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A Defining outcome-nonrestrictive IV identification

A.1 Notation

Let P denote the joint distribution of the model fundamentals (Gi, Ỹi, Zi). Given Eq.

(2), we can decompose P as

P = Platent × PZ ,

where PZ denotes the distribution of the instruments Zi and Platent denotes the distribu-
tion of the latent variables of the model Ỹ and G.1

A generic causal parameter of interest θ is a functional θ(P) of the distribution P
of model variables. Let Pobs denote the distribution of observable variables (Yi, Ti, Zi).

Note that PZ is a marginalization of Pobs over Yi and Ti. I make use of the following

notational convention: for a sub-vector W0 of a random vector W , let PW0(PW ) be the

1By P = Platent × PZ , I mean that for any Borel set BL of values for (Gi, Ỹi) and BZ of values for PZ we have
P(BL × BZ) = Platent(BL) · PZ(BZ), where BL × BZ is the Cartesian product of BL and BZ .
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distribution of W0 that arises after marginalizing distribution PW over the components

of W not included in W0. In this notation, for example, PZ = PZ(Pobs).
Define Platent(G) to be the set of Platent compatible with a given selection model G

and admitting of finite moments:

Platent(G) := {Platent ∈ PỸ G : supp(PG(Platent)) ⊆ G} (1)

where we let PỸ G denote the set of all distributions over (Ỹi, Gi), such that E[Yi(t)|Gi =

g] exists and is finite for each t ∈ T and g ∈ G. Employing a similar notation, we let PZ

be the set of distributions over instrument values that embed any maintained support

restrictions (e.g. that Zi is binary with P (Zi = 1) ∈ (0, 1)).

Note that for any P = Platent × PZ , Eq. (1) and Ti = Ti(Zi) imply a distribution of

observables. Let ϕ denote this map so that Pobs = ϕ(P). The set of possible distributions

of observables given a selection model G is

Pobs(G) := {ϕ(Platent × PZ) : Platent ∈ Platent(G),PZ ∈ PZ}

All together, we can think of the basic IV model as the set of distributionsM = {Platent×
PZ : Platent ∈ Platent(G),PZ ∈ PZ}. In this notation note that Pobs(G) = ϕ(M).

A.2 Observable restrictions implied by the model

In general, Pobs(G) is a strict subset of the set of all joint distributions of (Yi, Ti, Zi),

i.e. restrictions on G coupled with Eq. (2) imply testable implications on Pobs. These

testable implications have been studied in the case of the classic LATE model (see e.g.

Kitagawa 2015; Mourifié and Wan 2017; Kédagni and Mourifié 2020, see also Jiang and

Sun 2023). Such restrictions are discussed further in Section A.5.

A.3 Outcome nonrestrictive IV identification

Given a function c(·) introduced in Section 2, denote the subset of Platent(G) for which
P (c(Gi) = 1) > 0 given the distribution PG of Gi as:

Platent,c(G) := {Platent ∈ Platent(G) and P (c(Gi) = 1) > 0

according to PG(Platent)} (2)

Similarly, let Pobs,c(G) := {ϕ(Platent × PZ) : Platent ∈ Platent,c(G),PZ ∈ PZ}. Pobs,c(G)
consist of the distributions of observables that respect selection model G and put positive

probability on the groups g ∈ G such that c(g) = 1. These sets are used in defining

outcome-nonrestrictive identification as a simple guarantee that the target parameters

µtc and ∆t,t′
c are well-defined. But causal parameters that condition on a probability-

zero event—such as the marginal treatment effect—can also be accommodated in this

framework, as limiting cases of a sequence of parameters for cj satisfying P (cj(Gi) =
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1) > 0 (see Appendix G).

We are now ready to give a definition of outcome-nonrestrictive identification, where

the target parameter θ is expressed as a function θ = θ(P) of the data generating process

P :

Definition 1. Given a choice model G, we say that parameter θ with conditioning function

c is outcome-nonrestrictive identified under G if the set

{θ(P) : ϕ(P) = Pobs and P = (Platent × PZ) for some

Platent ∈ Platent,c(G) and PZ ∈ PZ}

is a singleton for all Pobs ∈ Pobs,c(G).

Point identification in general says there is a unique value θ(P) compatible with Eq.

(2) and ϕ(P), for all P in some set defined by the model. The key requirement that

identification be outcome-nonrestrictive is that this model is broad enough to include

all of Platent,c(G).2 The set Platent,c(G) allows what Heckman et al. (2006) call essential

heterogeneity. The only restrictions on outcomes amount to IV independence (imposed by

taking the product measure P = Platent ×PZ), exclusion (implicit in the notation Yi(t)),

and finite group-specific means of Ỹi (imposed through PỸ G in (1)).3 Thus Platent,c(G)
is compatible with any marginal distribution PỸ of Ỹ = {Yi(t)}t∈T or selection-type

conditioned distributions PỸ |G=g across various g ∈ G whatsoever (provided that they

have finite means), so there is no assumption that e.g. treatment effects are homogeneous

across units, or are unrelated to counterfactual selection behavior Gi.

A.4 Binary combinations and binary collections

We begin by establishing a terminology to refer to situations in which the identification

result for counterfactual means in Eq. (4) can be applied.

Definition. Given selection model G, a binary combination is a treatment value t ∈ T
and a function α : Z → R of finite support ZK = {zk}Kk=1 such that

∑K
k=1 α(zk)·D

[t]
i (zk) ∈

{0, 1} for all i, according to G.

Now consider a collection of binary combinations that apply to at least two distinct

values t ∈ T . Let us denote set of coefficients α in each binary combination by α[t], in-

dexed by the treatment value t it will be applied to. In this notation, α
[t]
k is the coefficient

on zk in the binary combination corresponding to treatment t.

2Definition 1 represents a case of point identification as defined in Lewbel (2019) (see also Matzkin 2007), where the
known information (ϕ in Lewbel’s notation) is the distribution Pobs, the model value (m ∈ M in Lewbel’s notation) is
P = Platent × PZ , and the model M is the Cartesian product of Platent,c(G) and PZ .

3Platent,c(G) does restrict the marginal distributions of Gi and Zi: through G, P (c(Gi) = 1) > 0, and PZ .
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Definition. A binary collection is a set of binary combinations {(t, α[t])}t∈ψ for treat-

ment values in set ψ ⊆ T where |ψ| ≥ 2, with the property that given the selection model

G, the functions c[t,α
[t]] and c[t

′,α[t′]] are identical, for any t, t′ ∈ ψ.

For a given binary collection, let us for brevity denote the common function c[t,α
[t]]

for all t ∈ ψ as c. It follows immediately from Theorem 1 that treatment effects

E[Yi(t
′) − Yi(t)|c(Gi) = 1] = E[Yi(t

′)|c(Gi) = 1] − E[Yi(t)|c(Gi) = 1] are identified

for any pair t, t′ ∈ ψ.

When treatment is itself binary, we can generate binary collections from any binary

combination where the coefficients sum to zero:

Proposition A.1. Let T = {0, 1}, and suppose (t, α) is a binary combination such

that
∑

k αk = 0. Then there exists a binary collection with ψ = T . In particular, the

coefficients for t = 0 are simply −1 times the corresponding coefficients for t = 1.

Proof. See alternative statement of this result in Section 3.

The restriction that
∑

k αk = 0 is a natural one, in the following sense:

Proposition A.2. Let ∆t,t′
c = E[Yi(t

′)−Yi(t)|c(Gi) = 1] be outcome-nonrestrictive iden-

tified from a binary collection with t′ ̸= t. Then if G contains a group g0 that always takes

treatment t, it must be the the case that
∑

k α
[t]
k = 0.

Proof. Since P (Ti = t′|Gi = g0) = 0, the data provide no information on Y (t′)|Gi = g0,

so we must have c(g0) = 0 (see proof of Proposition 1). Thus c(g0) =
∑

k α
[t]
k ·1(Tg0(zk) =

t) =
∑

k α
[t]
k = 0.

For example, in the LATE model of Imbens and Angrist (1994), allowing for “always-

takers” (who always take treatment t = 1, regardless of Zi) implies that
∑

z α
[1]
z = 0, while

allowing for “never-takers” (who always take treatment t = 0) implies that
∑

z α
[0]
z = 0.

Consistent with this, identification of the compliers LATE follows from the binary col-

lection in which α
[1]
1 = 1, α

[1]
0 = −1, α

[0]
1 = −1, and α

[0]
0 = 1.

A.5 Using binary combinations and collections for testing the model

The existence of binary combinations with K > 1 generally yields overidentification

restrictions that can used to test the IV model (including exclusion, independence, and

the choice of selection model G). In particular, suppose that |G| < ∞ and note that for

any Borel set B of R and binary combination (t, α), we have that:

K∑
k=1

αk · P (Yi ∈ B, Ti = t|Zi = zk) = P (Yi(t) ∈ B, c(Gi) = 1) (3)
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using Eq. (2) and that P (Yi(t) ∈ B, Ti(zk) = t) =
∑

g∈G P (Gi = g) · P (Yi(t) ∈ B|Gi =

g) · A[t]
zk,g. Since the RHS of Eq. (3) represents a probability, the LHS must be weakly

positive. Provided that not all of the αk are positive, the implication that
∑K

k=1 αk ·P (Yi ∈
B, Ti = t|Zi = zk) ≥ 0 is not guaranteed and therefore can be used to test the model

assumptions.

Furthermore, finding binary collections may yield further overidentification restrictions

that make use of the “first stage” data alone. Depending on the selection model, the

equality
∑K

k=1 α
[t]
k · E

[
D

[t]
i |Zi = zk

]
=
∑K

k=1 α
[t′]
k · E

[
D

[t′]
i |Zi = zk

]
may not be trivially

satisfied, even in the case of a binary treatment. See Section 5 for an example of such

equality restrictions in the context of an empirical application, and Appendix J.6 for

further linear inequality constraints that are based upon first stage empirical moments.

Still further testable restrictions hold if one has a binary collection and Eq. (2) holds

conditional on observed covariates Xi. See Appendix J.2 for details.

B Proofs

B.1 Proof of Proposition 1

To ease notation, write ∆t,t′
c as ∆, µtc as µ(t), and µ

t′
c as µ(t′), with c fixed. It is apparent

that if µ(t′) and µ(t) are outcome-nonrestrictive identified, then ∆ = µ(t′)− µ(t) is too.

Now let us consider the other direction. Suppose that µ(t) is not outcome-nonrestrictive

identified (an analogous argument holds if µ(t′) is not outcome-nonrestrictive identified).

Then for some Pobs ∈ Pobs,c(G), the set {θµ(t)(P) : P ∈ M and ϕ(P) = Pobs} has

at least two elements, where M := {Platent × PZ : Platent ∈ Platent,c(G),PZ ∈ PZ}
and we let θµ(t)(·) be the map that yields the value of µ(t) as a function of P .4 Ac-

cordingly, let P1,P2 ∈ M where θµ(t)(P1) = a and θµ(t)(P2) = b where a ̸= b despite

ϕ(P1) = ϕ(P2) = Pobs.
Let us decompose P1 as

({
PY (s)|G=g

}
s∈T
g∈G

,PG,PZ
)
, which is possible because P1

satisfies independence Eq. (2) between the instruments and the latent variables. Let

P(0) denote a degenerate distribution at zero in R. Now consider the distribution

P̃1 =

(
{P(0)}g∈G,

{
PY (t)|G=g

}
s∈T ,s ̸=t′
g∈G

,PG,PZ
)
. That is, Yi(t

′) = 0 with probability one

according to P̃1, but the joint distribution of Zi, Gi and all of the other potential outcomes

s ̸= t′ are the same under P̃1 as they are under P1. Note that given this construction:

θµ(t)(P̃1) = θµ(t)(P1) = a, since µ(t) only depends on the distributions PY (t)|G=g and PG,
and t ̸= t′. Note as well that from P1 ∈M we know that Platent(P1) ∈ Platent,c(G). Since
PG has not been changed in defining P̃1 from P1, and a degenerate random variable at

zero has a finite expectation, it follows that Platent(P̃1) ∈ Platent,c(G) as well. Since PZ
has also not been changed, we further have that P̃1 ∈M .

4Note that the set M will vary with c, but since we are considering a fixed c this is left implicit to ease notation.
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Define P̃2 analogously from P2, and observe that similarly θµ(t)(P̃2) = θµ(t)(P2) = b

and again that P̃2 ∈M .

Observe furthermore that θ∆(P̃1) = θµ(t′)(P̃1)− θµ(t)(P̃1) = 0− a = −a, and similarly

θ∆(P̃2) = θµ(t′)(P̃2)− θµ(t)(P̃2) = 0− b = −b. Thus since since b ̸= a:

θ∆(P̃1) ̸= θ∆(P̃2) (4)

I now show that this contradicts ∆ being outcome-nonrestrictive identified.

To see this, decompose Pobs as
({

PY |T=s,Z=z
}
s∈T
z∈Z

,
{
PT |Z=z

}
z∈Z ,PZ

)
and define P̃obs =(

{P(0)}z∈Z ,
{
PY |T=s,Z=z

}
s∈T ,s ̸=t′
z∈Z

,
{
PT |Z=z

}
z∈Z ,PZ

)
where the {P(0)}z∈Z indicate that

P (Yi = 0|Ti = t′, Zi = z) = 1 for all z ∈ Z according to P̃obs. That is, the marginal

distribution PTZ and the conditional distributions PY |T=s,Z=z for all s ̸= t′ and z are

unchanged from Pobs, but Yi = 0 with probability one conditional on Ti = t′.

The next step is to observe that ϕ(P̃1) = P̃obs and ϕ(P̃2) = P̃obs. To see this, note

that Yi(t
′) = 0 with probability one implies that Yi = 0 with probability one conditional

on Ti = t′ (provided that P (Ti = t) > 0). Now since P1 and P̃1 only differ in PY (t′)|G=g

(leaving PTZ and and PY |Ti=s,Z=z for all s ̸= t′ and z unchanged), it follows from ϕ(P1) =

Pobs that ϕ(P̃1) = P̃obs, and analogously for P̃2. This further implies that P̃obs ∈ Pobs,c(G).
Since ∆ is outcome-nonrestrictive identified and P̃obs ∈ Pobs,c(G), the set {θ∆(P) :

P ∈ M and ϕ(P) = P̃obs} must be a singleton. Given that ϕ(P̃1) = ϕ(P̃2) = P̃obs and

P̃1, P̃2 ∈M we must then have θ∆(P̃1) = θ∆(P̃2). This yields a contradiction with (4).

We can generalize Proposition 1 as follows. For any vector of coefficients ρt for each

t ∈ T , define θρc :=
∑

t ρt · µtc. µtc is a special case of θcρ in which ρt is equal to one for a

single treatment, and zero for all others. Similarly, ∆t,t′
c is a case of θρc in which ρt′ = 1,

ρt = −1, and all other components of ρ are equal to zero. In Section 5, the local average

complimentarity parameter λc = µCc −µAc −µBc +µ0
c is an example of θρc where ρC = ρ0 = 1

and ρA = ρB = −1.

In general, let ψ(ρ) ⊆ T be the set of treatments for which ρt ̸= 0. Clearly θρc
is outcome-nonrestrictive identified if µtc is for each t ∈ ψ(ρ). The above argument

articulated for treatment effects extends immediately to show that θρc is also outcome-

nonrestrictive identified only if µtc is for each t ∈ ψ(ρ). To see this, we again begin with

a value t ∈ ψ(ρ) such that µ(t) is not outcome-nonrestrictive identified, i.e. θµ(t)(P1) = a

and θµ(t)(P2) = b with a ̸= b, where P1 and P2 are the corresponding latent variable

distributions in M such that ϕ(P1) = ϕ(P2) = Pobs. Let d1 =
∑

s ̸=t ρs · θµ(s)(P1) and

d2 =
∑

s ̸=t ρs · θµ(s)(P2) such that θρc = ρt · a+ d1 under P1 and θρc = ρt · b+ d2 under P2.

Suppose that θρc is outcome-nonrestrictive identified. In this case, we must have that

d2 = d1+ρt · (a− b). Now consider the distributions P̃1, P̃2 and P̃obs defined above, where

we take t′ ̸= t to be any other treatment in ψ(ρ) other than t. We have already seen

above that P̃obs ∈ Pobs,c(G), P̃1, P̃2 ∈M and ϕ(P̃1) = ϕ(P̃2) = P̃obs. Thus we must have
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that θρc is the same under both P̃1 and P̃2. Instead, we have that under P̃1, θ
ρ
c is equal

to ρt · a+ d1 − ρt′ · θµ(t′)(P1), and under P̃1, θ
ρ
c is equal to

ρt ·b+d2−ρt′ ·θµ(t′)(P2) = ρt ·b+d1+ρt ·(a−b)−ρt′ ·θµ(t′)(P2) = {ρt ·a+d1}−ρt′ ·θµ(t′)(P2)

Thus we must have that θµ(t′)(P2) = θµ(t′)(P1). This argument can be repeated for every

t′ ∈ ψ(ρ), t′ ̸= t, and we then have that d1 = d2. This in turn implies that ρt · (a− b) = 0,

which contradicts a ̸= b with ρt ̸= 0. We have thus arrived at a contradiction.

B.2 Proof of Theorem 2

Setup and notation

Let Y ⊆ R be the support of Y . For any y ∈ Y , z ∈ Z and t ∈ T , define F(Y D)|Z=z(y, t) :=

E[1(Yi ≤ y)1(Ti = t)|Zi = z]. This function acts like a CDF for Yi and a probability

mass function for Ti, conditional on Zi = z. We begin with the observation that knowing

the distribution Pobs of (Yi, Ti, Zi) is equivalent to knowing the value of F(Y D)|Z=z(y, t)

for all (y, t, z) along with the observable distribution of the instruments PZ .
By the law of iterated expectations over Gi and using independence (2):

F(Y D)|Z=z(y, t) = E {E[1(Yi(t) ≤ y)1(Ti(z) = t)|Zi = z,Gi]}
=

∑
g:A

[t]
zg=1

P (Gi = g) ·E[1(Yi(t) ≤ y)|Gi = g]

=
∑

g:A
[t]
zg=1

P (Gi = g) · FY (t)|G=g(y) :=
∑
g∈G

A[t]
zg · P (Gi = g) · FY (t)|G=g(y) (5)

I use the following Lemma to assume that A[t] has full row rank, without loss of generality:

Lemma 1. If µtg is outcome-nonrestrictive identified given instrument support Z, it re-

mains outcome-nonrestrictive identified using data from Zi ∈ Z0, where Z0 ⊆ Z is a

subset of instrument values for which the rows of A[t] for z ∈ Z0 are linearly independent

of one another.

A special case of Lemma 1 is an observation by Heckman and Pinto (2018) that one

can remove any rows of A[t] that is an exact copy of another row (i.e. there are two

instrument values for which all response types behave the same regarding whether they

choose treatment t or not), and there is hence a direct redundancy over instrument values.

Outcome-nonrestrictive identification

Now define F(Y D)|Z(y) to be a |T | · |Z|×1 vector of F(Y D)|Z=z(y, t) over z and t and G∗(y)

to be the unknown |T | · |G|-component vector of P (Gi = g) ·FY (t)|G=g(y) over g and t, for

a fixed y. Now let G∗ represent the whole vector-valued function G∗ : Y → R
|T |·|G|, and

define F(Y D)|Z similarly as the function Y → R
|T |·|Z| yielding the vector F(Y D)|Z(y). Note
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that PZ and F(Y D)|Z encode the entire distribution Pobs of observables (Y, T, Z) while PZ
and G∗ encode the entire distribution P of model primitives (Ỹ , G, Z).

The relationship between the two can be characterized by writing Eq. (5) as:

F(Y D)|Z = A ◦G∗ (6)

where A is the linear map of functions Y → R
|T |·|G| to functions Y → R

|T |·|Z| defined by:

[A ◦ µ(y)]tz =
∑
g

A[t]
z,g · µ(y)tg

holding for each y, for any vector-valued function µ : Y → R
|T |·|G|.

Let θ = E[Yi(t)|c(Gi) = 1] be the parameter of interest. Note that similar to (6), θ

can also be written as a linear map applied to the function G∗. In particular θ = Θ ◦G∗,

where for any function µ : Y to R|T |·|G|, Θ ◦ µ is the scalar:∑
g∈G

cg
P (c(Gi) = 1)

·
∫
Y
y · dµ(y)t,g (7)

The set of such µ that recover the distribution of observables can be written as:

S := {µ : A ◦ µ = F(Y D)|Z}

However, some such candidate values µ ∈ S for G∗ may correspond to FY (t)|G=g(·) that
do not represent valid CDFs. Accordingly, let us define

R := {µ : [µ(y)]tg/P (Gi = g) is a proper CDF for each t ∈ T and g ∈ G s.t. P (Gi = g) > 0}

The remainder of this section establishes that for θ to be outcome-nonrestrictive identified,

the set S ∩R must map to a singleton under Θ.

Note that the sets R and S as well as the map Θ depend on the distribution Platent
(through F(Y D)|Z for S and through the P (Gi = g) for R and Θ).5 Let us denote

this dependence by S(Platent), R(Platent) and Θ(Platent), though I will later leave this

dependence implicit to ease notation.

Definition 1 of outcome-nonrestrictive identification, translated into this notation, says

that

{Θ(Platent) ◦ µ : µ ∈ R(Platent) and µ ∈ S(Platent)} is a singleton ∀Platent ∈ Platent,c(G)
(8)

The following regularity condition will prove to be useful later in the proof:

Condition REG. Fix a t ∈ T . For some g∗ ∈ G, there exists a L > 0 and L̄ <∞ such

5Note that the map Θ depends on t and the vector c as well, also left implicit for ease of exposition.
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that for any g′ ∈ G and y′ > y:

L ≤ FY (t)|G=g′(y
′)− FY (t)|G=g′(y)

FY (t)|G=g∗(y′)− FY (t)|G=g∗(y)
≤ L̄

Note that whether or not Condition REG holds is a property of Platent. A sufficient

condition is that Y is discrete and finite and the support of Y (t)|G = g is the same

for all g. Another sufficient condition is that i) Y is continuously distributed with the

support of the density fY (t)|G=g(y) the same for all g and t; ii) the density on this set Y
is bounded from below by M > 0 for all g, and iii) similarly supy∈Y fY (t)|G=g(y) ≤ M̄ for

some M̄ <∞, for all g.6 A mixture of distributions satisfying the above will also satisfy

REG.

Let P̄latent,c(G) denote the set of distributions Platent ∈ Platent,c(G) that satisfy Con-

dition REG. P̄latent,c(G) is never empty (given G ≠ ∅), since we have seen above that

for any |G| > 0 there are always distributions that satisfy REG (with examples for each

of discrete, continuous or mixed Y ). Further, Platent,c(G) only limits the support of G

and places no constraint on the distribution of Ỹ |G. Note from (8) that if θ is outcome-

nonrestrictive identified, {Θ · µ}µ∈(S(Platent)∩R(Platent)
must be a singleton for all Platent

such that supp{PG(Platent)} ⊆ G, including any Platent ∈ P̄latent,c(G).
The remainder of the proof of Theorem 2 shows that if c /∈ rs(A[t]), it is always possible

to find Platent ∈ P̄latent,c(G) such that {Θ(Platent) · µ}µ∈(S(Platent)∩R(Platent)
is not in fact a

singleton.

A candidate for G∗ that recovers observables

To see this, we will explicitly construct a functional G of Platent, that generally differs

from G∗ and lets us define an “alternative” to Platent but still recovers observables.
Consider the vector-valued function G, where the t, g component of G(y) is:

[G(y)]t,g :=

P (Gi = g) · FY (t)|G(y|g) if maxz∈Z 1(Tg(z) = t) = 0∑
z[(A

[t])+]g,z] · F(Y D)|Z(y, t|z) if maxz∈Z 1(Tg(z) = t) = 1

and (A[t])+ indicates the Moore-Penrose pseudoinverse of the matrix A[t].

The reason for separating out the two cases in the definition of G is that if there

exists a group g that acts as a “never-taker” with respect to treatment t such that

maxz∈Z 1(Tg(z) = t) = 0, then this corresponds to a column of all zeros in A[t]. A

property of the Moore-Penrose inverse is that if column g of A[t] is all zeros, then the

corresponding row g of (A[t])+ is also all zeros (see e.g. Hung and Markham 1975) which

would leave [G(y)]t,g = 0 for all y if we did not separate out this case. This would make

it impossible for G to represent a possible candidate for G∗ (i.e. G ∈ R). The above

6In the discrete case, let L = miny∈Y,g∈G P (Y (t) = y|G = g)P (Y (t) = y|G = g∗) and L̄ = 1/miny∈Y P (Y (t) = y|G =

g∗). In the continuous case let L̄ =
max g∈G supy∈Y fY (t)|G=g(y)

min g∈G infy∈Y fY (t)|G=g(y)
≤ M̄/M and L =

min g∈G infy∈Y fY (t)|G=g(y)

max g∈G supy∈Y fY (t)|G=g(y)
≥M/M̄ .
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construction avoids this problem by simply replacing such problematic combinations of

(g, t) by using the actual [G∗(y)]t,g (which are unknown). Note that if the first case holds

for all g ∈ G, then the matrix A[t] is simply the zero matrix, and outcome-nonrestrictive

identification cannot hold, by Lemma 1. Thus, we can continue under the assumption

that the second case holds for at least some g ∈ G.
Let use see now that G “recovers observables”, by which I mean that A◦µ = F(Y D)|Z

and hence G ∈ S. Indeed:

[A ◦G(y)]t,z =
∑
g

A[t]
z,g [G(y)]t,g

=

(((((((((((((((((((((((((∑
g:maxz∈Z 1(Tg(z)=t)=0

A[t]
z,g · P (Gi = g) · FY (t)|G(y|g)

+
∑

g:maxz∈Z 1(Tg(z)=t)=1

∑
z′

A[t]
z,g[(A

[t])+]g,z′F(Y D)|Z(y, t|z′)

=
∑
g,z′

A[t]
z,g[(A

[t])+]g,z′F(Y D)|Z(y, t|z′)

=
∑
z′

[A[t](A[t])+]z,z′F(Y D)|Z(y, t|z′) = [F(Y D)|Z(y)]tz

where the second and third equalities use that A
[t]
z,g = 0 for all z, if g is such that

maxz∈Z 1(Tg(z) = t) = 0. The final equality follows from A[t](A[t])+ = I|Z|, which in turn

follows from (A[t])+ = A[t]′(A[t]A[t]′)−1 since we can by Lemma 1 assume that A[t] has full

row rank.

G may still however not be in R, as its definition above does not ensure that each

FY (t)|G(y|g) is necessarily weakly increasing in y with a limit of unity as y ↑ ∞. Note

that [G]t,g/P (Gi = g) does have the final two properties of a CDF: right-continuity and

a left limit of zero. To see this, substitute (6) into the definition of G, to rewrite as:

[G(y)]t,g :=

P (Gi = g) · FY (t)|G(y|g) if maxz∈Z 1(Tg(z) = t) = 0∑
g′ [(A

[t])+A[t]]g,g′ · P (Gi = g′) · FY (t)|G(y|g′) if maxz∈Z 1(Tg(z) = t) = 1

(9)

Right continuity of each element ofG(y) in y follows from right-continuity of the FY (t)|G(y|g′).
Note that limy↓−∞ [G(y)]t,g = 0 follows from each of the CDFs F(Y D)|Z approaching zero

as y ↓ −∞, given that the components of A[t] and P (Gi = g) are finite.

Let βt,g := limy↑∞ [G(y)]t,g. For any t, g such that maxz∈Z 1(Tg(z) = t) = 0, it follows

from the definition of G that βt,g = P (Gi = g), since each of the FY (t)|G(y|g) are valid

CDFs. For the other t, g, use (9) to see that

βt,g = lim
y↑∞

∑
g′

[(A[t])+A[t]]g,g′ · P (Gi = g′) · FY (t)|G(y|g′) =
∑
g′

[(A[t])+A[t]]g,g′ · P (Gi = g′)

= [(A[t])+A[t]P ]g
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where P is a vector of P (Gi = g) for all g ∈ G.
Unless [(A[t])+A[t]P ]g = Pg for all g ∈ G, the functions [G(y)]t,g may thus not represent

properly normalized CDFs. In fact, they may not even be monotonic in y. However, we

can still use G as a building block to construct another set of functions that satisfy all

of the properties of a CDF.

A broader class of candidates that also recover observables but represent

CDFs

Given some fixed g∗ ∈ G, let us define a vector valued function D : Y → R
|T |·|G| with

components:

[D(y)]t,g := (Pg − βt,g) · FY (t)|G(y|g∗) = [
{
I − (A[t])+A[t]

}
P ]g · FY (t)|G(y|g∗) (10)

Now let us define for any λ ∈ [0, 1] the convex combination of G+D and G∗:

Gλ := λ (G+D) + (1− λ)G∗ = G∗ + λ {G−G∗ +D} (11)

Our first observation will be that A◦Gλ = F(Y D)|Z , i.e. G
λ still recovers observables and

thus Gλ ∈ S. To see this, note that:

[A ◦Gλ(y)]t,z = [A ◦G(y)]t,z + λ · [A ◦ {G−G∗ +D} (y)]t,g

= [F(Y D)|Z(y)]t,z +
((((((((((((((((((

λ · [A ◦G(y)]t,g − λ · [A ◦G∗(y)]t,g + λ · [A ◦D(y)]t,g

= [F(Y D)|Z(y)]t,z + λ ·
∑
g,g′

A[t]
z,g · [(I − (A[t])+A[t])]g,g′ · P (Gi = g′) · FY (t)|G(y|g∗)

= [F(Y D)|Z(y)]t,z + λ ·
∑
g′

[((((((((((
A[t](I − (A[t])+A[t])]z,g′ · P (Gi = g′) · FY (t)|G(y|g∗)

= [F(Y D)|Z(y)]t,z

since A ◦G∗ = A ◦G and A[t](A[t])+A[t] = A[t].

Now, we verify that for a small enough λ, Gλ yields FY (t)|G(y|g) that satisfy the proper-

ties of a CDF and henceGλ ∈ R. First, note that
[
Gλ(y)

]
t,g

is right-continuous in y, since

each of [G(y)]t,g, [G
∗(y)]t,g, and [D(y)]t,g are. We also have that limy↓−∞

[
Gλ(y)

]
t,g

= 0,

since

lim
y↓−∞

[G(y)]t,g = lim
y↓−∞

[G∗(y)]t,g = lim
y↓−∞

[D(y)]t,g = 0

Note as well that

lim
y↑∞

[
Gλ(y)

]
t,g

= lim
y↑∞

[G∗(y)]t,g + λ · lim
y↑∞

[{G−G∗ +D} (y)]t,g

= Pg + λ ·
{
lim
y↑∞

[G(y)]t,g − lim
y↑∞

[G∗(y)]t,g + lim
y↑∞

[D(y)]t,g

}
= Pg + λ · {βt,g − Pg + (Pg − βt,g) · 1} = Pg
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matching the correct normalization, i.e. limy↑∞ [G∗(y)]t,g = Pg · limy↑∞ FY (t)|G=g(y) = Pg.

It only remains to be seen that for a small enough value of λ,
[
Gλ(y)

]
t,g

is weakly

increasing in y. This is always possible given that Platent satisfies Condition REG:

Proposition B.1. Given Condition REG,
[
Gλ(y)

]
t,g

is non-decreasing in y for any

λ ∈ (0, λ̄], where λ̄ = L
2|G|·L̄ > 0.

Given Proposition B.1, we have shown that for λ ≤ λ̄, Gλ ∈ R and hence Gλ ∈ (S ∩R).

Outcome-nonrestrictive identification implies c ∈ rs(A[t])

Consider now any Platent ∈ P̄, c(G) and choose the g∗ ∈ G in the definition of D so that

REG holds for that g∗. We know that there exist λ > 0 small enough that Gλ ∈ (S ∩R).

For any such λ, outcome-nonrestrictive identification of θ now requires that Θ ◦ Gλ =

Θ ◦G∗. This in turn requires, by Eq. (11), that Θ ◦ {G−G∗ +D} = 0. Now:

Θ ◦ {G−G∗ +D}

=
1

P (c(Gi) = 1)

∑
g

cg ·
{∫

Y
y · dG(y)t,g −

∫
Y
y · dG∗(y)t,g +

∫
Y
y · dD(y)t,g

}
=

1

P (c(Gi) = 1)

∑
g

cg
∑
g′

[I − (A[t])+A[t]]g,g′ · P (Gi = g′) ·E[Yi(t)|Gi = g′]

+
1

P (c(Gi) = 1)

∑
g

cg
∑
g′

[(I − (A[t])+A[t])P ]g,g′ · P (Gi = g′) ·E[Yi(t)|Gi = g∗]

=
1

P (c(Gi) = 1)

∑
g′

[c′(I − (A[t])+A[t])]g′ · P (Gi = g′) ·E[Yi(t)|Gi = g′]

+
1

P (c(Gi) = 1)

∑
g′

[c′(I − (A[t])+A[t])]g′ · P (Gi = g′) ·E[Yi(t)|Gi = g∗]

=
1

P (c(Gi) = 1)

∑
g′

[c′(I − (A[t])+A[t])]g′ · P (Gi = g′) · {E[Yi(t)|g′]−E[Yi(t)|g∗]}

(12)

Note that although the map Θ depends on the distribution PG, the constructions G, D

and Gλ all use the same distribution PG from the actual distribution Platent. It is for this
reason that P (c(Gi) = 1) factors out in Eq. (12), and the RHS can only be non-zero if

the sum over g′ appearing in it evaluates to zero.

Suppose that c /∈ rs(A[t]) so that c′(I − (A[t])+A[t]) = c̃′ for some non-zero vector c̃.

Provided that P (Gi = g′) · {E[Yi(t)|Gi = g′]−E[Yi(t)|Gi = g∗]}, thought of as a vector

across g′ ∈ G, is not perfectly orthogonal in R|G| to c̃, we will have that∑
g′

c̃′g′ · P (Gi = g′) · {E[Yi(t)|Gi = g′]−E[Yi(t)|Gi = g∗]} ≠ 0

There is always a Platent ∈ P̄latent,c(G) such that this non-orthogonality holds, because the

13



relative magnitudes of P (Gi = g) and level-differences E[Yi(t)|Gi = g′]−E[Yi(t)|Gi = g∗]

in Yi(t) can be varied without violating REG or changing the support of Gi. Thus if

c /∈ rs(A[t]), we can obtain Θ ◦ {G−G∗ +D} ≠ 0 for some Platent ∈ Pc,latent(G), and θ
is not outcome-nonrestrictive identified.

B.2.1 Proof of Proposition B.1

The key to ensuring monotonicity will be to choose λ small enough that any decreases with

y in the components ofGλ are dominated by increases in the corresponding components of

G∗, so that each
[
Gλ
]
t,g

is monotonically increasing. For
[
Gλ(y)

]
t,g

to be monotonically

increasing in y we need that for any y′ > y:
[
Gλ(y′)

]
t,g

−
[
Gλ(y)

]
t,g

≥ 0, i.e. that

[G∗(y′)]t,g − [G∗]t,g ≥ λ · [(G∗ −G)(y′)− (G∗ −G)(y)]t,g − ([D(y′)]t,g − [D]t,g)} (13)

Let us turn first to [(G∗ −G)(y)]t,g. Fix a g and t, and any y′ > y. Then, by (9):

[G(y′)]t,g−[G∗(y)]t,g =

P (Gi = g) · {FY (t)|G(y
′|g)− FY (t)|G(y|g)}∑

g′ [(A
[t])+A[t]]g,g′ · P (Gi = g′) ·

{
FY (t)|G(y

′|g′)− FY (t)|G(y|g′)
}

(14)

where the first line indicates the case that g is such that maxz∈Z 1(Tg(z) = t) = 0, and

the second that maxz∈Z 1(Tg(z) = t) = 1. Thus [(G∗ −G)(y′)]t,g − [(G∗ −G)(y)]t,g is

equal to 0 if maxz∈Z 1(Tg(z) = t) = 0, and∑
g′

[I − (A[t])+A[t]]g,g′ · P (Gi = g′) ·
{
FY (t)|G(y

′|g′)− FY (t)|G(y|g′)
}

if maxz∈Z 1(Tg(z) = t) = 1.
Thus we have by REG that∣∣∣[(G∗ −G)(y′)

]
t,g

− [(G∗ −G)(y)]t,g

∣∣∣
=

∣∣∣∣∣∣
∑
g′

[I − (A[t])+A[t]]g,g′ · P (Gi = g′) ·
{
FY (t)|G(y

′|g′)− FY (t)|G(y|g′)
}∣∣∣∣∣∣

=
{
FY (t)|G(y

′|g∗)− FY (t)|G(y|g∗)
}
·

∣∣∣∣∣∣
∑
g′

[I − (A[t])+A[t]]g,g′ · P (Gi = g′) ·
FY (t)|G(y

′|g′)− FY (t)|G(y|g′)
FY (t)|G(y′|g∗)− FY (t)|G(y|g∗)

∣∣∣∣∣∣
≤

{
FY (t)|G(y

′|g∗)− FY (t)|G(y|g∗)
}
· |G|1/2 ·

√√√√∑
g′

P (Gi = g′)2 ·
(

FY (t)|G(y′|g′)− FY (t)|G(y|g′)
FY (t)|G(y′|g∗)− FY (t)|G(y|g∗)

)2

≤
{
FY (t)|G(y

′|g∗)− FY (t)|G(y|g∗)
}
· |G| ·max

g′
P (Gi = g′) ·max

g′

∣∣∣∣ FY (t)|G(y
′|g′)− FY (t)|G(y|g′)

FY (t)|G(y′|g∗)− FY (t)|G(y|g∗)

∣∣∣∣
≤

{
FY (t)|G(y

′|g∗)− FY (t)|G(y|g∗)
}
· |G| ·max

g′

∣∣∣∣ FY (t)|G(y
′|g′)− FY (t)|G(y|g′)

FY (t)|G(y′|g∗)− FY (t)|G(y|g∗)

∣∣∣∣
using that [I−(A[t])+A[t]] is a projection (so that |[I−(A[t])+A[t]]v| ≤ |v| for any vector v ∈
R

|G|) and by the Cauchy-Schwarz inequality. Let δ∗t (y
′, y) := FY (t)|G(y

′|g∗)−FY (t)|G(y|g∗).
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Then, by REG: ∣∣∣[(G∗ −G)(y′)]t,g − [(G∗ −G)(y)]t,g

∣∣∣ ≤ δ∗t (y
′, y) · |G| · L̄

Now consider [D(y)]t,g. Fix a g and t, and any y′ > y. Similarly, we have that

∣∣∣[D(y′)
]
t,g

− [D(y)]t,g

∣∣∣ =
∣∣∣∣∣∣
∑
g′

[I − (A[t])+A[t]]g,g′ · P (Gi = g′) · {FY (t)|G(y
′|g∗)− FY (t)|G(y|g∗)}

∣∣∣∣∣∣
≤ {FY (t)|G(y

′|g∗)− FY (t)|G(y|g∗)} · |P |

≤ {FY (t)|G(y
′|g∗)− FY (t)|G(y|g∗)} · |G|

So, using Condition REG:∣∣∣[D(y′)]t,g − [D(y)]t,g

∣∣∣ ≤ δ∗t (y
′, y) · |G| · L̄

We can thus put an upper bound on the RHS of (13)

λ · {[(G∗ −G)(y′)− (G∗ −G)(y)]t,g − (lim
y′↓y

[D(y′)]t,g − [D]t,g)} ≤ 2λ · δ∗t (y′, y) · |G| · L̄

Meanwhile, by REG:{
[G∗(y′)]t,g − [G∗(y)]t,g

}
= {FY (t)|G(y

′|g∗)− FY (t)|G(y|g∗)} ·
FY (t)|G(y

′|g′)− FY (t)|G(y|g′)
FY (t)|G(y′|g∗)− FY (t)|G(y|g∗)

≥ δ∗t (y
′, y) · L

Thus inequality (13) then holds provided that δ∗t (y
′, y) · L ≥ 2λ · δ∗t (y′, y) · |G| · L̄, which

holds trivially if δ∗t (y
′, y) = 0 and if and only if λ ≤ L

2|G|·L̄ if δ∗t (y
′, y) > 0.

A visualization of the intuition behind this result is depicted in Figure 1.

y0−

1−

Figure 1: Depiction of Proposition B.1. The blue sinusoidal function depicts an example of a
[
(G+D)λ(y)

]
t,g

that is not weakly increasing. The orange curve depicts [G∗(y)]t,g which is weakly increasing. The black curve

depicts
[
Gλ(y)

]
t,g

, which is a linear combination of the blue and orange functions with weights λ = 0.1 and

1− λ = 0.9, respectively. This value of λ is small enough that the black curve is weakly increasing everywhere.

B.3 Proof of Lemma 1

Suppose that A[t] does not have full row rank. This implies that for some Z0 ⊂ Z, each

of the remaining rows of A[t] for z /∈ Z0 can be written as a linear combination of the
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rows of A[t] for z ∈ Z0. Take such a z∗ /∈ Z0, and accordingly let

A
[t]
z∗,g =

∑
z∈Z0

γz · A[t]
z,g for all g ∈ G

Note then that Eq. (5) implies that

F(Y D)|Z=z∗(y, t) =
∑
g∈G

A
[t]
z∗,g · P (Gi = g) · FY (t)|G=g(y)

=
∑
g∈G

(∑
z∈Z0

γz · A[t]
z,g

)
· P (Gi = g) · FY (t)|G=g(y)

=
∑
z∈Z0

γz ·
∑
g∈G

A[t]
z,g · P (Gi = g) · FY (t)|G=g(y) =

∑
z∈Z0

γz · F(Y D)|Z=z(y, t)

where the RHS on the last line does not depend on the distribution of observables for i

such that Zi = z∗. Thus, F(Y D)|Z=z∗(y, t) adds no information that is not contained in

F(Y D)|Z=z(y, t) for z ∈ Z0. If µ
t
g is outcome-nonrestrictive identified, it must be using the

distribution PY TZ|Z∈Z0 rather than the full unconditional distribution Pobs = PY TZ .

B.4 Proof of Proposition 2

Suppose first that |G| > |Z| and A = A[t] has full row rank of |Z|. Then since A has

full row-rank of |Z|, there exists a subset of |Z| columns that are linearly independent

from one another. Write A = [Ã, Ãc] where Ã is an invertible |Z| × |Z| matrix of these

columns, and Ãc are the others. Write the system A′α = c in this notation as[
Ã′

Ã′
c

]
α =

(
c̃

c̃c

)

where c̃ denotes the |Z| components of c corresponding to the columns of A put into

in Ã, and c̃c are the remaining entries cg of c. Then α = Ã
′−1c̃, which can be seen by

left-multiplying the above equation by the |Z|×|G| matrix [Ã
′−1,0|Z|×|G|−|Z|]. Intuitively,

the system A′α = c is over-determined, so we only only need the components c̃ of c to

uniquely determine the vector α.

Now consider the case in which |G| < |Z|, so that the system A′α = c is now undeter-

mined. Suppose for now that the rank of A is |G| so that it has full column rank. One

solution α can then be obtained by writing A =

[
Ã

Ãc

]
where Ã is an invertible |G| × |G|

matrix representing |G| linearly independent rows of A. Now consider α =

(
Ã−1c

0(|Z|−|G|)×1

)
where note that Ã−1c is |G|−component vector. This represents a solution to A′α = c

since

A′

(
Ã

′−1c

0(|Z|−|G|)×1

)
= [Ã, Ãc]

(
Ã−1c

0(|Z|−|G|)×1

)
= c
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We can combine the constructions in the two special cases considered above to relax

any assumptions about the cardinality of Z and G or the rank of A. Let the rank of A

be k ≤ min{|Z|, |G|}. Write A = Ak[Ik,M ] where Ak is a k × |G| matrix composed of

k linearly independent columns of A, and M is (|G| − k) × k matrix that expresses the

remaining (|G| − k) columns of A as linear combinations of the columns of A represented

in Ak. Write c =

(
c̃k

c̃c

)
where c̃k collects the corresponding k components of c. Note

that if c′ = α′A has a solution, then c′ = c̃′k[Ik,M ], since c′ = (α′
kAk)[I,M ] where the k

components of c′ corresponding to the columns in Ak are α′
kAk, so c̃

′
k = α′

kAk. Now split

the rows of Ak as Ak =

[
Ã

Ãc

]
where Ã is a square invertible k × k matrix representing k

linearly independent rows of Ak and Ãc is (|Z|−k)×k. Now α =

(
c̃′kÃ

−1

0(|Z|−k)×1

)
represents

a solution to c′ = α′A because [c̃′kÃ
−1,01×(|Z|−k)]A = [c̃′kÃ

−1,01×(|Z|−k)]

[
Ã

Ãc

]
[Ik,M ] =

c̃′k[Ik,M ] = c′.

In all of the three cases considered above, we can write any non-zero elements αz

of a α yielding a binary combination as components xz of x = M−1b, where M is an

invertible n × n binary matrix (i.e. having entries of 0 or 1), and b an n-component

binary vector. Equivalently, x represents the unique solution to Mx = b. Cramer’s rule

for such a solution establishes that the xz can be written as xz =
det(Mz)
det(M)

, where Mz is a

matrix that replaces the column z of the matrix M with the vector b. Since both M and

b are composed of binary entries, the matrix Mz is always binary as well. The result now

follows as stated in Proposition 2 since 0 is always a possible value of det(Mz).

B.5 Proof of Proposition 3

Given E[νi|Zi = 0], the parameter γ3 − γ1 − γ2 is given by

γ3 − γ1 − γ2 = E[Yi|Zi = C]−E[Yi|Zi = A]−E[Yi|Zi = B] +E[Yi|Zi = 0]

= E[Yi(Ti(C))− Yi(Ti(A))− Yi(Ti(B)) + Yi(Ti(0))]

= E[Yi(C)− Yi(A)− Yi(B) + Yi(0)] +E[Yi(Ti(C))− Yi(C)]

−E[Yi(Ti(A))− Yi(A)]−E[Yi(Ti(B))− Yi(B)] +E[Yi(Ti(0))− Yi(0)]

Each of the last three terms in the final line can differ from zero in ways that do not

offset one another, provided that imperfect compliance is allowed, i.e. P (Ti(z) ̸= z) > 0

for some z ∈ Z.
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C Extended analysis of identification under NSOG

It is known that unconditional means E[Yi(t)] of a given potential outcome Yi(t) can

be point-identified, given an order condition on the instruments, under an assumption

of “no-selection on gains” (NSOG) (see e.g. Kolesár (2013) and Arora et al. (2021) for

versions of this result).7 Note that identification of E[Yi(t)] and E[Yi(t
′)] immediately

implies identification of unconditional average treatment effects E[Yi(t
′)− Yi(t)] as well.

NSOG says that treatment effects are mean independent of actual treatment, given

any realization of the instruments:

Assumption NOSG (no selection on gains). For any t, t′, t1, t2 ∈ T and z ∈ Z:

E[Yi(t
′)− Yi(t)|Ti = t1, Zi = z] = E[Yi(t

′)− Yi(t)|Ti = t2, Zi = z]

NSOG implies that if we consider any fixed treatment value 0 ∈ T , then E[Yi(t
′) −

Yi(0)|Ti = t, Zi = z] = E[Yi(t
′)− Yi(0)|Zi = z] for any t, z, which coupled with indepen-

dence (2) in turn implies that E[Yi(t
′) − Yi(0)|Ti = t, Zi = z] = E[Yi(t

′) − Yi(0)] := ∆t′ ,

where note that ∆t′ does not depend on z or t. This normalization against an arbitrary

treatment 0 ∈ T allows us to carry around one less index in our expressions.

C.1 Identification under NSOG

This subsection first shows that E[Yi(t)] can be point identified for each t ∈ T under

NSOG, given rich enough support of the instruments. The proof essentially follows that

of Arora et al. (2021), which adapts an argument from Kolesár (2013) to cases in which

the treatments T are not necessarily ordered.

NSOG implies that:

E[Yi − Yi(0)|Ti = t, Zi = z] = E[Yi(t)− Yi(0)|Ti = t, Zi = z] = ∆t

Averaging over the conditional distribution of Ti given Zi = z, we have by the law of

iterated expectations that

E[Yi − Yi(0)|Zi = z] =
∑
t∈T

P (Ti = t|Zi = z) ·∆t (15)

To now see that E[Yi(t)] can be identified under NSOG given rich enough instrument

support, let us assume that |Z| ≥ |T | and suppose that there exists a set of |T | instrument

values Z̃ ⊆ Z such that the |T | × |T | matrix Σ with entries Σzt = P (Zi = z, Ti = t) over

all z ∈ Z̃ is invertible, with P (Zi = z) > 0 for each z ∈ Z̃.

Eq. (15) can be re-written by multiplying both sides by P (Zi = z) as

E[{Yi − Yi(0)} · 1(Zi = z)] =
∑
t∈T

Σzt ·∆t

7Kolesár (2013) calls this “constant average treatment effects”, and does not use the term NSOG.
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for each z ∈ Z̃. Equivalently, using independence:

E[Yi · 1(Zi = z)] = P (Zi = z) ·E[Yi(0)] +
∑
t∈T

Σzt ·∆t

= P (Zi = z) ·E[Yi(0)] +
∑

t∈T ,t̸=0

Σzt ·∆t

=

{
P (Zi = z, Ti = 0) +

∑
t∈T ,t̸=0

Σzt

}
·E[Yi(0)] +

∑
t∈T ,t̸=0

Σzt ·∆t

= P (Zi = z, Ti = 0) ·E[Yi(0)] +
∑

t∈T ,t̸=0

Σzt ·E[Yi(0)] +
∑

t∈T ,t̸=0

Σzt ·∆t

= P (Zi = z, Ti = 0) ·E[Yi(0)] +
∑

t∈T ,t̸=0

Σzt ·E[Yi(t)]

=
∑
t∈T

Σzt ·E[Yi(t)]

using that ∆0 = 0 in the second equality. This yields a system of |T | equations in the

|T | unknowns E[Yi(t)] with identified coefficients Σzt. Given that Σ−1 is invertible, we

have then that

E[Yi(t)] =
∑
z∈Z̃

Σ−1
tz ·E[Yi · 1(Zi = z)] (16)

Note that if |Z| ≥ |T | there may be overidentification restrictions implied by NSOG, that

the RHS of (16) is the same for different possible choices of Z̃ ⊂ Z (note that Σ also

depends on the choice of Z̃). Furthermore, the RHS of (16) is the estimand of a two-

stage least squares regression of Yi on indicators for the mutually-exclusive treatments in

T (and no constant), instrumented by indicators for the mutually-exclusive instrument

values in Z̃.

C.2 How Theorem 2 does not cover NSOG

Since the result of the last section makes no assumption about which response types

can show up in the population, it is compatible with any selection model G ⊆ {0, 1}T Z
,

including for example the full powerset {0, 1}T Z
of possible response types T Z .

Whatever G is, unconditional means likeE[Yi(t)] correspond to the choice c = (1, . . . , 1)′

in R|G|. As long as G allows never-takers with respect to treatment t, this choice of c

will not lie in the rowspace of A[t]. The unrestricted selection model G = {0, 1}T Z
, for

example, features such never-takers for any t ∈ T . Thus the result of the last section

demonstrates that it is possible to achieve point identification of µtc without c ∈ rs(A[t]),

if we impose NSOG and that Σ−1 exists.

Note that the imposing of NSOG makes this identification not outcome-nonrestrictive.

However, it is illustrative to see where the proof of Theorem 2 breaks down in the case of

the NSOG identification result. Let NSOG denote the set of distributions P for which

Platent(P) satisfies NSOG. In this notation, the last section establishes that {θ(P) : P ∈
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(M ∩ NSOG) and ϕ(P) = Pobs} is a singleton for all Pobs that satisfy the rich support

condition that Σ−1 exists, which requires that there be no P ,P ′ ∈M ∩NSOG such that

ϕ(P) = ϕ(P ′) but θ(P) ̸= θ(P ′) and such that Σ−1 exists under P or P ′.

To see that there is no contradiction with Theorem 2, I below show that given a

P ∈ (M∩NSOG), the alternative distribution P ′ defined from it in the proof of Theorem

2 does not lie within NSOG when (1, . . . 1)′ /∈ rs(A[t]). In partcular, the remainder of this

section shows that if (1, . . . 1)′ /∈ rs(A[t]) for any given t ∈ T , the construction P ′ utilized

in the proof of Theorem 2 cannot lie in NSOG. If on the other hand (1, . . . 1)′ ∈ rs(A[t]),

then Eq. (12) in the proof of Theorem 2 shows that θ(P) = θ(P ′), consistent with θ

being identified.

Recall that the way in which the proof of Theorem 2 builds a candidate P ′ from the

actual distribution P is to construct from the set of true potential outcome CDFs G∗

[G∗(y)]t,g := P (Gi = g) ·FY (t)|G=g(y) a new set of such CDFs Gλ. For continuity with the

notation used in this discussion so far, let P ′ correspond to the collection of CDFsGλ, and

let us make explicit whether outcome expectations are with respect to the distribution

P or P ′,8. Then we have by integrating Eq. (9) that:

P (Gi = g)·EP ′ [Yi(t)|Gi = g] = P (Gi = g) ·EP [Yi(t)|Gi = g]

+ λ ·
∑
g′

[I − (A[t])+A[t]]g,g′ · P (Gi = g′) · {EP [Yi(t)|Gi = g′]−EP [Yi(t)|Gi = g∗]}

Then using independence (2):

EP ′ [Yi(t)− Yi(0)|Gi = g, Zi = z] = EP ′ [Yi(t)|Gi = g]−EP ′ [Yi(0)|Gi = g]

= EP [Yi(t)− Yi(0)|Gi = g]

+ λ ·
∑
g′

[I − (A[t])+A[t]]g,g′ ·
P (Gi = g′)

P (Gi = g)
· {EP [Yi(t)|Gi = g′]−EP [Yi(t)|Gi = g∗]}

− λ ·
∑
g′

[I − (A[0])+A[0]]g,g′ ·
P (Gi = g′)

P (Gi = g)
· {EP [Yi(0)|Gi = g′]−EP [Yi(0)|Gi = g∗]}

8The response type probabilities P (Gi = g) are the same for both P and P ′ so I leave this implicit for ease of exposition.
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Therefore, for any t1 ∈ T :

EP′ [Yi(t)− Yi(0)|Ti = t1, Zi = z] = EP′ [Yi(t)− Yi(0)|A[t1]
z,Gi

= 1, Zi = z]

=
∑
g

P (Gi = g|A[t1]
z,Gi

= 1) ·EP′ [Yi(t)− Yi(0)|Gi = g, Zi = z]

=
1

P (A
[t1]
z,Gi

= 1)

∑
g

P (Gi = g) ·A[t1]
z,g ·EP′ [Yi(t)− Yi(0)|Gi = g, Zi = z]

=
1

P (A
[t1]
z,Gi

= 1)
·
∑
g

P (Gi = g) ·A[t1]
z,g ·

[
EP [Yi(t)− Yi(0)|Gi = g]

1

1

+λ ·
∑
g′

[I − (A[t])+A[t]]g,g′ · P (Gi = g′)

P (Gi = g)
· {EP [Yi(t)|Gi = g′]−EP [Yi(t)|Gi = g∗]}

−λ ·
∑
g′

[I − (A[0])+A[0]]g,g′ · P (Gi = g′)

P (Gi = g)
· {EP [Yi(0)|Gi = g′]−EP [Yi(0)|Gi = g∗]}


= ∆t +

λ

P (A
[t1]
z,Gi

= 1)
·

∑
g′

[A[t1](I − (A[t])+A[t])]z,g′ · P (Gi = g′) · {EP [Yi(t)|Gi = g′]−EP [Yi(t)|Gi = g∗]}

−
∑
g′

[A[t1](I − (A[0])+A[0])]z,g′ · P (Gi = g′) · {EP [Yi(0)|Gi = g′]−EP [Yi(0)|Gi = g∗]}

 (17)

where ∆t := EP [Yi(t)− Yi(0)]. Note that we can simplify the denominator as P (A
[t1]
z,Gi

=

1) =
∑

g P (Gi = g) · A[t1]
z,g = [A[t1]P ]z, where P is a vector of response type probabilities

Pg = P (Gi = g). Since Σzt = P (Zi = z, Ti = t) = P (Zi = z) ·P (Ti = t|Zi = z) = P (Zi =

z) ·∑g P (Gi = g) · A[t]
z,g = P (Zi = z) · [A[t]P ]z. We can thus rewrite P (A

[t1]
z,Gi

= 1) as

Σzt/P (Zi = z).
For us to have P ′ ∈ NSOG, it must be the case that the RHS of (17) does not depend

on z or t1, and equals ∆′
t(λ) := EP ′ [Yi(t) − Yi(0)] for any P ∈ (M ∩ NSOG). In the

notation ∆′
t(λ) we make explicit that the value of EP ′ [Yi(t)− Yi(0)] could depend on λ.

In the case of t1 = t, expression (17) for ∆′
t(λ) simplifies to

∆t−
λ

Σzt
·P (Zi = z) ·

∑
g′

[A[t]−A[t](A[0])+A[0]]z,g′ ·P (Gi = g′) · {EP [Yi(0)|Gi = g′]−EP [Yi(0)|Gi = g∗]}

using that A[t](A[t])+A[t] = A[t]. Similarly, taking t1 = 0, we have that ∆′
t(λ) is equal to

∆t+
λ

Σzt
·P (Zi = z) ·

∑
g′

[A[0]−A[0](A[t])+A[t]]z,g′ ·P (Gi = g′) · {EP [Yi(t)|Gi = g′]−EP [Yi(t)|Gi = g∗]}

Note that for any P , there exists a small enough λ > 0 that P ′ ∈ M . For the above

equations to simultaneously hold for any such λ > 0, we must have for any z such that
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P (Zi = z) > 0:∑
g′

[A[0](I − (A[t])+A[t])]z,g′ · P (Gi = g′) · {EP [Yi(t)|Gi = g′]−EP [Yi(t)|Gi = g∗]}

+
∑
g′

[A[t](I − (A[0])+A[0])]z,g′ · P (Gi = g′) · {EP [Yi(0)|Gi = g′]−EP [Yi(0)|Gi = g∗]} = 0

(18)

for all P ∈M∩REG∩NSOG. Consider a distribution P for which PZ has full support Z,
and for which conditional average treatment effects take the separable form E[Yi(t)|Gi =
g] = λg +∆t, where ∆0 := 0. Defining λ̃g := λg − λg∗ , Eq. (18) reads in this case:∑

g′

[A[0](I−(A[t])+A[t])]z,g′ · P (Gi = g′) · λ̃g′ +
∑
g′

[A[t](I − (A[0])+A[0])]z,g′ · P (Gi = g′) · λ̃g′ = 0

Given that λ̃g′ can be freely chosen such that P (Gi = g′) · λ̃g′ = 1(g′ = g) for any

g ∈ G and PG, this can only be true when A[0](I − (A[t])+A[t]) = A[t](I − (A[0])+A[0])

entry by entry as matrices. We’ll now see that this can only be true for all t ∈ T if

c = (1, . . . 1)′ ∈ rs(A[t]) for all t ∈ T .

Note that the matrix (A[t])+A[t] is an orthogonal projector onto into rs(A[t]), and

(A[0)+A[0] is an orthogonal projector onto into rs(A[0]), and the required condition is

A[t]
z

′
(I − (A[0)+A[0]) = −A[0]

z

′
(I − (A[t)+A[t])

for all z ∈ Z, where the row-vector A
[t]
z

′
denotes row z of the matrix A[t], and similarly for

A[0]. Note that the row-vector A
[t]
z

′
(I− (A[0)+A[0]) belongs to the orthogonal complement

of rs(A[0]) in R|G|. It is thus orthogonal to any row of A[0], including A
[0]
z

′
. But −A[0]

z

′
(I−

B) cannot be orthogonal to cz unless A
[0]
z

′
(A[t)+A[t] = A

[0]
z

′
so that −A[0]

z

′
(I − (A[t)+A[t])

is the zero vector. In that case, note that A
[t]
z

′
(I − (A[0)+A[0]) is the zero vector as well,

so we have that A
[t]
z

′ ∈ rs(A[0]) and A
[0]
z

′ ∈ rs(A[t]). Compiling over all z ∈ Z, we have

that A[0] and A[t] have the same row-space. Repeating this argument over all t ∈ T , we

have that rs(A[t]) is the same for all t ∈ T .

Now let us see that this in turn implies that (1, . . . 1)′ ∈ rs(A[t]). Note that
∑

t′∈T A
[t′]
z

′
=

(1, . . . 1)′ for any z, because all response types take one and only one treatment when

Zi = z. But since A
[t′]
z

′ ∈ rs(A[t′]), it must also be in the rowspace of A[t]. Since

A
[t′]
z

′ ∈ rs(A[t]) for each t′, the linear combination
∑

t′∈T A
[t′]
z

′
= (1, . . . 1)′ is also in

rs(A[t]). Thus we have shown that P ′ ∈ NSOG implies that (1, . . . 1)′ ∈ rs(A[t]) for all t.

C.3 Further examples to which Theorem 2 does not apply

Another example of an IV identification result that is not covered by Theorem 2 is the

“compliers–defiers” result of de Chaisemartin (2017) that the local average treatment

effect among a subset of compliers is identified in a setting with a binary treatment and

instrument, if there are more compliers than defiers and a subset of the compliers have the
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same average treatment effect as the defiers. Again, this additional assumption places

restrictions on the joint distribution of response types Gi and potential outcomes Ỹi.

Further, the identified parameter conditions on an event (a particular subgroup of the

compliers) that is less course than the groups Gi that are defined simply by counterfactual

selection behavior, so does not fit the form ∆t,t′
c = µt

′
c −µtc that Theorem 2 and Proposition

1 speak to. Similar considerations apply to recent results of (Comey et al., 2023) that

show identification of the local average treatment effect among “supercompliers” in a

setting in which Y = T = Z = {0, 1}, where the supercompliers are defined as the

subset of compliers that have a strictly positive treatment effect. This model imposes

monotonicity in the outcome equation, and the conditioning event for the supercomplier

LATE conditions both on selection behavior and a property of outcomes, namely that

Yi(1) > Yi(0).

Another type of identification result that is not covered by Theorem 2 above—although

it is outcome-nonrestrictive—is identification of a treatment effect parameter that does

not maintain two fixed treatment values t and t′ across all units included in the parameter.

An example of this kind arises in Kline and Walters (2016), in which the identified causal

parameter compares the effect of Head Start to one of two next-best alternatives (either

traditional pre-school or no pre-school). This estimand combines two response types for

which this next-best alternative is generally different. See Section F.0.2 for details.

When c /∈ rs(A[t]), Theorem 2 establishes that the parameter µtc is not point identified

in an outcome-nonrestrictive manner. However, the data may still provide identifying

information about the value of µtc if auxiliary conditions are maintained, for example

that the support of Yi is bounded with known bounds. Appendix I considers partial

identification of µtc in such settings, and also relates the results of this paper to recent

results by Bai et al. (2024), who focus on bounding the ATE and unconditional means

in particular.

D Relationship to recent work

This section discusses how the results of this paper relate to recent results characterizing

identification in IV models by Navjeevan, Pinto and Santos (2023) (NPS) as well as

Heckman and Pinto (2018).

D.1 Relationship to Navjeevan, Pinto and Santos (2023)

NPS consider unconditional expectations of functions taking the form E[ℓ(Ỹi, Gi)], which

in general are allowed to mix potential outcomes and potential treatments, as well as

covariates. NPS do not define or explore in depth a notion of “outcome-nonrestrictive”

identification, as their framework allows the researcher to impose restrictions on outcomes

of the types discussed in Section C.3.

NPS do mention conditional average treatment effects as a motivation for specializing
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their general result to cases in which ℓ takes the separable form Yi(t) · c(Gi), for some

t ∈ T (see their Section 4.4). In these separable cases, NPS derive results that are related

to but distinct from my Theorems 1 and 2 (which were obtained independently).

In particular, Corollary 4.4 of NPS assumes discrete instruments and supposes that

no additional restrictions are placed on the distribution of unobservables aside from the

existence of finite first moments. This model is thus essentially the same as the model

M (see Footnote 2) I use to define outcome-nonrestrictive identification. From Corollary

4.4, NPS derive two important implications. Firstly, they find that the conditions on

function c(·) for identification of E[Yi(t) · c(Gi)] are equivalent to those for identification

of E[f(Yi(t)) ·c(Gi)] for any bounded function f(·). This implies that E[f(Yi(t)) ·c(Gi)] is

identified if and only if P (c(Gi) = 1) is (take f(·) = 1). Second, NPS find that a moment

of the form E[f(Yi(t)) · c(Gi)] is identified if and only if the function c(g) can be written

as E[κ(Zi) ·1(Ti = t)|Gi = g] for some function κ. Though NPS do not characterize it in

this way, one can see that this is equivalent to c ∈ rs(A[t]) by applying the law of iterated

expectations over Zi.
9

c ∈ rowspace(A[t])

E[Yi(t) · c(Gi)] identified

P (c(Gi) = 1) identified

E[Yi(t)|c(Gi) = 1] identified=⇒

NPS C4.4

NPS C4.4

NPS C4.4

Figure 2: On left, ⇐⇒ symbols (in purple) depict implications Corollary 4.4 of NPS, for parameters of the
form E[Yi(t)|c(Gi) = 1]. On right, =⇒ symbol (in black) depicts an implication of E[Yi(t)|c(Gi) = 1] =
E[f(Yi(t))·c(Gi)]

P (c(Gi)=1)
.

These results of NPS are summarized in Figure 2. Taken together, they imply Theorem

1 but not Theorem 2 of this paper. Since E[Yi(t) · c(Gi)] and P (c(Gi) = 1) are both

identified when c is in the rowspace of A[t], the results of NPS readily establish that

E[Yi(t)|c(Gi) = 1] is identified provided that P (c(Gi) = 1) > 0, in the case of a binary

valued function c. However, their results do not establish that the conditional expectation

E[Yi(t)|c(Gi) = 1] is only identified when c ∈ rs(A[t]) holds. Instead, they show that

E[Yi(t) · c(Gi)] and P (c(Gi) = 1) can only be identified separately if c ∈ rs(A[t]) holds.

By contrast, Theorem 2 establishes the necessary direction of c ∈ rs(A[t]) for when

E[Yi(t)|c(Gi) = 1] is identified (given discrete instruments), as depicted in Figure 3 below.

While Theorem 1 establishes that E[Yi(t) · c(Gi)], P (c(Gi) = 1) and E[Yi(t)|c(Gi) =

1] are all identified if c belongs to the rowspace of A[t], Theorem 2 establishes that

E[Yi(t)|c(Gi) = 1] is only identified if c belongs to the rowspace of A[t].

Beyond Theorem 2, the present paper also differs from NPS by its exploration of the

9The closest way in NPS of stating this condition to c ∈ rs(A[t]) seems to be Eq. (28) from their discussion of the

selection model of Kline and Walters (2016). In my notation their Eq. (28) reads as minα∈R|Z|

(
c(g)−

∑
z αzA

[t]
zg

)2
= 0,

which is equivalent to c ∈ rs(A[t]).
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c ∈ rowspace(A[t])

E[Yi(t) · c(Gi)] identified

P (c(Gi) = 1) identified

E[Yi(t)|c(Gi) = 1] identified
Thm. 1

Thm. 2

Thm. 1

Thm. 1

Figure 3: Implications of Theorems 2 (in blue) and 1 (in orange) of this paper.

implications of c ∈ rs(A[t]) for the identification of conditional average treatment effects,

in the case that c is binary-valued. This requires finding functions c that belong to the

intersection of rowspaces of A[t] and A[t′] for t′ ̸= t together with the unit cube, as we

saw in Section 4.2. This analysis shows, in the positive direction (Theorem 1), how

c ∈ rs(A[t]) synthesizes many identification results for treatment effects from the litera-

ture (Appendix G). In the other direction (Theorem 2), this allows one to exhaustively

catalog identification results for a given support of Ti and Zi, as described in Section 4.

An illustrative example: To appreciate the difference between E[Yi(t)|c(Gi) = 1] being

identified and E[Yi(t) · c(Gi)] being identified, consider a setting with a binary treatment

and binary instrument in which G allows all four response types: always-takers, never-

takers, compliers and defiers. The choice model G is represented by the matrix A = A[1]:

n.t. comp. def. a.t.
z = 0 0 0 1 1
z = 1 0 1 0 1

Since c = (0, 1, 0, 0)′ does not belong to the rowspace of A, treatment effects or counter-

factual means among compliers are not outcome-nonrestrictive identified. Similarly, the

proportion of compliers is not identified.10 However, it is straightforward to see that if

one maintains the assumption that compliers and defiers share the same average treat-

ment effect, then the average treatment effect among compliers becomes identified and

is equal to the conventional Wald ratio (Angrist et al., 1996) (E[Yi|Zi = 1] − E[Yi|Zi =
0])/(E[Di|Zi = 1] − E[Di|Zi = 0]). This example demonstrates that a parameter like

E[Yi(1) − Yi(0)|Gi = comp.] can in general be identified even when P (Gi = comp.) and

E[{Yi(1)−Yi(0)}·1(Gi = comp.)] are not, if restrictions are imposed on outcomes.11 Theo-

rem 2 shows that this however cannot occur when identification is outcome-nonrestrictive.
10The difference E[Di|Zi = 1] − E[Di|Zi = 0] instead identifies P (Gi = comp.) − P (Gi = def.). We can also identify

the quantities {P (Gi = comp.) + P (Gi = a.t.)}, {P (Gi = def.) + P (Gi = a.t.)}, {P (Gi = comp.) + P (Gi = n.t.)} and
{P (Gi = def.) + P (Gi = n.t.)}, but not P (Gi = comp.) + P (Gi = def.).

11Note further that although we can also write E[Yi(1)−Yi(0)|Gi = comp.] =
E[Yi(1)·1(Gi=comp.)]
E[1(Gi=comp.)]

− E[Yi(0)·1(Gi=comp.)]
E[1(Gi=comp.)]

none of the quantities E[Yi(1) · 1(Gi = comp.)], E[Yi(0) · 1(Gi = comp.)], or E[1(Gi = comp.)] are identified in isolation,
even with the outcome restriction that E[Yi(1)− Yi(0)|Gi = comp.] = E[Yi(1)− Yi(0)|Gi = def.].
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D.2 Relationship to Heckman and Pinto (2018)

Theorem T-2 of Heckman and Pinto, 2018 (henceforth HP) states, in my notation, that

the following hold:

1. If c′(I−(A[t]+A[t]) = 0 for a vector c ∈ R|G|, then
∑

g cg ·E[Yi(t)|Gi = g] is identified.

2. If c′KT = 0 for a vector c ∈ R|G|, then
∑

g cg · P (Gi = g) is identified.

where A[t]+ is the Moore-Penrose pseudo-inverse of the matrix A[t], and KT = I− (A+A)

with A a matrix that stacks A[t] row-wise over the t ∈ T .

A property of the Moore-Penrose pseudo inverse is that the matrix (A[t]+A[t]) projects

onto the rowspace of A[t], and similarly (A+A) projects onto the rowspace of A. The

condition c ∈ rs(A[t]) implies that c ∈ rs(A), and thus combining elements 1. and 2.

above we have by Theorem T-2 that c ∈ rs(A[t]) implies that both the numerator and the

denominator of the RHS of Eq. (4),
∑

g cg ·E[Yi(t)|Gi=g]∑
g cg ·P (Gi=g)

, are identified. Thus my Theorem

1 for a parameter of the form µtc can be seen as a corollary of Theorem T-2 of HP, in

the case that the vector c is binary-valued so that
∑

g cgE[Yi(t)|Gi=g]∑
g cgP (Gi=g)

can be interpreted

as a conditional counterfactual mean µtc = E[Yi(t)|c(Gi) = 1] (when c ∈ R|G| generally,∑
g cgE[Yi(t)|Gi=g]∑

g cgP (Gi=g)
may not have an interpretation as a single conditional mean). While HP

apply their Theorem T-2 to consider parameters of the form µtc in the specific setting of

the LATE model, they do not appear to highlight the general importance of binary-valued

c for their Theorem T-2.

E Algorithms to enumerate outcome-nonrestrictive identifica-

tion results

Algorithm 1:

Begin with a given instrument support Z and set of treatments T , and t′ ̸= t in T :

1. Loop over all possible choice models G given Z and T . There are 2|G
m|=2|T ||Z|

of these, where we let Gm denote the set of all |T ||Z| conceivable response types

(mappings from Z to T )

2. Given the results of Section 4.2, find a basis for the left null-space ns(A[t′,t])

of A[t′,t] :=

[
A[t′]

A[t]

]
via a QR decomposition of A[t′,t]. Represent this basis by a

k × 2|Z| matrix N [t′,t], where k is the dimension of ns(A[t′,t]). For any vector

α ∈ ns(A[t′,t]′), let α1(α) = [I|Z|,0|Z|×|Z|]α be its first |Z| components, and let

C[t,t′] = {A[t′]′α1(α) : α ∈ ns(A[t′,t]′)} be the subspace of R|G| corresponding to

these α. C[t,t′] is a k-dimensional vector space with a basis represented by the

k × |G| matrix B[t′,t] := A[t′]′N [t′,t][I|Z|,0|Z|×|Z|].

3. If k ≥ 1, we now determine the intersection of C[t,t′] with the unit cube. This
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is done by looping over the 2|G|−1 non-zero vectors c in {0, 1}|G|, and checking

whether c ∈ C[t,t′] (when B has full row rank, this can be done e.g. by checking

that B[t′,t]+B[t′,t]c = c, where B+ is the Moore-Penrose pseudo-inverse of B).

Note that since the computational problem as a whole is symmetric with respect to permu-

tations of the (arbitrary) treatment labels, we can focus on binary collections containing

the two treatment values t′ = 1 and t = 0, and then generate new binary collections by

then applying all re-labelings to the treatment values.

|T | |Z| |C|Z|| # α’s (i.e. (|C|Z||)2|Z|) |Gm| = |T ||Z| # selection models (i.e. 2|G
m|)

2 2 3 81 4 16
3 2 3 81 8 256
2 3 7 117,649 9 512
3 3 7 117,649 27 1.34·108
4 3 7 117,649 81 2.42·1024
4 4 16 4.29 ·109 256 1.16·1077

Table E.1: Comparison of the computational complexity of Algorithms 1 and 2

Table E.1 compares the complexity of Algorithms 1 and 2. It does not account for the

full computational cost of running each algorithm (e.g. computations within each choice

of α in the case of Algorithm 2, or within a selection model in the case of Algorithm

1), but it is nevertheless clear that Algorithm 1 quickly becomes infeasible, while there

remains hope for Algorithm 2 with |Z| = |T | = 4.

Algorithm 2:

Begin with a given instrument support Z and set of treatments T .

Part One: generate binary collections by α

1. Loop over all vectors 2 · |Z|-component vectors α having components in the

set C|Z| (there are (|C|Z||)2|Z| of these)

2. With t′ = 1 and t = 0 fixed (as with Algorithm 1), construct the matrix

A[t′,t] :=

[
A[t′]

A[t]

]
where now each of A[t′] and A[t] representing the full set of

conceivable response types Gm (having |Gm| = |T ||Z| columns). Compute for

each α the row vector α′A[t′,t].

3. Consider the columns g of α′A[t′,t] that take the value of 0, and call this set

G0(α). Note that G0(α) is the set of g for which [α1(α)
′A[t′]]g = [α0(α)

′A[t]]g

(using the notation introduced in Algorithm 1).

4. Now find the set G(α) ⊆ G0(α) such that [α1(α)
′A[t′]]g ∈ {0, 1} for all g ∈ G(α).
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Only response types g in the set G0(α) can exist in a binary collection having

α[t] = α0(α) and α[t′] = α1(α). Further, the set G(α) is maximal (given α)

in the sense that we get a binary collection from α for t, t′ for any selection

model G ⊆ G(α).

5. Some of the binary collections (indexed by α) constructed in this way will be

redundant in the following sense. Define c(α) = α1(α)
′A[t′], and let vectors α

and β be two 2|Z|-component vectors such that c(α) = c(β) but G(α) ⊂ G(β).
Then β delivers the same largest complier group as α but while allowing for a

strictly larger selection model. In this case remove α, since the identification

result for β nests that of α. If c(α) = c(β) as above and α and β deliver the

same maximal selection model, i.e. G(α) = G(β), then drop whichever vector

has more non-zero elements than the other, i.e. drop α if ||α||0 > ||β||0 where

|| · ||0 indicates the ℓ0 norm. If ||α||0 = ||β||0, then keep whichever vector has

a smaller ℓ2 norm is kept (this choice is arbitrary).

Part Two: organize by selection model and pare redundancies

1. Extend the binary collections obtained in Part One of the algorithm for (t′, t) =

(1, 0) to all other choices of t′ > t. Binary collections can now be indexed by

the tuple (t′, t, α). Any (1, 0, α) obtained in Part One above yields a binary

collection for (t′, t, α) with the same vector α, with the response types suitably

re-defined based on relabeling the treatment values.

2. Now collect all binary combinations that share a maximal selection model G,
which based on the last step may allow treatment effects that contemplate

differing treatment contrasts (e.g. treatment value 2 vs. 0 or treatment 1 vs.

0) to be associated with the same selection model.

3. We now have a list of selection models G that admit of at least one binary

collection, and for each such G a list of these binary collections. Recall that

each selection model can be expressed by the matrix A. To distill out selection

models with a unique structure, eliminate any redundancies where one selec-

tion model can be transformed into another by re-labeling treatment values, or

by permuting the labels of the instrument values and re-ordering the columns

of A.

F Illustrative examples from the brute force search

F.0.1 Binary treatment and binary instrument

With a binary treatment and binary instrument, the brute-force search reveals that there

are exactly two choice models that admit of outcome-nonrestrictive identification of treat-
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ment effects. The first is the classic LATE model of Imbens and Angrist (1994) (Example

1), and the second is Example 2 from the main text.

Consider first Example 1. Row reduction of the matrices A[1] and A[0] given in Example

1 in Section 3 yields:

rs(A[1]) = span


0

1

0

 ,

0

0

1


 and rs(A[0]) = span


1

0

0

 ,

0

0

1




This leads to the two planes depicted in Figure 1.

Remark: In the binary-binary LATE model, the rank k of A[t] is k = |Z| = 2 for either

t = 0 or t = 1, and in either case |rs(A[t]) ∩ {0, 1}n| = 2. This does not meet the upper

bound of 2k = 4 from Melo and Winter (2019) (see Footnote 5). However the result does

imply that there can be no more than 2|Z| binary combinations, even though typically

2|Z| < 2|G| and there are 2|G| potential values of c to consider ex-ante.

In the case of example 2,12 the matrix A becomes:

compliers defiers
z = 0 0 1
z = 1 1 0

The rowspaces of A[1] and A[0] are the same and both span R2: rs(A[1]) = rs(A[0]) =

span

{(
1

0

)
,

(
0

1

)}
. Thus, given the results of Section 3, we know that treatment effect

parameters that are outcome-nonrestrictive identified correspond to any non-zero vertex

of the unit cube in R2, as depicted in Figure 4 below. Note that by Theorem 1, E[Di|Zi =
1] and 1−E[Di|Zi = 0] are both measures for the same population parameter P (c(Gi) =

1) = P (i is complier). Thus E[Di|Zi = 1] = 1 − E[Di|Zi = 0] can be used as an

overidentification restriction for this choice model (there is no such restriction for the

LATE model that simply rules out defiers).

F.0.2 3 treatments, binary instrument

Now suppose that the instrument is binary and T = {0, 1, 2}. With no restrictions on

selection behavior, there are 3|Z| = 9 conceivable response types. Table 1 reports that

in this case there are five selection models that afford a total of five distinct outcome-

nonrestrictive identification results. These results are all listed in Appendix K.

As an example that may be empirically relevant, consider a selection model that has

T (z) increasing in z, but rules out always-1 takers and individuals that skip from t = 0

12Goff and Lee (2024) apply this choice model to study the effect of an NFL team deferring the kickoff on the game
outcome, with the kickoff coin flip that decides which team is given the option to defer as the instrument. If it is common
knowledge between the teams whether receiving the kickoff is beneficial in that particular game, then a simple model of
optimizing play would predict that each game will either be a “complier” or a “defier”.
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defiers

compliers

rowspace(A [0]) = rowspace(A [1]) =
R2

Figure 4: A geometric depiction of the model with compliers and defiers only. The vectors c = (0, 1)′, c = (1, 0)′

and c = (1, 1)′ all belong to both rs(A[1]) and rs(A[0]) and hence the LATE for either response type or the ATE
are identified. As in Figure 4, the split-shading of a given vertex (red/green in color) of the unit square indicates
that it lies in rs(A[0]) ∩ rs(A[1]) and is not equal to the zero vector.

to t = 2 when z is increased from 0 to 1. This restriction leaves four response types:

always-0 takers, always-2 takers, individuals who move from treatment 0 to treatment

1, and individuals who move from treatment 1 to treatment 2. SM.3.2.1 reported in

Appendix K reveals that two treatment effects ∆t,t′
c are identified in this choice model.

For example, the quantity

E[Yi ·D[1]
i |Zi = 1]

E[D
[1]
i |Zi = 1]

− E[Yi ·D[0]
i |Zi = 0]−E[Yi ·D[0]

i |Zi = 1]

E[D
[0]
i |Zi = 0]−E[D[0]

i |Zi = 1]

corresponds to the binary collection with α0 = (0, 1)′ and α1 = (1,−1)′, and identifies

E[Yi(1) − Yi(0)|Ti(0) = 0, Ti(1) = 1]. The treatment effect E[Yi(2) − Yi(1)|Ti(0) =

1, Ti(1) = 2] is identified by a similar estimand.

This selection model could represent a setting in which t = 2 represents passing a test

outright, t = 1 passing the test “provisionally”, and t = 0 failing. Suppose that a reform

implemented for some schools lowers the score threshold τo for an outright pass to the

old threshold τp for a provisional pass, while further lowering τp, as depicted below:

(z = 0) τp(0) τo(0)
(z = 1) τo(1)τp(1)

Students will then belong to one of the four types described above, depending on their

test score. The quantity E[Yi(1)−Yi(0)|Ti(z) = z] represents the average effect of moving

from a fail to a provisional pass among the students who are brought in to a provisional

pass by the grading reform.

The selection model of Kline and Walters (2016): Another observation from the |T | =
3, |Z| = 2 setting is that the selection model of Kline and Walters (2016) (KW) does not

appear in the catalog of Appendix K. KW study a setting in which the binary instrument

is an offer to choose t = 2, while treatments t = 0 and t = 1 are always available even
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if z = 0. On the grounds of revealed preference, KW impose that Ti(1) ̸= Ti(0) =⇒
Ti(1) = 2 which results in a selection model with five response types. KW show that the

parameter E[Yi(2)− Yi(Ti(0))|Ti(1) = 2, Ti(0) ̸= 2] is then identified. The quantity Ti(0)

represents an individual’s next preferred alternative to t = 2, which may vary across those

i for whom Ti(1) = 2, Ti(0) ̸= 2. As a result, this parameter does not fit the form of the

general family of treatment effect parameters ∆t,t′
c introduced in Section A. Indeed, the

brute force search confirms that unfortunately no parameters of the form ∆t,t′
c between

two fixed treatmets t and t′ are identified in the KW selection model.

F.0.3 Binary treatment, 3 instrument values

Suppose now that treatment is binary and Z = {0, 1, 2}. Table 1 reports that in this

case there are 11 selection models that afford a total of 30 distinct outcome-nonrestrictive

identification results, listed in Appendix K. One observation that emerges when we extend

the analysis to instruments that take more than two values is that, there now exist binary

collections that require coefficients αz that do not belong to the set {−1, 0, 1}. Although
this is entirely consistent with Proposition 2 for |Z| ≥ 3, a reasonable conjecture ex-

ante might have been that αz ∈ {−1, 0, 1} always holds, given the preponderance of this

pattern in known identification results (see for example all of the results surveyed in

Appendix G).

For the sake of exposition, let us consider a “judge-IV” setting in which defendants

i receive a bail decision from a randomly-assigned judge z, with t = 1 indicating that

the defendent remains incarcerated and t = 0 that they are released on bail. Suppose

that the defendants are one of three types g ∈ G (typically unobserved to the researcher),

comprising the columns of the table below. “Prepared” defendants dress formally and

speak politely in their bail hearing, perhaps also presenting evidence that they are not a

danger to the community. “Unprepared” defendants do not make such efforts. A third

category of “flight-risk” defendants are thought to be particularly capable of and likely

to fail to appear for trial if they are granted bail (while this is not true of the first two

groups, e.g. due to strong personal ties to the jurisdiction or insufficient financial means

to leave town).

prepared unprepared flight-risk
z = 0 (standard) 0 0 1
z = 1 (character) 0 1 0
z = 2 (skeptics) 1 0 1

The above table summarizes selection behavior when the judges also belong to one of

three types, represented across rows. “Standard” judges are only concerned with failure

to appear, and keep only the flight-risk defendants incarcerated. “Character” judges

instead attempt to infer the risk of a defendant to public safety on the basis of the

defendant’s presentation and arguments to their character made in the bail hearing, but
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do not attempt to assess whether the defendant is likely to skip town. “Skeptic” judges

are also sensitive to judgments about presentation, but in the opposite direction: they are

suspicious of defendants precisely when they seem to be making a case that they are not

dangerous. They deny bail for the prepared defendants, and also deny bail for flight-risk

defendants.13

Note that this model does not satisfy the strong LATE monotonicity assumption

typically invoked in judge-IV settings, which has been challenged on empirical grounds

(Frandsen et al., 2023; Sigstad, 2023). If there were no skeptic (z = 2) judges, then this

model would instead consist of compliers, defiers, and never-takers, which we have already

seen permits no outcome-nonrestrictive identification results for treatment effects. How-

ever, the presence of the skeptics aids here in identification, as we can then identify the av-

erage effect of incarceration among two groupsE[Yi(1)−Yi(0)|Gi ∈ {unprepared, flight-risk}]
by E[YiDi|Zi=0]+E[YiDi|Zi=1]

E[Di|Zi=0]+E[Di|Zi=1]
− −E[YiDi|Zi=0]+E[YiDi|Zi=1]+2·E[YiDi|Zi=2]

−E[Di|Zi=0]+E[Di|Zi=1]+2·E[Di|Zi=2]
, corresponding to the bi-

nary collection with α1 = (1, 1, 0) and α0 = (−1, 1, 2)′.14 Note that using this result

requires judge types to be observable, or estimable from judges each seeing many cases.

F.0.4 3 treatment values, 3 instrument values

In the case of Z = T = {0, 1, 2}, the brute force approach returns 251 distinct binary

collections spread across 251 unique selection models. These results nest for example

two identification results presented in Kirkeboen, Leuven and Mogstad (2016) (KLM).

KLM consider an unordered treatment which represents a student’s field of study, where

students are “assigned” to a given field, i.e Zi = j represents an incentive to choose field

j. Proposition 2 of KLM presents three special cases in which a two stage least squares

estimand with indicators for treatments 1 and 2 instrumented by indicators for Zi = 1

and Zi = 2 recovers causally interpretable coefficients. While their first result (restricting

treatment effects to be homogeneous) is not outcome-nonrestrictive, the other two results

are.

For example, the second result in KLM Proposition 2 shows that if preferences are

further restricted so that D
[2]
i (1) = D

[2]
i (0) and D

[1]
i (2) = D

[1]
i (0) for all i (an offer to

one program does not affect whether or not the student chooses the other program),

then E[Yi(1) − Yi(0)|D[1]
i (1) > D

[1]
i (0)] and E[Yi(2) − Yi(0)|D[2]

i (2) > D
[2]
i (0)] are each

identified.15 Let us consider how the first of these results appears in the comprehensive

search (the second result proceeds similarly). Upon a relabeling of treatment/instru-

ment values and removing one response type,16 selection model SM.3.3.63 in the cat-

13This selection model is equivalent to SM.2.3.4 in Appendix K, after permuting instrument/treatment labels. Note that
this model is merely illustrative: more types and nuance in their definitions could add some realism.

14A coefficient of two is inevitable for t = 0, since we need α1 = 1 (using the αz notation) for c(flightrisk) = 0,
α0 = −α1 to get c(prepared) = 0, but can only achieve c(unprepared) = 1 if α2 + α1 = 1.

15Throughout, KLM also maintain a version of unordered monotonicity (cf. Heckman and Pinto 2018) in which D
[1]
i (1) ≥

D
[1]
i (0) and D

[2]
i (2) ≥ D

[2]
i (0): an offer of admission never causes a student to select out of that field.

16In particular, label the treatments (0, 1, 2) as (1, 0, 2), swap instrument values 1 and 2, and drop column 6. All results
for the 3× 3 case are enumerated in a working paper version of this paper: https://arxiv.org/abs/2406.02835.
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alog amounts to the following: A =

0 0 0 0 1 2 0

0 1 0 1 1 2 2

0 0 2 2 1 2 1

. This selection model has

seven response types, whereas the choice model considered by KLM contains only the

first six columns of A. In the larger selection model with all seven groups, the treat-

ment effect E[Yi(1) − Yi(0)|Ti(1) ̸= Ti(0)] is identified by the binary collection with

α0 = (−2, 1, 1)′ and α1 = (1,−1, 0)′.17 Thus, we have seen that KLM’s choice model

can be relaxed to allow an additional response type, with the same estimand that

identifies E[Yi(1) − Yi(0)|D[1]
i (1) > D

[1]
i (0)] in their more restrictive model identifying

E[Yi(1)− Yi(0)|Ti(1) ̸= Ti(0)] more generally. Code available from the author allows one

to check in general whether a given selection model can be relaxed in this way, using the

catalog of identification results (available for |T |, |Z| ≤ 3).

F.1 4 treatment values, 4 instrument values: spillover effects within pairs

Although the |T | = |Z| = 4 case is not included in the brute-force search of Table 1

(due to the computational burden), it remains easy to check for outcome-nonrestrictive

identification in any given choice model using the results of Section 3. This section

presents an alternative application in the 4×4 case to supplement the study of interaction

effects from Section 5.

Consider a setting in which each unit i has one “neighbor” n(i), and we allow for

violations of SUTVA within neighbor pairs (i, n(i)). This can be accommodated by

expanding the set of treatments T to accommodate values of such pairs, so that Yi =

Yi(Ti, Tn(i)) where Tn(i) is the treatment of the neighbor of unit i, indexed by n(i). I

consider the case in which treatment T itself is binary, so that T̃i := (Ti, Tn(i)) may take

one of four values (0, 0), (1, 0), (0, 1), (1, 1). Following the notation in Section 5, we denote

these pair-level “treatments” as 0, A,B,C, where T̃i = 0 indicates that neither unit is

treated, T̃i = A that only unit i is treated, T̃i = B that only their neighbor is treated,

and T̃i = C that both i and their neighbor is treated.

For each i, let Zi be a binary instrument that reflects whether i is “assigned” to receive

treatment. See Kang and Imbens (2016) and Vazquez-Bare (2023) for related setups. Let

T̃i(z, z
′) reflect the treatments for the pair as a function of treatment assignments (z, z′)

for the pair. Let Z̃i := (Zi, Zn(i)) be the pairs realized treatment assignment, which can

take any of four counterfactual values z ∈ Z̃ = {0, A,B,C}. I maintain throughout two

assumptions about selection: i) first, that the Ti component of T̃i(z, z
′) only depends on

z, and that the Tn(i) component of T̃i(z, z
′) only depends on z′; and ii) secondly, that

each selection uptake is monotonic such that Ti(1) ≥ Ti(0), where we write Ti(z, z
′) as

(Ti(z), Yn(i)(z
′)).

17Accordingly, E[Yi(1) − Yi(0)|Ti(1) ̸= Ti(0)] =
E[Yi·D

[1]
i |Zi=2]+E[Yi·D

[1]
i |Zi=1]−2·E[Yi·D

[1]
i |Zi=0]

E[D
[1]
i |Zi=2]+E[D

[1]
i |Zi=1]−2·E[D

[1]
i |Zi=0]

−

E[Yi·D
[0]
i |Zi=1]−E[Yi·D

[0]
i |Zi=0]

E[D
[0]
i |Zi=1]−E[D

[0]
i |Zi=0]

. Identification of E[Yi(2)− Yi(0)|Ti(2) ̸= Ti(0)] is analogous.
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These restrictions leave nine response types, enumerated in the table below:

assigned ↓ (nt,nt) (cm,cm) (cm,nt) (nt,cm) (at,at) (at,cm) (cm,at) (nt,at) (at,nt)

0=(0,0) 0 0 0 0 C A B B A
A=(1,0) 0 A A 0 C A C B A
B=(0,1) 0 B 0 B C C B B A
C=(1,1) 0 C A B C C C B A

Given a function c(·), the local average direct effect of one’s own treatment on their

outcome is:

LADTE := E[Yi(1, Zn(i))− Yi(0, Zn(i))|c(Gi) = 1]

= P (Zn(i) = 1) ·E[Yi(C)− Yi(B)|c(Gi) = 1] + P (Zn(i) = 0) ·E[Yi(A)− Yi(0)|c(Gi) = 1]

using that P (Zn(i) = 1|c(Gi) = 1) = P (Zn(i) = 1) by independence.

Similarly, the local average spillover (indirect) effect is

LASTE := E[Yi(Zi, 1))− Yi(Zi, 0)|c(Gi) = 1]

= P (Zi = 1) ·E[Yi(C)− Yi(A)|c(Gi) = 1] + P (Zi = 0) ·E[Yi(B)− Yi(0)|c(Gi) = 1]

Since the distributions of Zi and Zn(i) are identified, we can then point identify the

LADTE and the LASTE provided that we can identify µct for all of t ∈ {0, A,B,C}. An
application of Theorems 1 and 2 shows that this is possible without restricting outcomes

in the above selection model if and only if c(g) = 1(g = cm, cm).

This can be shown by direct enumeration of the 29 possible functions c : G → {0, 1}.
The vector forms αt of the resulting coefficient functions α[t](z) are:

α0 = (+1,−1,−1,+1)′, αA = (−1,+1,+1,−1)′

αB = (−1,+1,+1,−1)′, αC = (+1,−1,−1,+1)′

Similar to the case of complementarities, the selection model therefore implies the overi-
dentification restriction that

p := P (Ti = 0|Zi = (1, 1))− P (Ti = 0|Zi = (0, 1))− P (Ti = 0|Zi = (1, 0)) + P (Ti = 0|Zi = (0, 0))

= −P (Ti = A|Zi = (1, 1)) + P (Ti = A|Zi = (0, 1)) + P (Ti = A|Zi = (1, 0))− P (Ti = A|Zi = (0, 0))

= −P (Ti = B|Zi = (1, 1)) + P (Ti = B|Zi = (0, 1)) + P (Ti = B|Zi = (1, 0))− P (Ti = B|Zi = (0, 0))

= P (Ti = C|Zi = (1, 1))− P (Ti = C|Zi = (0, 1))− P (Ti = C|Zi = (1, 0)) + P (Ti = C|Zi = (0, 0))

for some value p ∈ [0, 1], which identifies P (g = cm,cm).
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G Recovering existing identification results as binary combina-

tions and collections

The notions of binary combinations and binary collections reveals a common structure

among several existing IV point identification results.

G.1 Example 1: LATE monotonicity and marginal treatment effects

Here I extend my analysis of the monotonicity assumption of Imbens and Angrist (1994) to

cases with more than two instrument values. Treatment remains binary T = {0, 1}. Since
D

[0]
i (z) = 1 − D

[1]
i (z), we can focus on the single treatment indicator Di(z) := D

[1]
i (z).

Imbens and Angrist (1994) assume that:

Assumption IAM. For all z, z′ ∈ Z: Di(z) ≥ Di(z
′) for all i or Di(z) ≤ Di(z

′) all i.

Suppose z, z′ are a pair such that the former case of assumption IAM obtains, and define

a binary combination with K = 2, z1 = z′, α1 = 1, z2 = z, α2 = −1. Then Eq. (4) from

the main paper yileds

E[Yi(1)|Di(z
′) > Di(z)] =

E [Yi ·Di|Zi = z′]−E [Yi ·Di|Zi = z]

E [Di|Zi = z′]−E [Di|Zi = z]
(19)

and similarly

E[Yi(0)|Di(z
′) > Di(z)] =

E [Yi · (1−Di)|Zi = z′]−E [Yi · (1−Di)|Zi = z]

E [(1−Di)|Zi = z′]−E [(1−Di)|Zi = z]

Combining, we have that E[Yi(1)− Yi(0)|Di(z
′) > Di(z)] =

E[Yi|Zi=z
′]−E[Yi|Zi=z]

E[Di|Zi=z′]−E[Di|Zi=z]
, which is

Theorem 1 of Imbens and Angrist (1994).

Suppose that Z is continuous and for all u ∈ [0, 1] there exists a z ∈ Z such that

P (z) := P (Di = 1|Zi = z) = u. Let Ui = infz∈Z{P (z) : Di(z) = 1}. Given IAM, Ui plays

the role of Gi, indicating the “first” instrument value (as ordered by the propensity score

function P (z)) at which i would take treatment. For any given u, let z be a point in Z
such that P (z) = u and take a sequence zj in Z such that zj → z as j → ∞. Taking the

limit of Eq. (19) we have that:

E[Yi(1)|Ui = u] = lim
j→∞

E [Yi ·Di|Zi = zj]−E [Yi ·Di|Zi = z]

E [Di|Zi = zj]−E [Di|Zi = z]
=

d

du
E [Yi ·Di|P (Zi) = u]

and similarly for Yi(0), allowing us to identify marginal treatment effects (cf. Heckman

et al. (2006)).

G.2 Example 2: Vector monotonicity (Goff 2024)

Goff (2024) considers a binary treatment and finite Z ⊆ Z1 × Z2 × . . .ZJ , and the

following monotonicity assumption.
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Assumption 2 (vector monotonicity). There exists an ordering ≥j on Zj for each

j ∈ {1 . . . J} such that for all z, z′ ∈ Z, if z ≥ z′ component-wise according to the {≥j},
then Di(z) ≥ Di(z

′) for all i.

Theorem 1 of Goff (2024) shows that average counterfactual means are identified under

vector monotonicity for groups defined by the condition c(Gi, Zi) = 1, where c satisfies

a condition called “Property M” and Zi has full rectangular support. His Proposition 6

shows that Property M is equivalent to c(Gi, Zi) =
∑K

k=1 αk ·D
[t]
i (zk(Zi)) where K is an

even number no greater than J/2 and αk = (−1)k with zk+1(z) ≥ zk(z) component-wise

according to the orders ≥j, for all k. In what follows I for simplicity focus on the special

case of target parameters in which c depends on Gi only, and not additionally on Zi. See

Appendix H for a discussion of other parameters.

In the case of two binary instruments J = 2, there are six selection types compatible

with vector monotonicity, with names introduced by Mogstad et al. 2021:

Z1 comp. Z2 comp. eager-comp. reluctant-comp. n.t. a.t.
z = (0,0)′ 0 0 0 0 0 1
z = (1,0)′ 1 0 1 0 0 1
z = (0,1)′ 0 1 1 0 0 1
z = (1,1)′ 1 1 1 1 0 1

With this table defining matrixA[1], some algebra shows that for example c = (1, 0, 0, 1, 0, 0)′

occurs in the rowspace of both A[1] and A[0]. One way to see this is to work out the row

reduced echelon forms of A[1] and A[0], which preserve their row-spaces and are:

rref(A[1]) =


1 0 0 1 0 0

0 1 0 1 0 0

0 0 1 −1 0 0

0 0 0 0 1 0

 rref(A[0]) =


1 0 0 1 0 0

0 1 0 1 0 0

0 0 1 −1 0 0

0 0 0 0 0 1


From the first row of each of the reduced echelon forms, we can see immediately that e.g.

the average treatment effect among Z1 and reluctant compliers is outcome-nonrestrictive

identified. Adding all four rows we see that the average treatment effect among all of the

four compliers types is outcome-nonrestrictive identified, what Goff (2024) calls the “all-

compliers LATE”. Goff (2024) shows how these and similar point identification results

generalize to any number of instruments under vector monotonicity.

G.3 Example 3: Unordered Monotonicity, Heckman and Pinto (2018)

Heckman and Pinto (2018) (HP) consider a finite Z and assume what they call unordered

monotonicity (UM) for a multi-valued treatment:

Assumption UM. For any t ∈ T and z, z′ ∈ Z, either D
[t]
i (z) ≥ D

[t]
i (z

′) for all i or

D
[t]
i (z

′) ≥ D
[t]
i (z) for all i.
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Given UM, let us fix a t ∈ T and label the points in Z as zm for m = 1, 2 . . . |Z|,
where the points are labeled in increasing order of the propensity score for treatment t:

Pt(zm+1) ≥ Pt(Zm), where we define Pt(z) = E[D
[t]
i |Zi = z]. The order is not important

in the case of ties. Let Σti = |{z ∈ Z : Ti(z) = t}| be the number of z ∈ Z for which i

takes treatment t. Note that Σti is exactly equal to |Z| −m+ 1 for the smallest m such

that D
[t]
i (zm) = 1. Thus we have a binary combination for any treatment t and value

s ∈ {0, 1, . . . |Z|}: in particular D
[t]
i (zm) −D

[t]
i (zm−1) ∈ {0, 1} for all i, and is equal to i

for those units having Σti = s.

It then follows immediately from Eq. (4), as in the IAM case with a binary treatment

(cf. Eq. 19), that E[Yi(t)|Σti = s] is identified for any s = 1 . . . |Z| as:

E[Yi(t)|Σti = s] =


E

[
Yi·D

[t]
i |Zi=zm

]
−E

[
Yi·D

[t]
i |Zi=zm−1

]
E

[
D

[t]
i |Zi=zm

]
−E

[
D

[t]
i |Zi=zm−1

] if s < |Z|
E

[
Yi·D

[t]
i |Zi=z1

]
E

[
D

[t]
i |Zi=z1

] if s = |Z|
(20)

where m = |Z| − s+ 1.

This provides a simple proof of HP’s Theorem T-6, which shows that E[Yi(t)|Σti = s]

is identified. HP show that

E[Yi(t)|Σti = s] =
c′A[t]+QZ

c′A[t]+PZ
(21)

whereB+ is the Moore-Penrose pseudo-inverse of a matrixB, QZ is a vector ofE[YiD
[t]
i |Zi =

z] across z and PZ is a vector of E[D
[t]
i |Zi = z] across z. Here c corresponds to our pa-

rameter of interest (indexed by the pair (t, s)), with an entry of one if Σtg = s for that

selection type and zero otherwise.

To see the equivalence between this result and (20), we can take advantage of the

structure of A[t] under UM to replace it with a smaller matrix whose inverse is very simple.

Note that any two selection types g sharing a value of Σti will have identical entries in

c, and will have identical corresponding columns in the matrix A[t]. This implies that

they will have identical rows in A[t]+. We can remove the redundant columns of A[t] by

indexing columns by values of Σti rather than by full response vectors g, and similarly

indexing elements of c by values of Σti. This yields the same vector c′A[t]+ as before, up

to a scalar factor that counts the number of values of g such that Σti = s. However, this

factor cancels out in the numerator and denominator of (21). With this modification,

A[t] is now a |Z| by |Z| + 1 matrix and c is now a standard basis vector equal to one in

its sth element (and zero elsewhere).

Let us now order the rows of this modified A[t] according to z1, z2, etc, and it’s columns

in decreasing order of Σti. With this ordering, A[t] is simply a lower triangular matrix of

ones, appended to the right by a single column of zeros. It can then be verified that rows

s = 2 . . . (|Z| − 1) of A[t]+ are of the form (0, . . . ,−1, 1, . . . 0)′ with s − 2 zeroes on the
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left (while the first row is composed of a single 1 in the first column, and the last row is

all zeros).18 Note that given the definition of c, c′A[t]+picks out the sth row of A[t]+ in

(21), and we have that (20) and (21) are equivalent.

Remark 7.1 of HP observes that given the above, treatment effects can be identified if

(in my notation) for some s, s′ and t, t′ ∈ T , 1(Σti = s) = 1(Σt′i = s′) almost surely, since

then we can identifiy E[Yi(t
′) − Yi(t)|Σt′i = s′] = E[Yi(t

′)|Σt′i = s′] − E[Yi(t)|Σti = s].

The idea of binary collections can be though of as a generalization of this type of result

beyond the case of unordered monotonicity.

G.4 Example 4: Lee and Salanié (2018)

Lee and Salanié (2018) (LS) consider a class of models in which unit i’s selection type

depends upon a J-dimensional vector Vi ∈ [0, 1]J and a vector valued function Q : Z → Q
where Q ⊆ R

J . Selection is assumed to follow:

D
[t]
i (z) =

∑
l⊆{1...J}

ctl ·
∏
j∈l

1(Vji ≤ Qj(z)) (22)

for some set of coefficients ctl defined over the subsets of {1 . . . J}, for each t ∈ T , and

where Vji is the j
th component of Vi, and Qj the j

th component of Q. This model nests

the marginal treatment effects (MTE) framework when we have a binary treatment and

J = 1, in which case we may let Q(z) = E[Di|Zi = z] be the propensity score function.

The second part of LS’s Theorem 3.1 shows that under support/regularity conditions:

E[Yi(t)|Vi = q] =

∂J

∂q1 ...∂qJ
E[YiD

[t]
i |Q(Zi) = q]

∂J

∂q1 ...∂qJ
E[D

[t]
i |Q(Zi) = q]

(23)

Now let’s see how this result can also be obtained through Theorem 1. For any vector

q ∈ R
J , let Si(q) := {j ∈ {1 . . . J} : Vji ≤ qj} be the set of indices for which Vji ≤ qj.

Then D
[t]
i (z) =

∑
l⊆Si(Q(z)) c

t
l . Note that D

[t]
i (z) only depends on z through Q(z). Thus,

we could for each q consider an arbitrary value z ∈ Z such that Q(z) = q, call it Q−1(q),

and think of D
[t]
i as a function D

[t]
i (Q

−1(q)) of q.

Let us consider a binary combination constructed to capture all units such that Vi

belongs to a rectangle (q, q+h1]×(q, q+h2] · · ·×(q, q+hJ ] inR
J for some “corner” location

q ∈ RJ and widths h1 . . . hJ . For any s ⊆ {1 . . . J}, let hs :=
∑

j∈s hjej, where ej is the j
th

standard basis vector. This takes the form of a binary combination (α, t) having K = 2J

and coefficients αk = (−1)|sk|/λ for a certain scalar λ. The corresponding instrument

values are zk = Q−1(q + hs) given an arbitrary ordering s1 . . . sK on the K distinct

subsets of {1 . . . J}. Below we will verify that the corresponding linear combination of

18E.g. the modified forms with |Z| = 4 are A[t] =


1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0

, A[t]+ =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 0

.
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the D
[t]
i (Q

−1(q)) is equal to c(Gi) with probability one, where we let c(Gi) be an indicator

for Vi ∈ (q, q + h1] · · · × (q, q + hJ ]. Via Eq. (4) in the main text, we can thus identify

E[Yi(t)|Vi ∈ (q, q + h1] · · · × (q, q + hJ ]] as:

E[Yi(t)|c(Gi) = 1] =

∑
s⊆{1...J}(−1)|s| ·E

[
Yi ·D[t]

i |Zi = Q−1(q + hs)
]

∑
s⊆{1...J}(−1)|s| ·E

[
D

[t]
i |Zi = Q−1(q + hs)

] (24)

The scalar λ depends on the selection mechanism (22) and is λ :=
∑

s⊆{1...J}(−1)|s|
∑

l⊆s c
t
l .
19

We now verify that with this notation c(Gi) =
∑2J

k=1 αk ·D
[t]
i (zk). That is:

c(Gi) =
1

λ

∑
s⊆{1...J}

(−1)|s| ·D[t]
i

(
Q−1(q +

∑
j∈s

hjej)

)
=

1

λ

∑
s⊆{1...J}

(−1)|s|
∑

l⊆Si(q+hS)

ctl

(25)

Note that for any S ′ ⊆ S, Si(q + h′S) ⊆ Si(q + hS). Thus Si(q + h{1...J}) is the “largest”

Si(q + hs) and Si(q) is the smallest. Define:

Ai = Si(q + h{1...J})− Si(q) = {j ∈ {1 . . . J} : q < Vji ≤ q + h{1...J}}

Ai is simply the set of dimensions in which Vji falls within the rectangle starting at q

with widths h{1...J}. Now comes the crucial step: we’ll now show that (25) is zero for any

individual i for which Ai does not contain all of {1 . . . J}. Indeed, if there were any j /∈ Ai,

each set S in the first summation of (25) that did not contain j would be canceled out by

the set S ∪ j, because (−1)|S∪j| = −(−1)|S|, while Si(q + hS) = Si(q + hS∪j). Pairing all

sets in this way, we see that evaluates to zero unless Ai = {1 . . . J}. Now, Ai = {1 . . . J}
implies that Si(q) = ∅, and we can now write c(Gi) as:

c(Gi) = 1(Ai = {1 . . . J}) · 1
λ
·

 ∑
s⊆{1...J}

(−1)|s|
∑
l⊆s

ctl

 = 1(Ai = {1 . . . J})

observing that we’ve defined c to be equal to the quantity in parentheses, which depends

on the selection model but not on i.
19We can simplify this expression of λ as follows. Note that given 22) the coefficients ctl must be such that

∑
l⊆s c

t
l ∈ {0, 1}

for any s ⊆ {1 . . . J}. Let St be the collection of s such that it is equal to one. This is the collection of subsets of the
thresholds that when crossed correspond to taking treatment t. Then λ =

∑
s∈St

(−1)|s|. We can derive an alternative

expression for λ by making use of the identity that for any
∑

f⊆S(−1)|f | = 0 for any S ̸= ∅. Then:

λ =
∑

l⊆{1...J}
ctl

∑
s⊇l

(−1)|s| =
∑

l⊆{1...J}
ctl


�������∑
s⊆{1...J}

(−1)|s| −
���

��∑
s⊆l

(−1)|s| + (−1)|l|

 =
∑

l⊆{1...J}
(−1)|l| · ctl
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LS’s Theorem 3.1 considers the J th order derivative

∂J

∂q1 . . . ∂qJ
E[YiD

[t]
i |Q(Zi) = q]

=
∂J

∂q2 . . . ∂qJ
lim
h1↓0

1

h1

(
E[YiD

[t]
i |Q(Zi) = q + h1e1]−E[YiD[t]

i |Q(Zi) = q]
)

= lim
h1...hJ↓0

1∏J
j=1 hj

·
∑

s⊆{1...J}

(−1)|s| ·E
[
YiD

[t]
i

∣∣∣Q(Zi) = q +
∑
j∈s

hjej

]

and takes the ratio:

∂J

∂q1 ...∂qJ
E[YiD

[t]
i |Q(Zi) = q]

∂J

∂q1 ...∂qJ
E[D

[t]
i |Q(Zi) = q]

= lim
h1...hJ↓0

∑
s⊆{1...J}(−1)|s| ·E

[
YiD

[t]
i

∣∣∣Q(Zi) = q +
∑

j∈s hjej

]
∑

s⊆{1...J}(−1)|s| ·E
[
D

[t]
i

∣∣∣Q(Zi) = q +
∑

j∈s hjej

]
LS’s result (23) thus considers the limit of Eq. (24) as the width of the rectangle goes to

zero in all dimensions.

G.5 Example 5: Unordered (generalized) partial monotonicity

We can define a generalization of vector and partial monotonicity to settings with multi-

valued treatments, also nesting unordered monotonicity:

Assumption UPM. For any t ∈ T , there exists a partial order ⪰t on Z, such that if

z′ ⪰t z, D
[t]
i (z

′) ≥ D
[t]
i (z) for all i.

Note that even in the case of a binary treatment, UPM represents a generalization of

partial monotonicity (PM), defined by Mogstad et al. (2019) for settings with multiple

instruments. UPM allows for an arbitrary partial order on Z, while PM considers a

partial order that is based on holding all instruments but one at fixed values.

Assumption UPM implies that for any such z, z′: D
[t]
i (z

′)−D
[t]
i (z) ∈ {0, 1} and thus

E[Yi(t)|D[t]
i (z

′) > D
[t]
i (z)] =

E[YiD
[t]
i |Zi = z′]−E[YiD[t]

i |Zi = z]

E[D
[t]
i |Zi = z′]−E[D[t]

i |Zi = z]

UPM holds, for example, when instruments correspond to choice sets and agents choose

rationally from them, as in Arora et al. (2021). In such a setting instrument values z

are subsets of the treatments T that are available to the agent, and D
[t]
i (z) ≥ D

[t]
i (z

′)

whenever (z/t ⊆ z′/t and t ∈ z if t ∈ z′). In words, D
[t]
i (z) is weakly increasing with

respect to the inclusion of t in z (since i can only choose t if it is available), and weakly

decreasing with respect to the inclusion of any t′ ̸= t in z (since i may prefer t′ to t).

G.6 Example 6: Pairwise notions of monotonicity

Sun and Wüthrich (2024) proposes a notion of IV-validity that is specific to two values

z, z′ of the instrument (which may be a vector). This includes the standard LATE model
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assumptions (independence, exclusion, and monotonicity). However, if independence and

exclusion are maintained, the notion of pairwise valid instruments reduces to what we

might call pairwise-monotonicity, i.e. that D
[t]
i (z

′) ≥ D
[t]
i (z

′) almost surely, or vice versa.

van’t Hoff, Lewbel and Mellace (2023) consider a notion of “limited monotonicity” for

settings with multiple binary instruments and a binary treatment, which in the notation

above corresponds to a setting in which z′ = (1, . . . 1) and z = (0, . . . 0). van’t Hoff (2023)

extends this notion to ordered treatments that need not be binary.

In the context of “judge designs” where the instrument is a scalar continuous measure

of “leniency” with respect to a binary treatment, Sigstad (2023) and Sigstad (2024)

introduce a notion of “extreme-pair” monotonicity Di(j̄) ≥ Di(j) almost surely, where j̄

is the strictest judge, and j the most lenient.

In the case of a binary treatment Di, the above papers point out that under a lim-

ited version of “monotonicity” between a pair of values z, z′, a particular local average

treatment effect can be identified from a simple Wald estimand:

E[Yi(1)− Yi(0)|Di(z
′) > Di(z)] =

E[Yi|Zi = z′]−E[Yi|Zi = z]

E[Di|Zi = z′]−E[Di|Zi = z]

This corresponds to a binary collection in which αz′ = 1 and αz = −1 for t = 1 , while

αz′ = −1 and αz = 1 for t = 0.

H Letting local causal parameters depend on Zi

Let zk : Z → Z be a function that maps an instrument value Zi to some possibly different

value in Z. Non-constant functions zk(·) will allow us to nest parameters such as the

average treatment effect on the treated, as well as some parameters from Goff (2024).

In that paper zk(z) could for instance change one component of z, and the αk and zk(·)
can be chosen so that c(Gi, Zi) :=

∑
k αk · D

[t]
i (zk(Zi)) only takes values of zero or one,

i.e. αz = {αk, zk(z)}Kk=1 yields a binary combination for any z ∈ Z. Then, by the law of

iterated expectations: E [Yi(t) |c(Gi, Zi) = 1] =
∑

z∈Z P (Zi = z) · E[Yi(t)|c(Gi, Zi) = 1]

where each term in the summand is identified by (4) and the distribution of Zi.

Let us maintain the assumption that the support of the instruments Z is discrete and

finite. Consider any counterfactual mean of the form θ = E[Yi(t)|c(Gi, Zi) = 1] where

now c : G × Z → {0, 1}. By the law of iterated expectations over Zi and independence

Eq. (2), we can write θ as:

θ =
∑
z∈Z

P (Zi = z|c(Gi, z) = 1) ·E[Yi(t)|c(Gi, z) = 1, Zi = z]

=
∑
z∈Z

P (Zi = z) ·E[Yi(t)|cz(Gi) = 1] (26)

where we let cz(g) denote c(g, z). Eq (26) shows that θ can be written as a convex

combination of |Z| counterfactual means of the form µtc considered by Theorems 1 and 2,
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with complier groups cz(·) that depend on z. It is clear then by Theorem 1, a sufficient

condition for θ to be outcome-nonrestrictive identified is that cz lies in the rowspace of

matrix A[t] for each z ∈ Z.

Theorem 2 similarly extends to the more general class of functions c(Gi, Zi), provided

that the family PZ of distributions over the instruments allows for degenerate distribu-

tions at each value of Zi. Then cz must lie in the rowspace of A[t] for all z ∈ Z. If it

were not, then for some z ∈ Z, cz /∈ rs(A[t]) and hence µtcz is not outcome-nonrestrictive

identified, by Theorem 2. For a degenerate distribution PZ that sets P (Zi = z) = 1,

θ = µtcz and hence θ is not outcome-nonrestrictive identified if cz /∈ rs(A[t]). With this

extension Theorem 2 of this paper nests Theorem 2 of Goff (2024) as a special case, and

expands its reach even in the case that vector monotonicity is maintained, if the outcome

variable is continuous.

I Partial identification when c /∈ rowspace(A[t])

I.1 Relationship to Bai, Huang, Moon, Shaikh and Vytlacil (2024)

Bai et al. (2024) (BHMSV) study the identifying power for ATEs and unconditional

counterfactual means of a restriction on selection that they call generalized monotonicity

(GM). In my notation, GM says that for a given Platent and each t ∈ T , there exists an

instrument value z∗ = z∗(t,Platent) such that

P (Di(z
∗) ̸= t and Di(z) = t for some z ∈ Z) = 0 (27)

according to Platent. That is, no individual takes treatment t when z ̸= z∗ unless they

also do when z = z∗. BHMSV show that GM or any strengthening of it (that does not

restrict outcomes) does not reduce the size of identified sets for unconditional parameters

of the form E[Yi(t)], when the outcome variable has finite support Y and the instruments

are also finite.

While GM nests many notions of monotonicity from the literature that have been used

for positive point identification results, it generalizes them in a different way than the

criterion c ∈ rs(A[t]) of the present paper does. While c ∈ rs(A[t]) ensures point iden-

tification of E[Yi(t)|cGi
= 1], GM represents a double-edged sword when the parameter

of interest is an unconditional mean or ATE with c = (1, 1, . . . 1)′. Using Theorem 2 of

this paper, we can see that GM is in fact sufficient to establish either that i) E[Yi(t)] is

point identified in an outcome-nonrestrictive way; or ii) that it is not point identified in

an outcome-nonrestrictive way. Which of these cases i) or ii) holds can be determined by

the observable distribution Pobs, and does not depend on G beyond it satisfying GM.

Let G̃(Platent) be the support of Gi under Platent, and note that (27) is equivalent to:

For all g ∈ G̃(Platent) : A
[t]
z∗,g = 0 =⇒ A[t]

z,g = 0 for all z ∈ Z (28)
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Consider a given distribution of observables Pobs. Either P (Ti = t|Zi = z∗) = 1 or P (Ti =

t|Zi = z∗) < 1 according to Pobs. If the first case holds, then E[Yi(t)] = E[Yi|Zi = z∗] and

E[Yi(t)] is thus point-identified without requiring any restrictions on selection. Thus,

assuming GM or any strengthening of it cannot reduce the identified set for E[Yi(t)]

further, unless it results in model rejection.

If on the other hand P (Ti = t|Zi = z∗) < 1 and GM holds, then there must exist a

g ∈ G̃(Platent) such that A
[t]
z∗,g = 0. Therefore by (28), for this g it must be that A

[t]
z,g = 0

for all z ∈ Z, i.e. there are never-takers with respect to treatment t. This in turn

implies that (1, 1, . . . 1)′ /∈ rs(A[t]), precisely the case in which we know that E[Yi(t)] is

not outcome-nonrestrictive point identified, by Theorem 2.

By showing that the bounds on E[Yi(t)] in partially identified settings are not improved

by imposing restrictions stronger than GM, BHMSV underscore the importance of: i)

focusing on other parameters of interest beyond the ATE (i.e. c ̸= (1, 1, . . . 1)′) when

one is willing to impose restrictions on selection; and ii) finding restrictions on selection

that are outside of the scope of GM. Indeed, many of the selection models reported in

Appendix K below do not satisfy GM, yet are sufficient for point identification of more

localized treatment effect parameters than the ATE (and in some cases the ATE as well).

The remainder of this section provides more detail to build intuition about the con-

nection between BHMSV’s result and the proof of Theorem 2 in this paper. For a given

Pobs, let us write the identified set for E[Yi(t)] under model M as

Θ(Pobs,M) = {θ(P) : ϕ(P) = Pobs and P ∈M}

Given BHMSV’s assumption that Y is finite, let us for each y ∈ Y define xy to be a

|G|-component vector with components xyg = P (Yi(t) = y|Gi = g) and β to be a |Z|-
component vector with components βyz = P (Yi = y, Ti = t|Zi = z). The restriction

ϕ(P) = Pobs corresponds to the set of solutions to finite system of linear equations

A[t]xy = βy, for each y ∈ Y . Given |Y| < ∞, we can collect these into a single finite

linear system A[t]x̃ = β̃, where A[t] is a block diagonal matrix of A[t] copied |Y| times,

x̃ is a |Y| × |G| component vector, and β̃ is a |Y| × |Z| component vector. The set

X := {x̃(P) : ϕ(P) = Pobs} is thus a vector space, where we let x̃(P) represent x̃ as a

function of the distribution of model fundamentals P .

Whether GM or any strengthening of it reduces the identified set for E[Yi(t)] thus

depends upon whether the action of θ(·) on the P ∈ M such that x̃(P) ∈ X reduces

Θ(Pobs,M) relative to a case with no restrictions on selection. Eq. (12) from the proof

of Theorem 2 suggests that Θ(Pobs,M) satisfies

Θ(Pobs,M) ⊆
{
1
′(A[t])+β +

∑
g′

[1′(I − (A[t])+A[t])]g′ · wg′ : w ∈ R|G|

}
(29)

where 1 := (1, 1, . . . 1)′ and β a |Z|-component vector with components βz = E[Yi ·1(Ti =

43



t)|Zi = z]. GM implies that the set of the RGS is not a singleton if P (Ti = t|Zi = z∗) < 1.

The subset relation appearing in (29) reflects that, as in Theorem 2, some x̃ for which

A[t]x̃ = β̃ may not be attainable from P that are valid distributions and reflect any

further assumptions of the model M , for example that Yi has bounded support.

BHMSV show that if M does not restrict outcomes, Θ(Pobs,M) is in fact equal to the

identified set under no selection restrictions, which is (given the finite support Y):

{βz∗ −min{Y} · P (Ti ̸= t|Zi = z∗), βz∗ +max{Y} · P (Ti ̸= t|Zi = z∗)}

An interesting question for further study is in what manner the result of BHMSV extends

to the more general class target parameters indexed by vectors c that may differ from

(1, 1, . . . , 1)′. A reasonable conjecture would be that if, given Pobs, a class of restrictions

on selection cannot change the fact that c /∈ rs(A[t]) , there is limited scope for such

restrictions to reduce the size of the identified set for µtc.

I.2 Partial identification in general

Accordingly, consider an arbitrary c ∈ {0, 1}|G where we may have that c /∈ rs(A[t]). By

similar logic as above, we can deduce that the identified set Θ(Pobs,M) for µtc satisfies:

Θ(Pobs,M) ⊆ 1

P (c(Gi) = 1)
·
{
c′(A[t])+β +

∑
g′

[c′(I − (A[t])+A[t])]g′ · wg′ : w ∈ R|G|

}

The RHS may again be an outer set for Θ(Pobs,M), for example when Yi has bounded

support. An added complication now, as compared to unconditional means, is that the

probability P (c(Gi) = 1) is no longer known to be equal to one, and our only identifying

information for it is that
∑

g∈G A
[t]
gz = dz for all z ∈ Z, where dg := P (Ti = t|Zi = z).

J Supplemental material for the application to interaction ef-

fects

J.1 Motivating the restriction imposed by Proposition 4

We can rationalize the restriction G ⊆ Gsep made in Proposition 4 by supposing that

individuals choose separately whether to receive treatment A or B, rather than as a

single joint decision. Let S(z) denote the set of treatments among {A,B} offered to

an individual when their instrument realization is z ∈ {neither,A,Bboth}. That is,

S(neither) = ∅, S(A) = {A}, S(B) = {B}, S(both) = {A,B}.

Definition. We say that the population exhibits separable choices if their counterfac-

tual selection satisfies for each z ∈ {neither,A,Bboth}:

Ti(z) = {t ∈ S(z) : Ui(t) ≥ 0}
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where treatment C is here understood as the set of treatments {A,B}, and treatment 0 is

understood as the null set ∅.

Separable (counterfactual) choices says that individuals choose treatment A if and only

if Ui(A) ≥ 0 and B if and only if Ui(B) ≥ 0, subject to the options offered to them.

This implies that Ti(both) = C =⇒ Ti(A) = A and Ti(B) = B, and similarly that

Ti(A) = A and Ti(B) = B =⇒ Ti(both) = C. This eliminates exactly the remaining

five groups displayed in gray in Table 2.

J.2 Identification with covariates

Suppose that instead of (2) we have

{Zi ⊥⊥ (Ỹi, Gi)}|Xi (30)

where Xi are observed covariates that are unaffected by treatment. This holds, for

example, if the instruments are independent of these covariates jointly with the latent

heterogeneity (Ỹi, Gi) across individual: Zi ⊥⊥ (Ỹi, Gi, Xi).

Consider a binary combination (t, α) such that
∑

k αkD
[t]
i (zk) = c[t,α](Gi) for all i where

c[t,α](Gi) ∈ {0, 1} for all g ∈ G. I do not consider the case in which
∑

k αkD
[t]
i (zk) =

c[t,α](Gi, Xi) for some function c[t,α] that depends both on Gi and Xi, though such an

extension would be possible. By the steps that establish Eq. (4) in the uncondional case,

(4) generalizes to

E
[
Yi(t)

∣∣c[t,α](Gi) = 1, Xi = x
]
=

∑K
k=1 αk ·E

[
Yi ·D[t]

i |Zi = zk, Xi = x
]

∑K
k=1 αk ·E

[
D

[t]
i |Zi = zk, Xi = x

] (31)

for any value x. Notice that although P (c[t,α](Gi) = 1|Xi = x) = E[c[t,α](Gi)|Xi = x]

might vary with x, it is identified by the denominator of the above for each: P (c[t,α](Gi) =

1|Xi = x) =
∑K

k=1 αk ·E
[
D

[t]
i |Zi = zk, Xi = x

]
. Consequently, the overall counterfactual
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mean that does not condition on x is identified as

E[Yi(t)|c[t,α](Gi) = 1] =

∫
dFX|c[t,α](G)=1(x) ·E[Yi(t)|c[t,α](Gi) = 1, Xi = x]

=

∫
dFX|c[t,α](G)=1(x) ·

∑K
k=1 αk ·E

[
Yi ·D[t]

i |Zi = zk, Xi = x
]

P (c[t,α](Gi) = 1|Xi = x)

=

∫
dFX(x) ·

∑K
k=1 αk ·E

[
Yi ·D[t]

i |Zi = zk, Xi = x
]

P (c[t,α](Gi) = 1)

=

∑K
k=1 αk ·E

[
E

[
Yi ·D[t]

i |Zi = zk, Xi

]]
P (c[t,α](Gi) = 1)

=

∑K
k=1 αk ·E

[
E

[
Yi ·D[t]

i |Zi = zk, Xi

]]
∑K

k=1 αk ·E
[
E[D

[t]
i |Zi = zk, Xi]

]
applying Bayes’ rule, echoing an argument for the LATE model by Frölich (2007). See

also Appendix A of Goff (2024). Given a binary collection, we can use these results to

identify treatment effects that either do or do not condition on Xi.

Note that the conditional independence assumption 30 further allows us to identify the

distribution of covariates Xi among “compliers” for whom c[t,α](Gi) = 1 given a binary

combination (t, α). Suppose that Xi has M components so that Xi ∈ RM . Then for any

Borel set B of RM we have that, by (30):∑
k

αk ·E[1(Xi ∈ B) · P (Ti = t|Zi = zk, Xi)] =
∑
k

αk ·E[1(Xi ∈ B) ·E[D[t]
i (zk)|Xi, Zi = zk]]

=
∑
k

αk ·E[1(Xi ∈ B) ·E[D[t]
i (zk)|Xi]]

= E

[
1(Xi ∈ B) ·E

[∑
k

αk ·D[t]
i (zk)

∣∣∣∣∣Xi

]]
= E[1(Xi ∈ B) ·E[c[t,α](Gi)|Xi]]

= E[E[1(Xi ∈ B) · c[t,α](Gi)|Xi]]

= E[1(Xi ∈ B) · c[t,α](Gi)]

= P (c[t,α](Gi) = 1) · P (Xi ∈ B|c[t,α](Gi) = 1)

Meanwhile∑
k

αk ·E[P (Ti = t|Zi = zk, Xi)] =
∑
k

αk ·E[1(Xi ∈ B) ·E[D[t]
i (zk)|Xi, Zi = zk]]

=
∑
k

αk ·E[E[D[t]
i (zk)|Xi]] = E

[
E

[∑
k

αk ·D[t]
i (zk)

∣∣∣∣∣Xi

]]
= E[E[c[t,α](Gi)|Xi]] = E[c[t,α](Gi)] = P (c[t,α](Gi) = 1)
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And thus

P (Xi ∈ B|c[t,α](Gi) = 1) =

∑
k αk ·E[1(Xi ∈ B) · P (Ti = t|Zi = zk, Xi)]∑

k αk ·E[P (Ti = t|Zi = zk, Xi)]
(32)

This implies, for example, that we can identify the mean of Xi among the c[t,α](Gi) = 1

sub-population as

E[Xi ∈ B|c[t,α](Gi) = 1] =

∑
k αk ·E[Xi · P (Ti = t|Zi = zk, Xi)]∑
k αk ·E[P (Ti = t|Zi = zk, Xi)]

which generalizes the seminal result of Abadie (2003) for the case of the binary treatment,

binary instrument LATE model.

If we have a binary collection {(t, α[t])}t∈ψ, then Eq. (32) yields overidentification

restrictions since it implies that∑
k α

[t]
z ·E[1(Xi ∈ B) · P (Ti = t|Zi = zk, Xi)]∑

k α
[t]
k ·E[P (Ti = t|Zi = zk, Xi)]

=

∑
k α

[t′]
z ·E[1(Xi ∈ B) · P (Ti = t′|Zi = zk, Xi)]∑

k α
[t′]
k ·E[P (Ti = t′|Zi = zk, Xi)]

for any t, t′ ∈ ψ. Note that this restriction is trivially satisfied for the binary collection

that isolates compliers in the binary instrument, binary treatment LATE model.

J.3 Details on empirical estimates including strata covariates

Consider a binary combination (t, α) for a given treatment t, with associated function c.

As shown in Appendix J.2, when Equation 2 holds conditional on covariates Xi we have:

E[Yi(t)|c(Gi) = 1] =

∑K
k=1 αk ·E

[
E

[
Yi ·D[t]

i |Zi = zk, Xi

]]
P (c(Gi) = 1)

=
E

[∑K
k=1 αk ·E

[
Yi ·D[t]

i |Zi = zk, Xi

]]
P (c(Gi) = 1)

(33)

where

P (c(Gi) = 1) =
K∑
k=1

αk ·E
[
E[D

[t]
i |Zi = zk, Xi]

]
= E

[
K∑
k=1

αk ·E[D[t]
i |Zi = zk, Xi]

]
(34)

In the empirical application of Angelucci and Bennett (2024), randomization is performed

within nine strata, which represents a discrete Xi taking on nine values. To simplify

estimation, I assume that the expectations E[Yi ·D[t]
i |Zi, Xi] and E[D

[t]
i |Zi, Xi] additively

separable in Zi and Xi:

E[Yi·D[t]
i |Zi, Xi] = β

[t]
both·1(Zi = both)+β

[t]
A ·1(Zi = just A)+β

[t]
B ·1(Zi = just B)+

9∑
s=1

λ[t]s ·1(Xi = s)

(35)
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and

E[D
[t]
i |Zi, Xi] = γ

[t]
both·1(Zi = both)+γ

[t]
A ·1(Zi = just A)+γ

[t]
B ·1(Zi = just B)+

9∑
s=1

ρ[t]s ·1(Xi = s)

(36)

i.e. linear regression equations with a full set of strata fixed effects (with none omitted)

and instead omitting a dummy variable for 1(Zi = neither).

The four estimates of p := P (Gi = complier) based on the choice model Gsep given in

(10) then become, using Eqs (34) and (36):

p =

{
γ
[C]
both +

9∑
s=1

ρ[C]
s · P (Xi = s)

}
=
{
γ
[A]
A − γ

[A]
both

}
=
{
γ
[A]
A − γ

[A]
both

}
=
{
γ
[0]
both − γ

[0]
A − γ

[0]
B

}
(37)

Treatment effect estimates are then based on the following expressions using (35)-(36):

E[Yi(C)|i is complier] =
β
[C]
both +

∑9
s=1 λ

[C]
s · P (Xi = s)

γ
[C]
both +

∑9
s=1 ρ

[C]
s · P (Xi = s)

, E[Yi(A)|i is complier] =
β
[A]
A − β

[A]
both

γ
[A]
A − γ

[A]
both

E[Yi(B)|i is complier] =
β
[B]
B − β

[B]
both

γ
[B]
B − γ

[B]
both

, E[Yi(0)|i is complier] =
β
[0]
both − β

[0]
A − β

[0]
B

γ
[0]
both − γ

[0]
A − γ

[0]
B

(38)

and the local average interaction effect among compliers LAIE is estimated accordingly.

Some involved algebra shows that the expressions in (38) recover the results for complier

average treatment effects in Theorem 1 of Blackwell (2017), given one-sided noncompli-

ance.

J.4 GMM estimation

Note that given the overidentification of p := P (Gi = complier), any of the local coun-

terfactual means (38) could be estimated by swapping out an alternative estimate of

p in the denominator. In principle, we can increase efficiency by estimating treatment

effects as well as LAIE while imposing Eq. (37), in a generalized method of moments

(GMM) estimation approach. Column (4) of Table 3 implements this. Given the logic

of Corollary 2, GMM estimation of LAIE combines the ITT regression (39) with the

first-stage regressions (36), and imposing (37) as additional moments. For the treatment

effect estimates E[Yi(t) − Yi(0)|i is complier] for t ∈ {0, A,B}, GMM estimation com-

bines regressions (35) for treatments t and 0 with the first-stage regressions and (37).

All GMM estimates use the two-step GMM estimator, starting from an initial identity

weight-matrix, and requesting a cluster robust final weight-matrix and standard errors.
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J.5 Deriving the expression θITT/p for local average interaction effect

Consider first the case with no covariates. We have using Eqs. (4) and (9):

LAIE = E[Yi(C)|c(Gi) = 1]−E[Yi(A)|c(Gi) = 1]−E[Yi(B)|c(Gi) = 1] +E[Yi(0)|c(Gi) = 1]

=
E[Yi ·D[C]

i |Zi = both]

E[D
[C]
i |Zi = both]

− E[Yi ·D[A]
i |Zi = just A]−E[Yi ·D[A]

i |Zi = both]

E[D
[A]
i |Zi = just A]−E[D[A]

i |Zi = both]

− E[Yi ·D[B]
i |Zi = just A]−E[Yi ·D[B]

i |Zi = both]

E[D
[B]
i |Zi = just B]−E[D[B]

i |Zi = both]

+
E[Yi ·D[0]

i |Zi = both]−E[Yi ·D[0]
i |Zi = just A]−E[Yi ·D[0]

i |Zi = just B] +E[Yi ·D[0]
i |Zi = neither]

E[D
[0]
i |Zi = both]−E[D[0]

i |Zi = just A]−E[D[0]
i |Zi = just B]−E[D[0]

i |Zi = neither]

=
1

p
·
{
E[Yi ·D[C]

i |Zi = both]−E[Yi ·D[A]
i |Zi = just A] +E[Yi ·D[A]

i |Zi = both]

−E[Yi ·D[B]
i |Zi = just B] +E[Yi ·D[B]

i |Zi = both] +E[Yi ·D[0]
i |Zi = both]

−E[Yi ·D[0]
i |Zi = just A]−E[Yi ·D[0]

i |Zi = just B] +E[Yi ·D[0]
i |Zi = neither]

}
=

1

p
·
{
E[Yi · (D[0]

i +D
[A]
i +D

[B]
i +D

[C]
i )|Zi = both]−E[Yi · (D[0]

i +D
[A]
i )|Zi = just A]

−E[Yi · (D[0]
i +D

[B]
i )|Zi = just B] +E[Yi ·D[0]

i |Zi = neither]
}

=
1

p
· {E[Yi|Zi = both]−E[Yi|Zi = just A]−E[Yi|Zi = just B] +E[Yi|Zi = neither]} =

θITT

p

where θITT := γ3−γ1−γ2 from the ITT regression Eq. (7). In the above I have used Eq.

(10) in the second step, then combined terms, and finally using that (D
[0]
i +D

[A]
i +D

[B]
i +

D
[C]
i ) = 1, that (D

[0]
i +D

[A]
i ) conditional on Zi = just A (given one-sided noncompliance),

that (D
[0]
i +D

[B]
i ) conditional on Zi = just B, and that D

[0]
i conditional on Zi = neither.

With covariates Xi, the standard intent-to-treat regression generalizes (7) by adding

a linear function in the covariates that includes a constant:

Yi = γ1 · 1(Zi = A) + γ2 · 1(Zi = B) + γ3 · 1(Zi = C) + π′Xi + νi (39)

In this case, θITT := γ3 − γ1 − γ2 is equal to

E[Yi|Zi = both, Xi]−E[Yi|Zi = just A, Xi]−E[Yi|Zi = just B, Xi]+E[Yi|Zi = neither, Xi]

with probability one (i.e. for all Xi). The same steps as above show that, using Eqs. (33)
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and (34):

LAIE =
1

p
·E
{
E[Yi ·D[C]

i |Zi = both, Xi]−E[Yi ·D[A]
i |Zi = just A, Xi]

+E[Yi ·D[A]
i |Zi = both, Xi]−E[Yi ·D[B]

i |Zi = just A, Xi]−E[Yi ·D[B]
i |Zi = both, Xi]

−E[Yi ·D[0]
i |Zi = both, Xi] +E[Yi ·D[0]

i |Zi = just A, Xi] +E[Yi ·D[0]
i |Zi = just B, Xi]

−E[Yi ·D[0]
i |Zi = neither, Xi]

}
=

1

p
·E[γ3 − γ1 − γ2] =

θITT

p

provided that Eq. (39) is correctly specified for the conditional mean E[Yi|Zi, Xi].

J.6 Setting up the linear program to test for offending types

This section considers the identification of bounds on the proportion of the population

that belongs to a certain set of response types G∗, within a larger selection model G. This
method is implemented in Section 5 to discuss whether first stage selection information

is consistent with the choice model G ⊆ Gsep, under the maintained assumption that

G ⊆ GWARP . Thus for the remainder of this section we assume that G = GWARP defined

in Section 5. This section also ignores the randomization strata Xi, which is valid for

testing “first-stage” restrictions if the response-type distribution is common across strata.

For any set of response types G∗ ⊆ GWARP , we can partially identify P (Gi ∈ G∗) as

P (Gi ∈ G∗) ∈ [LB∗, UB∗] where

LB∗ = min
x∈R9

w′x subject to Ax = β and x ≥ 0 (40)

UB∗ = max
x∈R9

w′x subject to Ax = β and x ≥ 0 (41)

with w a 9 × 1 vector (where |GWARP | = 9) with components wg = 1(g ∈ G∗), and the

constraint x ≥ 0 is read as all components of the vector x must be weakly positive. If LB∗

were found to be strictly positive with G∗ chosen to be GWARP−Gsep, this would constitute

evidence that the restriction G ⊆ Gsep is not satisfied, assuming that G ⊆ GWARP .

The 16 × 9 matrix A can be obtained from the matrices A[t], and the 16-component
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vector β estimated from the data:

A =


A[0]

A[A]

A[B]

A[both]

 =



1 1 1 1 1 1 1 1 1

1 0 0 1 1 0 1 0 0

1 0 1 0 1 1 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 1 1 0 0 1 0 1 1

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 1 1 1

0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 1 0 0



β =



P (Ti = 0|Zi = neither)

P (Ti = 0|Zi = just A)

P (Ti = 0|Zi = just B)

P (Ti = 0|Zi = both)

P (Ti = A|Zi = neither)

P (Ti = A|Zi = just A)

P (Ti = A|Zi = just B)

P (Ti = A|Zi = both)

P (Ti = B|Zi = neither)

P (Ti = B|Zi = just A)

P (Ti = B|Zi = just B)

P (Ti = B|Zi = both)

P (Ti = C|Zi = neither)

P (Ti = C|Zi = just A)

P (Ti = C|Zi = just B)

P (Ti = C|Zi = both)


Point estimates of the bounds LB∗ and UB∗ are readily obtained by solving the linear

programs (40) and (41) with the sample estimator β̂.

Given sampling error in β̂ however, we would like to construct a valid confidence

interval for the partially identified parameter P (Gi ∈ G∗) = w′x given its representation

as a solution to the linear program Ax = β, x ≥ 0. This problem is considered by Fang

et al. (2023), and I use the fsst command in the lpinfer package in R to generate a

confidence interval for the parameters P (Gi ∈ G∗) considered in the main text. The

required inputs for fsst are the matrix A, the vector β (specified as a function of the

data, as the FSST procedure makes use of estimates of β in bootstrap samples).

J.6.1 Results for Angelucci and Bennett (2024)

In addition to the results for G∗ = GWARP −Gsep reported in the main text, I here present

some further estimates. A 90% confidence interval using the method of Fang and Santos

(2018) (FSST) does rule out zero but is otherwise similar at [0, 0.8281] (as opposed to

[0, 0.8297] for the 95% interval). However, the p-value for the null hypothesis that P (Gi ∈
GWARP − Gsep) = 0 puts it just on the margin of being included in the 90% confidence

interval. The lpinfer package in R also allows for statistical inference on solutions to

problems (40) and (41) using methods introduced by Romano and Shaikh (2008) and

Cho and Russell (2024). The method of Cho and Russell (2024) yields [0.02, 0.86] as

a 95% confidence interval. The method of Romano and Shaikh (2008) yields [0, 0.84]

as a 95% confidence interval. Confidence intervals for the share of the favor-B type

(which the point estimates suggest may be the largest offending type) only are similar to
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the confidence intervals for all offending types in GWARP −Gsep. Overall, the results offer

little evidence against the assumption that Gsep represents the true choice model, and any

violations that cannot be ruled out appear to be minor. This supports the conclusion that

complementarities between the two treatments are identified among compliers without

restricting outcomes, in line with Proposition 4.

In the above calculations, I do not condition on the nine strata used by Angelucci

and Bennett (2024) for randomization. This could be implemented by expanding A and

β to have 16 × 9 rows each, rather than 16. However the above results are valid if the

response-type distribution is common across strata, and under this assumption allow for

a much more efficient use of the available sample.

J.7 Financial incentives and support for academic achievement

Angrist, Lang and Oreopoulos (2009) (ALO) report results from an the Project STAR in-

tervention that cross-randomized academic support and financial incentives on academic

achievement among first-year students at a large Canadian university. In this setting, I

let treatment A represent the Student Support Program (SSP): a program which gave

students access to peer advisers and supplemental instruction. I let treatment B rep-

resent the Student Fellowship Program (SFP), which made students eligible for merit

scholarships based on good performance during the first year courses.

The STAR intervention randomized 250 students into an arm that was offered access

to the SSP only (Zi = just A), another 250 students to be offered access to the SFP only

(Zi = just B), and a third group of 150 students that was offered access to both programs

(Zi = both). A control group of 1,006 students were offered neither (Zi = neither).

I use the replication data from ALO, which tracks program takeup as well as stu-

dent performance among those students included in Project STAR. Treatment uptake for

treatment A (SSP) is observable, and I define it as having attended a facilitated study

groups or having met with an advisor. For treatment B, I follow ALO in defining treat-

ment takeup as having responded to their invitation to sign up for the assigned treatment.

ALO define compliance with respect to SSP (treatment A) similarly as having given their

consent by simply signing up for their assigned treatment. With this definition however,

no individual offered both treatments could opt for one treatment alone.20 Since further

information is available on whether individuals actually take part in SSP activities, I

make use of this additional information.

I test the overidentification restriction of G ⊆ Gsep in this setting as described in Eq.

(38), however note that in the present setting there are no randomization strata that need

to be controlled for. The four point estimates for p = P (i is complier) are 41%, 21%,

51%, and 34%, respectively. A test for equality of the four estimates returns a chi-squared

20Given WARP, this would then limit the choice model to the groups n.t., complier, only both, A+, and B+ from Table
2. This group yields a rather uninteresting selection model when intersected with Gsep (leaving just never takers and
compliers) in order to afford outcome non-restrictive identification of complementarity between the treatments. However,
defining compliance as ALO do also rejects the overidentification restriction (37), with a chi-squared statistic (with 2
degrees of freedom) of 28.66.
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statistic (with 2 degrees of freedom) of 26.16, a p-value of 0.0000.21 Thus in contrast to

the application of Angelucci and Bennett (2024), we find in the ALO context that we

can clearly reject the choice model G ⊆ Gsep that is required to identify complementarity

between the two treatment effects in an outcome-agnostic manner.

K Catalog of outcome-nonrestrictive identification results

The following results are for various small values of |Z| |T |. Results for |Z| = |T | = 3

are available upon request from the author (these add roughly 40 pages of output).

For a given T and Z, binary collections are organized by selection models, given

unique identifiers of the format SM.|T |.|Z|.s, where s is an index of the various selection

models in that setting. Within each selection model, binary collections are enumerated

by ascending numbers i), ii) etc. Each binary collection is presented via the coefficient

vectors αt′ and αt (following the notation of Sec. 4.2 but keeping t and t′ explicit).

Binary collections that share a common maximal selection model G(α) organized under

that selection model, and are not re-listed for G ⊆ G(α). Further, some binary collections

for G might be listed under a G(α) that nests G only after suitable re-labeling of the

treatments and instruments. It is for this reason that the set of binary collections listed

under a given selection model may not be closed under addition, even when adding the

c for two such collections results in another vector composed of all zeroes and ones.

For example, consider the A matrices for SM.2.3.8 and SM2.3.1 below:

SM.2.3.8 :

1 0

1 0

0 1

 SM.2.3.1.swapped :

0 0 1

0 1 1

1 0 0


where by SM.2.3.1.swapped I indicate that I have swapped the first and third rows of

the A matrix listed in the catalog that follows for SM.2.3.1. This swapping corresponds

to a re-labelling of the instrument values.

SM.2.3.8 consists of two selection types, and the catalog shows that it admits of

binary collection i) with α1 = (0.5, 0.5, 0)′ and α0 = (0, 0, 1)′ yielding c = (1, 0)′ as well

as binary collection ii) with α1 = (0, 0, 1)′ and α0 = (0.5, 0.5, 0)′ yielding c = (1, 0)′.

This implies that SM.2.3.8 also admits of a binary collection yielding c = (1, 1)′, with

α0 = α1 = (0.5, 0.5, 1)′.

The reason that this third binary collection is not listed under SM.2.3.8 is that SM.2.3.8

is not maximal for it: unlike collections i) and ii) which just include one of the two types

in SM.2.3.8, identification of the average treatment effect for both of the types in SM.2.3.8

holds in the less restrictive selection model SM.2.3.1.swapped, which contains the selection

types of SM.2.3.8 in its first and third columns. The sole binary collection listed under

SM.2.3.1 corresponds to c = (1, 1)′ in SM.2.3.8.

21Inferential methods for the linear program described in J.6 at the 95% level suggest that at least about 15% of the
population belongs to groups in GWARP − Gsel, provided that WARP holds.
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K.1 2 treatments, 2 instrument values

SM.2.2.1

A =

[
0 0 1

0 1 1

]
i) (t′, t) = (1, 0); αt′ = (−1, 1)′;αt = (1,−1)′; c = (0, 1, 0)′

SM.2.2.2

A =

[
1 0

0 1

]
i) (t′, t) = (1, 0); αt′ = (0, 1)′;αt = (1, 0)′; c = (0, 1)′

ii) (t′, t) = (1, 0); αt′ = (1, 0)′;αt = (0, 1)′; c = (1, 0)′

iii) (t′, t) = (1, 0); αt′ = (1, 1)′;αt = (1, 1)′; c = (1, 1)′

K.2 3 treatments, 2 instrument values

SM.3.2.1

A =

[
0 0 1 2

0 1 2 2

]
i) (t′, t) = (1, 0); αt′ = (0, 1)′;αt = (1,−1)′; c = (0, 1, 0, 0)′

SM.3.2.2

A =

[
0 0 1 2

0 1 1 2

]
i) (t′, t) = (1, 0); αt′ = (−1, 1)′;αt = (1,−1)′; c = (0, 1, 0, 0)′

SM.3.2.3

A =

[
1 2 0 1 2

0 0 1 2 2

]
i) (t′, t) = (1, 0); αt′ = (0, 1)′;αt = (1, 0)′; c = (0, 0, 1, 0, 0)′

SM.3.2.4

A =

[
2 0 1 2

0 1 1 2

]
i) (t′, t) = (1, 0); αt′ = (−1, 1)′;αt = (1, 0)′; c = (0, 1, 0, 0)′
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SM.3.2.5

A =

[
1 0 2

0 1 2

]
i) (t′, t) = (1, 0); αt′ = (1, 1)′;αt = (1, 1)′; c = (1, 1, 0)′

K.3 2 treatments, 3 instrument values

SM.2.3.1

A =

0 0 1

1 0 0

0 1 1


i) (t′, t) = (1, 0); αt′ = (1, 1, 0)′;αt = (−1, 1, 2)′; c = (1, 0, 1)′

SM.2.3.2

A =

0 1 0 1

0 0 1 1

0 0 0 1


i) (t′, t) = (1, 0); αt′ = (1, 1,−2)′;αt = (−1,−1, 2)′; c = (0, 1, 1, 0)′

SM.2.3.3

A =

1 1 0

1 0 1

0 1 1


i) (t′, t) = (1, 0); αt′ = (0.5, 0.5, 0.5)′;αt = (1, 1, 1)′; c = (1, 1, 1)′

ii) (t′, t) = (1, 0); αt′ = (1, 0, 0)′;αt = (0, 1, 1)′; c = (1, 1, 0)′

iii) (t′, t) = (1, 0); αt′ = (0, 1, 0)′;αt = (1, 0, 1)′; c = (1, 0, 1)′

iv) (t′, t) = (1, 0); αt′ = (0.5, 0.5,−0.5)′;αt = (0, 0, 1)′; c = (1, 0, 0)′

v) (t′, t) = (1, 0); αt′ = (0, 0, 1)′;αt = (1, 1, 0)′; c = (0, 1, 1)′

vi) (t′, t) = (1, 0); αt′ = (0.5,−0.5, 0.5)′;αt = (0, 1, 0)′; c = (0, 1, 0)′

vii) (t′, t) = (1, 0); αt′ = (−0.5, 0.5, 0.5)′;αt = (1, 0, 0)′; c = (0, 0, 1)′

SM.2.3.4

A =

0 1 0

1 0 1

0 1 1


i) (t′, t) = (1, 0); αt′ = (2, 1,−1)′;αt = (0, 1, 1)′; c = (1, 1, 0)′
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SM.2.3.5

A =

0 1 0 1

1 1 0 0

0 0 1 1


i) (t′, t) = (1, 0); αt′ = (0, 1, 1)′;αt = (0, 1, 1)′; c = (1, 1, 1, 1)′

ii) (t′, t) = (1, 0); αt′ = (1, 0, 0)′;αt = (−1, 1, 1)′; c = (0, 1, 0, 1)′

iii) (t′, t) = (1, 0); αt′ = (0, 1, 0)′;αt = (0, 0, 1)′; c = (1, 1, 0, 0)′

iv) (t′, t) = (1, 0); αt′ = (0, 0, 1)′;αt = (0, 1, 0)′; c = (0, 0, 1, 1)′

v) (t′, t) = (1, 0); αt′ = (−1, 1, 1)′;αt = (1, 0, 0)′; c = (1, 0, 1, 0)′

SM.2.3.6

A =

0 1 1 1

0 1 0 1

0 0 1 1


i) (t′, t) = (1, 0); αt′ = (2,−1,−1)′;αt = (−2, 1, 1)′; c = (0, 1, 1, 0)′

SM.2.3.7

A =

1 0 1

0 0 1

0 1 1


i) (t′, t) = (1, 0); αt′ = (1,−1, 0)′;αt = (0, 0, 1)′; c = (1, 0, 0)′

ii) (t′, t) = (1, 0); αt′ = (0,−1, 1)′;αt = (1, 0, 0)′; c = (0, 1, 0)′

SM.2.3.8

A =

1 0

1 0

0 1


i) (t′, t) = (1, 0); αt′ = (0.5, 0.5, 0)′;αt = (0, 0, 1)′; c = (1, 0)′

ii) (t′, t) = (1, 0); αt′ = (0, 0, 1)′;αt = (0.5, 0.5, 0)′; c = (0, 1)′

SM.2.3.9

A =

1 0 0

0 1 0

0 0 1


i) (t′, t) = (1, 0); αt′ = (1, 1, 0)′;αt = (0, 0, 1)′; c = (1, 1, 0)′
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ii) (t′, t) = (1, 0); αt′ = (1, 1, 1)′;αt = (0.5, 0.5, 0.5)′; c = (1, 1, 1)′

iii) (t′, t) = (1, 0); αt′ = (1, 0, 0)′;αt = (−0.5, 0.5, 0.5)′; c = (1, 0, 0)′

iv) (t′, t) = (1, 0); αt′ = (0, 1, 0)′;αt = (0.5,−0.5, 0.5)′; c = (0, 1, 0)′

v) (t′, t) = (1, 0); αt′ = (1, 0, 1)′;αt = (0, 1, 0)′; c = (1, 0, 1)′

vi) (t′, t) = (1, 0); αt′ = (0, 1, 1)′;αt = (1, 0, 0)′; c = (0, 1, 1)′

vii) (t′, t) = (1, 0); αt′ = (0, 0, 1)′;αt = (0.5, 0.5,−0.5)′; c = (0, 0, 1)′

SM.2.3.10

A =

0 1 0 1 1 1

0 0 1 1 0 1

0 0 0 0 1 1


i) (t′, t) = (1, 0); αt′ = (1, 0,−1)′;αt = (−1, 0, 1)′; c = (0, 1, 0, 1, 0, 0)′

SM.2.3.11

A =

0 1 1

0 1 0

0 0 1


i) (t′, t) = (1, 0); αt′ = (0, 1, 0)′;αt = (−1, 0, 1)′; c = (0, 1, 0)′

ii) (t′, t) = (1, 0); αt′ = (0, 0, 1)′;αt = (−1, 1, 0)′; c = (0, 0, 1)′

K.4 3 treatments, 3 instrument values

Omitted for brevity (251 selection models). See https://arxiv.org/abs/2406.02835.
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