) holds can be determined by
the observable distribution P, and does not depend on G beyond it satisfying GM.

Let G (Pratent) be the support of G; under Piypens, and note that is equivalent to:

Z*7g -

For all g € G(Piatens) : Al =0 = Al =0forallze 2 (28)
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Consider a given distribution of observables Ps. Either P(T; = t|Z; = z*) = 1 or P(T; =
t|Z; = 2*) < 1 according to P,ps. If the first case holds, then E[Y;(t)] = E[Y;|Z; = 2*| and
E[Y;(¢)] is thus point-identified without requiring any restrictions on selection. Thus,
assuming GM or any strengthening of it cannot reduce the identified set for E[Y;(t)]
further, unless it results in model rejection.

If on the other hand P(T; = t|Z; = z*) < 1 and GM holds, then there must exist a
geg (Pratent) such that A,[zt*’g = 0. Therefore by , for this g it must be that AE]g =0
for all z € Z, i.e. there are never-takers with respect to treatment t. This in turn
implies that (1,1,...1)" & rs(Al), precisely the case in which we know that E[Y;(t)] is
not outcome-nonrestrictive point identified, by Theorem 2]

By showing that the bounds on E[Y;(¢)] in partially identified settings are not improved
by imposing restrictions stronger than GM, BHMSV underscore the importance of: i)
focusing on other parameters of interest beyond the ATE (i.e. ¢ # (1,1,...1)) when
one is willing to impose restrictions on selection; and ii) finding restrictions on selection
that are outside of the scope of GM. Indeed, many of the selection models reported in
Appendix [K] below do not satisfy GM, yet are sufficient for point identification of more
localized treatment effect parameters than the ATE (and in some cases the ATE as well).

The remainder of this section provides more detail to build intuition about the con-
nection between BHMSV’s result and the proof of Theorem [2]in this paper. For a given
Povs, let us write the identified set for E[Y;(¢)] under model M as

O(Pops, M) = {0(P) : ¢(P) = Pops and P € M}

Given BHMSV’s assumption that ) is finite, let us for each y € ) define z¥ to be a
|G|-component vector with components xf = P(Y;(t) = y|G; = g) and 8 to be a |Z]-
component vector with components Y = P(Y; = y,T; = t|Z; = z). The restriction
d(P) = Pups corresponds to the set of solutions to finite system of linear equations
Allzy = BY. for each y € Y. Given || < 0o, we can collect these into a single finite
linear system Az = 3, where A" is a block diagonal matrix of A copied |V| times,
i is a |Y| x |G| component vector, and § is a |V| x |Z| component vector. The set
X = {Z(P) : ¢(P) = Pus} is thus a vector space, where we let Z(P) represent 7 as a
function of the distribution of model fundamentals P.

Whether GM or any strengthening of it reduces the identified set for E[Y;(¢)] thus
depends upon whether the action of 6(-) on the P € M such that z(P) € X reduces
O(Pops, M) relative to a case with no restrictions on selection. Eq. from the proof
of Theorem [2| suggests that ©(P,s, M) satisfies

O(Pops, M) C { 1/(Al) +5+Z AT A wy w € ngl} (29)

where 1 := (1,1,...1) and /5 a |Z|-component vector with components 3, = E[Y;-1(T; =
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t)|Z; = z]. GM implies that the set of the RGS is not a singleton if P(T; = t|Z; = z*) < 1.
The subset relation appearing in (29) reflects that, as in Theorem , some T for which
A% = 3 may not be attainable from P that are valid distributions and reflect any
further assumptions of the model M, for example that Y; has bounded support.
BHMSYV show that if M does not restrict outcomes, O(Peys, M) is in fact equal to the

identified set under no selection restrictions, which is (given the finite support )):
{Ber —min{ YV} - P(T; # t|Z; = 2%), Bor + max{V} - P(T; #t|Z; = 27) }

An interesting question for further study is in what manner the result of BHMSV extends
to the more general class target parameters indexed by vectors ¢ that may differ from
(1,1,...,1)". A reasonable conjecture would be that if, given Py, a class of restrictions
on selection cannot change the fact that ¢ ¢ rs(AY) | there is limited scope for such

restrictions to reduce the size of the identified set for pf.

1.2 Partial identification in general

Accordingly, consider an arbitrary ¢ € {0,1}9 where we may have that ¢ ¢ rs(Al). By

similar logic as above, we can deduce that the identified set ©(Pyys, M) for pl; satisfies:
1
@(PobSa M) g —) { A[t +5 + Z A[t] +A[t])] 1 Wy D W < R'g}

The RHS may again be an outer set for © (P, M), for example when Y; has bounded
support. An added complication now, as compared to unconditional means, is that the
probability P(c¢(G;) = 1) is no longer known to be equal to one, and our only identifying

information for it is that > A[gtz =d, for all z € Z, where d, := P(T; =t|Z; = z2).

geG

J Supplemental material for the application to interaction ef-

fects

J.1 Motivating the restriction imposed by Proposition

We can rationalize the restriction G C G*P made in Proposition [4] by supposing that
individuals choose separately whether to receive treatment A or B, rather than as a
single joint decision. Let S(z) denote the set of treatments among {A, B} offered to
an individual when their instrument realization is z € {neither, A, Bboth}. That is,
S(neither) =0, S(A) = {A}, S(B) = {B}, S(both) = {A, B}.

Definition. We say that the population exhibits separable choices if their counterfac-
tual selection satisfies for each z € {neither, A, B both}:

Ty(z) = {t € S(2) : Ui(t) > 0}
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where treatment C' is here understood as the set of treatments { A, B}, and treatment 0 is

understood as the null set ().

Separable (counterfactual) choices says that individuals choose treatment A if and only
if U;(A) > 0 and B if and only if U;(B) > 0, subject to the options offered to them.
This implies that T;(both) = C = T;(A) = A and T;(B) = B, and similarly that
T;(A) = Aand T;(B) = B = T;(both) = C. This eliminates exactly the remaining
five groups displayed in gray in Table [2]

J.2 Identification with covariates

Suppose that instead of we have
{Z; L (Y;,G)}X; (30)

where X; are observed covariates that are unaffected by treatment. This holds, for
example, if the instruments are independent of these covariates jointly with the latent
heterogeneity (f/;, G;) across individual: Z; 1 (}71, G, X5).

Consider a binary combination (¢, ) such that >, oszZ[-t] (z) = cltol(Gy) for all i where
ctl(G;) € {0,1} for all g € G. 1 do not consider the case in which Y, asz[t](zk) =
c[t’o‘](Gi,Xi) for some function ¢/»® that depends both on G; and X;, though such an
extension would be possible. By the steps that establish Eq. in the uncondional case,
generalizes to

S ak- [ DM Z, = 2, X; = a:]
E [Yi(t) [)Gy) =1, X, = 2] = (31)
Yok E |:Dit | Zi = 23, Xi = I}

for any value x. Notice that although P(c*(G;) = 1|X; = z) = E[cP(G))|X; = 7]
might vary with x, it is identified by the denominator of the above for each: P (¢l (G ) =
X, =2)=F a- [D[ |Zi = 21, X; = :c] Consequently, the overall counterfactual
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mean that does not condition on z is identified as

E[Yi(t)|c"(G,) = 1] = / dFx 016y (%) - BY;(8)]")(Gi) = 1, X, = a]

S o E [Y D |Z = 2, X _x]
- / Wxiener(@=(*): P(c[t oN(Gi) = 11X, = 7)
K o B [Y DY Z, = 24, X = x]
_ / dFy(z) - e
K - F [E [Yi Dz, = zk,XiH
P(cltel(Gy) = 1)
K - E []E [Y; D7, = zk,X,-”

i - B BIDY|Z: = 21, Xl

applying Bayes’ rule, echoing an argument for the LATE model by Frélich (2007). See
also Appendix A of Goff (2024). Given a binary collection, we can use these results to
identify treatment effects that either do or do not condition on Xj.

Note that the conditional independence assumption [30| further allows us to identify the
distribution of covariates X; among “compliers” for whom ¢ (G;) = 1 given a binary
combination (¢, ). Suppose that X; has M components so that X; € RM. Then for any
Borel set B of RM we have that, by :

Zak 1(X; € B) - P(T; = t| Z; = 2z, X. Zak 1(X; € B) - E[DP ()| X;, Zi = 2]

dl

—Zak 1(X; € B) - E[D (2,)| X,]]

Zak D[ Zk

=E |1(X; €B)-

E[1(X; € B) - [W( 1))
E[E[1(X; eB) c(G,)| X))
E[1(X; € B) - ")(G))]

= P("(@ >=1>-P<XieB!c”’a]<Gi>=1>

Meanwhile

> o BIP(T =12 = 2, X)) = Y _ oy B[L(X; € B) - B[D) (2)|X;, Zi = ]

> ai- Dfl(z)
k

= E[E["(G) X)) = E["(Gy)] = P(c")(Gi) = 1)

]
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And thus

S B[U(X; € B) - P(T} = t]Z; = 2, X,)]

| el () —
P(X; € B|d"(G;) = 1) S oo - BIP(T; = t|Z; = 2, X;)]

(32)

This implies, for example, that we can identify the mean of X; among the c#(G;) =1

sub-population as

. ol oy _ 11 2ok @ BIXG - P(Ty = )2 = 2, Xi)]

which generalizes the seminal result of Abadie (2003)) for the case of the binary treatment,
binary instrument LATE model.

If we have a binary collection {(¢,al)},cy, then Eq. yields overidentification
restrictions since it implies that

S EBL(X, € B) - P(T, = |7 = 2, Xi)] Yol EB[I(X, € B) - P(T, = ' Z; = 2, X,)]
Seap - E[P(T; = t|Z; = 2, X,)] Sear L E[P(T, = t|Z; = 2, X;)]

for any t,t" € 1. Note that this restriction is trivially satisfied for the binary collection
that isolates compliers in the binary instrument, binary treatment LATE model.
J.3 Details on empirical estimates including strata covariates

Consider a binary combination (¢, «) for a given treatment ¢, with associated function c.

As shown in Appendix [J.2] when Equation 2| holds conditional on covariates X; we have:

X Qg - i l[ﬂ i = Rk <\q
EIVO1e(G) — 1) = 2 B[ Y Dz = 2 X

" S BV DY|Z = 5, X | (33)
Ple(G) = 1)
where
P(G)=1)=Y ar-E [IE[DZ[.”|Z,~ — 2, Xi]] ~E|Y a-EDY|Z = zk,Xi]] (34)

In the empirical application of Angelucci and Bennett (2024), randomization is performed
within nine strata, which represents a discrete X; taking on nine values. To simplify
estimation, I assume that the expectations E[Y; - Dz[t] |Z;, X;] and ]E[Dz[t] |Z;, X;] additively
separable in Z; and X;:

9
E[Y;- D Z;, Xi] = By 1(Z: = both)+54-1(Z; = just A)+851(Z; = just B)+Y_ AI1(X; = 5)
s=1

(35)
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and

9
E[D|Z;, Xi] = Yy L(Z; = both)+741(Z; = just A)+yg-1(Z; = just B)+>_ pll-1(X; = 5)
s=1

(36)
i.e. linear regression equations with a full set of strata fixed effects (with none omitted)
and instead omitting a dummy variable for 1(Z; = neither).

The four estimates of p := P(G; = complier) based on the choice model G*? given in

then become, using Eqs and (36):
A A A A 0 0 0
{%oth + Z Ps )} {V[A] - 71[oo]th} {7,[4] - 71[>o]th} {71[)o]th %[4] : ]}

(37)

Treatment effect estimates are then based on the following expressions using —:

[C] _ (4] [A]
E[Y;(C)|i is complier| = }[’gth LD [C] PX: = S), E[Y;(A)|i is complier] = H
’Yboth + 20 ps - P(Xi =) TA" T Tvoth
(B] [B] [0 _ gl _ o]
E[Y;(B)li is complier] = H, E[Y;(0)]: is complier] = lfo"fh ‘[?)} {'3]
~ Tboth Tboth — YA T IB
(38)

and the local average interaction effect among compliers LAIE is estimated accordingly.
Some involved algebra shows that the expressions in recover the results for complier
average treatment effects in Theorem 1 of Blackwell (2017)), given one-sided noncompli-

alce.

J.4 GMM estimation

Note that given the overidentification of p := P(G; = complier), any of the local coun-
terfactual means could be estimated by swapping out an alternative estimate of
p in the denominator. In principle, we can increase efficiency by estimating treatment
effects as well as LAI'F while imposing Eq. , in a generalized method of moments
(GMM) estimation approach. Column (4) of Table |3 implements this. Given the logic
of Corollary [2, GMM estimation of LAIE combines the ITT regression (39) with the
first-stage regressions , and imposing as additional moments. For the treatment
effect estimates E[Y;(t) — Y;(0)|é is complier| for ¢t € {0, A, B}, GMM estimation com-
bines regressions for treatments ¢ and 0 with the first-stage regressions and .
All GMM estimates use the two-step GMM estimator, starting from an initial identity

weight-matrix, and requesting a cluster robust final weight-matrix and standard errors.

48



J.5 Deriving the expression 617 /p for local average interaction effect

Consider first the case with no covariates. We have using Eqs. and (9):

LAIE = E[Y;(O)|c(G;) = 1] — E[Y;(A)[e(G:) = 1] — E[Y;(B)|c(Gi) = 1] + E[Y;(0)[e(G;) = 1]
E[Y; - DI|Z; = both]  E[Y;- D Z; = just A] — E[Y; - D}¥| Z; = both]
ED|Z =both]  E[D|Z, = just A] — E[DY|Z; = both]
E[Y; - D! Z; = just A] — E[Y; - DP| Z; = both]
E[D!?|Z; = just B] — E[D!?|Z; = both]
E[Y; - DI|Z; = both] — E[Y; - DI Z; = just A] — E[Y; - DI”|Z; = just B] + E[Y; - D|Z; = neither]
E[D"|Z; = both] — E[DIY|Z; = just A] — E[DI”|Z; = just B] — E[D"|Z; = neither]

: {Em . DI Z; = both] — E[Y; - DY|Z; = just A] + E[Y; - D[ Z; = both]

SRR

~E[Y; - D! Z; = just B] + E[Y; - D\)|Z; = both| + E[Y; - DI”|Z; = both]
—E[Y; - D!|Z; = just A] — E[Y; - D! Z; = just B] + E[Y; - D | Z, = neither]}

: {Em (D + D + DIP 4 DIN|Z, = both] — E[Y; - (D + D) | Z; = just A

SR

—E[Y; - (D" + DP))| 2, = just B] + E[Y; - DIV|Z; = neither]}

ITT

1
= — - {E[Y;|Z; = both] — E|Y;|Z; = just A] — E[Y;|Z; = just B] + E[Y;|Z; = neither]} =
p p

where 0T := ~3 —~; — 7, from the ITT regression Eq. (7). In the above I have used Eq.
in the second step, then combined terms, and finally using that (DZ[-O] + DEA] + DZ[B] +
DZ[C]) =1, that (DZ[O] +D£A]) conditional on Z; = just A (given one-sided noncompliance),
that (DZLO] + DZ[B]) conditional on Z; = just B, and that DZ[O] conditional on Z; = neither.

With covariates X;, the standard intent-to-treat regression generalizes by adding

a linear function in the covariates that includes a constant:

Yi=y -WZ;=A) +7 - -1(Z;=B)+v-1(Z; =C) + 7' X; + v (39)
In this case, /77 := v3 — v, — 75 is equal to
E[Y;|Z; = both, X;]-E[Y;|Z; = just A, X;|—E[Y;|Z; = just B, X;]+E[Y;|Z; = neither, X|]

with probability one (i.e. for all X;). The same steps as above show that, using Egs.
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and ([34)):

LAIE =~ -E {]E[YZ- - DI Z; = both, X;] — E[Y; - DY Z; = just A, X]

SRR

. D\ Z; = both, X;] — E[Y; - DP!| Z, = just A, X;] — E[Y; - D!”'| Z; = both, X]

|
~E[Y; - D! Z; = both, X;] + E[Y; - D! Z; = just A, X,] + E[Y; - D|Z; = just B, X|]

GITT

1
-E[Y; - DZ[O}|ZZ- = neither, XZ]} =—E[y—m—7=
p
provided that Eq. is correctly specified for the conditional mean E[Y;|Z;, X;].

J.6 Setting up the linear program to test for offending types

This section considers the identification of bounds on the proportion of the population
that belongs to a certain set of response types G*, within a larger selection model G. This
method is implemented in Section |5 to discuss whether first stage selection information
is consistent with the choice model G C G*P, under the maintained assumption that
G C GWARP  Thys for the remainder of this section we assume that G = GWAEP defined
in Section [5] This section also ignores the randomization strata X;, which is valid for
testing “first-stage” restrictions if the response-type distribution is common across strata.

For any set of response types G* C GWARP we can partially identify P(G; € G*) as
P(G; € G*) € [LB*,UB*| where

LB* = min w'z  subject to Az = f and x > 0 (40)
zeR

UB* = nggw'm subject to Az = and z > 0 (41)
xre

with w a 9 x 1 vector (where |GWARF| = 9) with components w, = 1(g € G*), and the
constraint x > 0 is read as all components of the vector x must be weakly positive. If LB*
were found to be strictly positive with G* chosen to be GWARP —GseP this would constitute
evidence that the restriction G C G is not satisfied, assuming that G C GWARP,

The 16 x 9 matrix A can be obtained from the matrices A", and the 16-component

50



vector [ estimated from the data:

11111111 1] P(T; = 0|Z; = neither)
100110100 P(T; = 0|Z; = just A)
101011000 P(T; = 0|Z; = just B)
100000O0O0O P(T; = 0|Z; = both)
00000O0O0O0DO P(T; = A|Z; = neither)
011001011 P(T; = A|Z; = just A)

Al 00000O0O0O 0O P(T; = A|Z; = just B)
Ao AA L 10001000010 B P(T; = A|Z; = both)
AlB] 0000000O0GO0DO0 P(T; = B|Z; = neither)
Alboth] 00000O00O0GO0DO P(T; = B|Z; = just A)
010100111 P(T; = B|Z; = just B)
000100001 P(T; = B|Z; = both)
0000000O0O0DO P(T; = C|Z; = neither)
0000000O0GO0DO0 P(T; = C|Z; = just A)
00000O00O0GO0DO P(T; = C|Z; = just B)
010011100 P(T; = C|Z; = both)

Point estimates of the bounds LB* and UB* are readily obtained by solving the linear
programs and with the sample estimator B )

Given sampling error in B however, we would like to construct a valid confidence
interval for the partially identified parameter P(G; € G*) = w'z given its representation
as a solution to the linear program Az = [,z > 0. This problem is considered by Fang
et al. (2023), and I use the fsst command in the 1lpinfer package in R to generate a
confidence interval for the parameters P(G; € G*) considered in the main text. The
required inputs for fsst are the matrix A, the vector 5 (specified as a function of the

data, as the FSST procedure makes use of estimates of 5 in bootstrap samples).

J.6.1 Results for Angelucci and Bennett (2024)

In addition to the results for G* = GWARP — G5 reported in the main text, I here present
some further estimates. A 90% confidence interval using the method of Fang and Santos
(2018) (FSST) does rule out zero but is otherwise similar at [0,0.8281] (as opposed to
[0,0.8297] for the 95% interval). However, the p-value for the null hypothesis that P(G; €
GWARP _ Gsep) —= () puts it just on the margin of being included in the 90% confidence
interval. The lpinfer package in R also allows for statistical inference on solutions to
problems and using methods introduced by Romano and Shaikh (2008) and
Cho and Russell (2024). The method of Cho and Russell (2024) yields [0.02,0.86] as
a 95% confidence interval. The method of Romano and Shaikh (2008)) yields [0, 0.84]
as a 95% confidence interval. Confidence intervals for the share of the favor-B type

(which the point estimates suggest may be the largest offending type) only are similar to
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the confidence intervals for all offending types in GWARY — G*eP. Overall, the results offer
little evidence against the assumption that G* represents the true choice model, and any
violations that cannot be ruled out appear to be minor. This supports the conclusion that
complementarities between the two treatments are identified among compliers without
restricting outcomes, in line with Proposition

In the above calculations, I do not condition on the nine strata used by Angelucci
and Bennett (2024) for randomization. This could be implemented by expanding 4 and
£ to have 16 x 9 rows each, rather than 16. However the above results are valid if the
response-type distribution is common across strata, and under this assumption allow for

a much more efficient use of the available sample.

J.7 Financial incentives and support for academic achievement

Angrist, Lang and Oreopoulos (2009) (ALO) report results from an the Project STAR in-
tervention that cross-randomized academic support and financial incentives on academic
achievement among first-year students at a large Canadian university. In this setting, I
let treatment A represent the Student Support Program (SSP): a program which gave
students access to peer advisers and supplemental instruction. I let treatment B rep-
resent the Student Fellowship Program (SFP), which made students eligible for merit
scholarships based on good performance during the first year courses.

The STAR intervention randomized 250 students into an arm that was offered access
to the SSP only (Z; = just A), another 250 students to be offered access to the SFP only
(Z; = just B), and a third group of 150 students that was offered access to both programs
(Z; = both). A control group of 1,006 students were offered neither (Z; = neither).

I use the replication data from ALO, which tracks program takeup as well as stu-
dent performance among those students included in Project STAR. Treatment uptake for
treatment A (SSP) is observable, and I define it as having attended a facilitated study
groups or having met with an advisor. For treatment B, I follow ALO in defining treat-
ment takeup as having responded to their invitation to sign up for the assigned treatment.
ALO define compliance with respect to SSP (treatment A) similarly as having given their
consent by simply signing up for their assigned treatment. With this definition however,
no individual offered both treatments could opt for one treatment alone’"] Since further
information is available on whether individuals actually take part in SSP activities, I
make use of this additional information.

I test the overidentification restriction of G C G** in this setting as described in Eq.
, however note that in the present setting there are no randomization strata that need
to be controlled for. The four point estimates for p = P(i is complier) are 41%, 21%,
51%, and 34%, respectively. A test for equality of the four estimates returns a chi-squared

20Given WARP, this would then limit the choice model to the groups n.t., complier, only both, A4, and B+ from Table
This group yields a rather uninteresting selection model when intersected with G*¢P (leaving just never takers and
compliers) in order to afford outcome non-restrictive identification of complementarity between the treatments. However,
defining compliance as ALO do also rejects the overidentification restriction , with a chi-squared statistic (with 2
degrees of freedom) of 28.66.
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statistic (with 2 degrees of freedom) of 26.16, a p-value of 0.0000FT Thus in contrast to
the application of Angelucci and Bennett (2024), we find in the ALO context that we
can clearly reject the choice model G C G*P that is required to identify complementarity

between the two treatment effects in an outcome-agnostic manner.

K Catalog of outcome-nonrestrictive identification results

The following results are for various small values of |Z| |T|. Results for |Z| = |T| = 3
are available upon request from the author (these add roughly 40 pages of output).

For a given 7 and Z, binary collections are organized by selection models, given
unique identifiers of the format SM.|7.|Z|.s, where s is an index of the various selection
models in that setting. Within each selection model, binary collections are enumerated
by ascending numbers 1), i) etc. Each binary collection is presented via the coefficient
vectors ay and a4 (following the notation of Sec. but keeping ¢ and ¢’ explicit).

Binary collections that share a common maximal selection model G(«) organized under
that selection model, and are not re-listed for G C G(«). Further, some binary collections
for G might be listed under a G(«) that nests G only after suitable re-labeling of the
treatments and instruments. It is for this reason that the set of binary collections listed
under a given selection model may not be closed under addition, even when adding the
¢ for two such collections results in another vector composed of all zeroes and ones.

For example, consider the A matrices for SM.2.3.8 and SM2.3.1 below:

SM.2.3.8:

S =

0
0 SM.2.3.1.swapped :
1

=
o~ o
S =

where by SM.2.3.1.swapped I indicate that I have swapped the first and third rows of
the A matrix listed in the catalog that follows for SM.2.3.1. This swapping corresponds
to a re-labelling of the instrument values.

SM.2.3.8 consists of two selection types, and the catalog shows that it admits of
binary collection i) with ay = (0.5,0.5,0)" and ap = (0,0, 1)’ yielding ¢ = (1,0)" as well
as binary collection ii) with oy = (0,0,1)" and ap = (0.5,0.5,0)" yielding ¢ = (1,0)".
This implies that SM.2.3.8 also admits of a binary collection yielding ¢ = (1,1)’, with
ap =ag = (0.5,0.5,1)".

The reason that this third binary collection is not listed under SM.2.3.8 is that SM.2.3.8
is not maximal for it: unlike collections i) and ii) which just include one of the two types
in SM.2.3.8, identification of the average treatment effect for both of the types in SM.2.3.8
holds in the less restrictive selection model SM.2.3.1.swapped, which contains the selection
types of SM.2.3.8 in its first and third columns. The sole binary collection listed under
SM.2.3.1 corresponds to ¢ = (1,1)" in SM.2.3.8.

21Inferential methods for the linear program described in at the 95% level suggest that at least about 15% of the
population belongs to groups in GWARP _ gsel provided that W ARP holds.

53




K.1 2 treatments,

SM.2.2.1

i) (1) = (1,0); aw

SM.2.2.2
i) (¢,t) = (1,0); ap
i) (t',t) = (1,0); ap
ii) (¢,t) = (1,0); ap

K.2 3 treatments,

SM.3.2.1

i) (t,t)

SM.3.2.2

(170); Ay

i) (tlat) = (17())3 Qi

SM.3.2.3

i) (tlat) = (170); (077

SM.3.2.4

1) (t/7t) = (170); Qi

2 instrument values

A:O()l
011

=(-1,1);0,=(1,-1); ¢=(0,1,0)

=

(1,0); ¢ =(0,1)
(0,1); ¢ =(1,0)
(L,1)5e=(1,1)

2 instrument values

001 2
01 2 2

=(0,1);0,=(1,-1); ¢ =(0,1,0,0)

= <_17 1)/a ar =

001 2
011 2

(1,—1); ¢ = (0,1,0,0)

1 201 2
0012 2

=(0,1);0a¢ = (1,0); ¢=(0,0,1,0,0)

2 01 2
011 2

=(-1,1);04 = (1,0); ¢ = (0,1,0,0)
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SM.3.2.5

i) () = (1,0); ap =
K.3 2 treatments,
SM.2.3.1

i) (t',t) = (1,0);
SM.2.3.2

i) (1) = (1,0); o
SM.2.3.3

1) (t,7t) = (170)7 Q=

i) (t',t) = (1,0); ap =

iii) (¢,t) = (1,0); ap =
iv) (t,t) =(1,0); ap =
V) (t,7t) = (170)7 Q=
Vl) (tlat) = (170)7 Q=
vii) (t',t) = (1,0); ap =
SM.2.3.4
1) (tlat) = (170)7 Qi

Ay =

(1o 2
o1 2
(1,100 = (1,1); ¢ = (1,1,0)

3 instrument values

01 01
A=10 0 1 1
00 01
—(1,1,-2)s 0y = (~1,-1,2); ¢ = (0,1,1,0Y
1 10
A=1(1 0 1
01 1
(0.5,0.5,0.5): ay = (1,1,1); ¢ = (1,1, 1)’
(1,0,0: 0, = (0,1,1); ¢ = (1,1,0)’
(0,1,0);04 = (1,0,1)"; ¢ = (1,0, 1)
(0.5,0.5, —0.5); ay = (0,0,1Y; ¢ = (1,0,0)
(0 ) Qy = (17 170)/7 = (07 17 1)
(0.5,—0.5,0.5); ay = (0,1,0); ¢ = (0,1,0Y
(=0.5,0.5,0.5); oy = (1,0,0); ¢ = (0,0, 1)
010
A=1[1 0 1
01 1
—(2,1,-1); 0, = (0,1,1); ¢ = (1,1,0)



SM.2.3.5

D) (#,1) = (1,0); ap = (0,1,1); 0, = (0,1,1); ¢ = (1,1,1, 1)’
i) (¢,1) = (1,0); ap = (1,0,0); 05 = (—1,1,1); ¢ = (0,1,0,1)
iii) (¢,t) = (1,0); ap = (0,1,0)";04 = (0,0,1)"; ¢ = (1,1,0,0)
iv) (t',t) = (1,0); aw = (0,0,1) ;4 = (0,1,0)’; ¢ = (0,0,1,1)
v) (t',t) = (1,0); ap = (—1,1,1); 04 = (1,0,0)'; ¢ = (1,0, 1,0)
SM.2.3.6
01 11
A=10 1 0 1
0 011

i) (¢,t) = (1,0); ap = (2,—1,-1);04 = (—2,1,1); ¢ = (0,1,1,0)

SM.2.3.7

A:

o O =
—_ O O
— = =

i) (t',t) = (1,0); aw = (1,—1,0);0¢ = (0,0,1)"; ¢ = (1,0,0)

i) (t',t) =(1,0); ap = (0,—1,1); 04 = (1,0,0)"; ¢ = (0,1,0)’

SM.2.3.8

A:

S = =
— o O

D) (¢, 1) = (1,0): ap = (0.5,0.5,0); o = (0,0,1); ¢ = (1,0)

i) (¢',t) = (1,0); ap = (0,0,1); 04 = (0.5,0.5,0)"; ¢ = (0, 1)

SM.2.3.9

A:

o O =
o = O
_ O O

i) (¢,t) = (1,0); aw = (1,1,0) ;4 = (0,0,1)"; ¢ = (1,1,0)
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i) (¢,t) =(1,0); ap = (1,1,1); ¢ = (0.5,0.5,0.5)"; ¢ = (1,1, 1)
i) (¢,6) = (1,0); aw = (1,0,0Y; a; = (—0.5,0.5,0.5); ¢ = (1,0,0)’
i) (1) = (1,0); aw = (0,1,0); ay = (0.5, —0.5,0.5); ¢ = (0,1,0Y
v) (¢,t) = (1,0); ap = (1,0,1); 0 = (0,1,0)"; ¢ = (1,0, 1)
vi) (¢,t) = (1,0); ap = (0,1,1);0¢ = (1,0,0)"; ¢ = (0,1,1)
vii) (¢,t) = (1,0); ap = (0,0,1)"; 0 = (0.5,0.5, —0.5)"; ¢ = (0,0, 1)’

SM.2.3.10

i) (¢,t)=(1,0); ap = (1,0,-1); 04 = (—1,0,1)’; ¢ = (0,1,0,1,0,0)

SM.2.3.11

A:

o o O
S ==
_— o =

i) (¢',t) = (1,0); aw = (0,1,0);4 = (—1,0,1)"; ¢ = (0,1,0)

ii) (¢,t) =(1,0); aw = (0,0,1);0, = (—=1,1,0); ¢ = (0,0, 1)

K.4 3 treatments, 3 instrument values

Omitted for brevity (251 selection models). See https://arxiv.org/abs/2406.02835.
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