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I Further empirical information and results

I.1 Estimates imposing the iso-elastic model

This section estimates bounds on ε from the iso-elastic model described in Section 4.2, under

the assumption that the distribution of h0it = η−εit is bi-log-concave (and linear as in Saez,

2010 as a special case). If h0it is BLC, bounds on ε can be deduced from the fact that

F0(40 · 1.5−ε) = F0(40) + B = P (hit ≤ 40)

where F0(h) := P (h0it ≤ h) and the RHS of the above is observable in the data. 40 · 1.5−ε is

the location of this “marginal buncher” in the h0 distribution. In particular,

ε = − ln(Q0(F0(40) + B)/40)/(ln(1.5))

where Q0 := F−1
0 is guaranteed to exist by BLC (Dümbgen et al., 2017). In particular:

ε ∈

 ln
(

1− 1−F0(40)
40f(40)

ln
(

1− B
1−F0(40)

))
− ln(1.5)

,
ln
(

1 + F0(40)
40f(40)

ln
(

1 + B
F0(40)

))
− ln(1.5)


where F0(k) = limh↑40 F (h) and f0(k) = limh↑40 f(h) are identified from the data. The

bounds on ε estimated in this way are ε ∈ [−.210,−.167] in the full sample, with all bunching

B attributed to the kink (p = 0).

Since BLC is preserved when the random variable is multiplied by a scalar, BLC of h0it

implies BLC of h1it := η−εit · 1.5ε as well. This implication can be checked in the data to the

right of 40, since η−εit · 1.5ε is observed there. BLC of h1it implies a second set of bounds on

ε, because:

F1(40 · 1.5ε) = F1(40)− B = P (hit < 40)

and the RHS is again observable in the data, where F1(h) := P (h1it ≤ h). Here 40 · 1.5ε is

the location of a second “marginal buncher” – for which h0 = 40 – in the h1 distribution.

Now we have:

ε ∈

 ln
(

1 + F1(40)
40f1(40)

ln
(

1− B
F1(40)

))
ln(1.5)

,
ln
(

1− 1−F1(40)
40f1(40)

ln
(

1 + B
1−F1(40)

))
ln(1.5)


where F1(k) = F (k) and f1(k) := limh↓40 f(h) are identified from the data. Empirically, these

bounds are estimated as ε ∈ [−.179,−.141]. Taking the intersection of these bounds with

the range ε ∈ [−.210,−.168] estimated previously, we have that ε ∈ [−.179,−.168].1 The

1Note that this interval differs slightly from the identified set of the buncher ATE as elasticity for p = 0

in Table 5. The latter quantity averages the effect in levels over bunchers and rescales: 1
40 ln(1.5)E[h0it(1 −

1.5ε)|hit = 40], but the two are approximately equal under 1.5ε ≈ 1 + .5ε and ln(1.5) ≈ .5.
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identified set is reduced from a length of .043 to .012, a factor of nearly 4. This underscores

the importance of using the data from both sides of the kink for identification. Since a linear

density satisfies BLC, the identification assumption of Saez, 2010, that the density of h0 is

linear, picks a point within the identified set under BLC. Table 7 verifies that this is born

out in estimation (with results are expressed there as level effects rather than an elasticity).

As discussed in Section 4.2, a value fo ε ≈ −.175 is difficult to reconcile with a realistic

view of revenue production with respect to hours. Note that if instead of the isoelastic model,

production were instead described by a more general separable and homogeneous production

function like

πit(z, h) = ait · f(h)− z

then treatment effects are ∆it = g(1/ηit) − g(1.5/ηit), where g(m) := (f ′)−1(m) yields the

hours h at which f ′(h) = m. We can then use the fundamental theorem of calculus to express

this as (h1it−h0it)/h0it = 1.5ε̄it− 1 where ε̄it is a unit-specific weighted average of the inverse

elasticity of production between 1.5ηit and ηit: ε̄it :=
∫ 1.5η−1

it

η−1
it

λ(m) · ε(g(m)) · dm, and λ(m) =
1/m
ln 1.5

is a positive function integrating to one. Here ε̄it plays the role of an “effective” elasticity

parameter that determines the size of treatment effects when the production function is f(h).

This suggests that simply generalizing the functional form f(h) is not sufficient to reconcile

a realistic picture of production with the data, since the observed bunching still maps to

a local average elasticity of f(h). However, the general choice model that allows multiple

margins of choice x can.

I.2 A test of the Trejo (1991) model of straight-time wage adjust-

ment

One way to assess the role of the wage rigidity reported in Table 2 is to test directly whether

straight-time wages and hours are plausibly related at the weekly level according to Equation

(1). Given the kink in Eq. (1), we can perform such a test using the wage and hours reported

on each paycheck, while making only weak differentiability assumptions on unobservables for

identification.

Suppose that for some subset of units it, wages are actively adjusted to the hours they

work according to Equation (1), in order to target some total earnings zit. Denote the

corresponding units by a latent variable Ait = 1. These units may come from workers with

limited variation in their schedules in those weeks in which hit = h∗i for some typical hours

h∗i according to which their wages were set by Eq. (1) at hiring. Ait = 1 units might

instead have dynamic wages that adjust to week-by-week variation in their hours hit. Let

Ait = 0 denote units for whom the worker’s wage is determined in some other way. Let

q(h) = P (Ait = 1|hit = h) denote the proportion of these two groups at various points in the

hours distribution. An extreme version of the fixed-job model of Trejo (1991) for example,
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would have q(h) = 1 for all h.

By the law of iterated expectations and some algebra we have that:

E [lnwit|hit = h] = q(h) {E [ln zit|hit = h,Ait = 1]− ln (h+ 0.5(h− 40)1(h ≥ 40))}
− (1− q(h))E [lnwit|hit = h,Ait = 0]

The middle term above introduces a kink in the conditional expectation of the log of straight-

time wages with respect to hours. If we assume thatE [ln zit|hit = h,Ait = 1], E [lnwit|hit = h,Ait = 0]

and q(h) are all continuously differentiable in h, then the magnitude of this kink identifies

q(40), the proportion of active wage responders local to h = 40:

lim
h↓40

d

dh
E [lnwit|hit = h]− lim

h↑40

d

dh
E [lnwit|hit = h] = −1

2
· q(40)

40

These continuous differentiability assumptions are reasonable, if wage setting according to

Equation (1) is the only force introducing non-smoothness in the relationship between wages

and hours at 40. For instance, we assume that production technologies do not have any

special features at 40 hours that would cause the distribution of target earnings levels zit
among the Ait = 1 units to itself have a kink around hit = 40.

Figure 1 reports the results of fitting separate local linear functions to the CEF of log

wages on either side of h = 40. We can reject the hypothesis that the fixed-job model

applies to all employees at all times, near 40. However, the data appear to be consistent

with a proportion q(40) ≈ 0.25 of all paychecks close to 40 hours reflecting an hours/wage

relationship governed by Equation (1). This can be rationalized by straight-wages being

updated intermittently to reflect expected or anticipated hours, which vary in practice quite

a bit between pay periods.
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Figure 1: A test of the fixed-jobs model presented in Trejo (1991), based on the magnitude of the

kink in the conditional expectation of log wages with respect to hours at 40 (see above). Regression

lines fit on each side with a uniform kernel within 25 hours of the 40. This figure closely resembles

Figure 5 of Bick et al. (2022) which uses CPS data for hourly workers.

I.3 Details of the employment effect calculation

Taking my prefered estimate that hourly workers work approximately 1/3 of an hour less

per week on average because of the rule, hours per worker are reduced by just under 1%. If

we assume the same sized effect occurs for covered salaried workers, and ignore scale effects

of the overtime rule on the total number of labor hours in FLSA-eligible jobs, this suggests

employment among such jobs is 1% higher than it would be without the overtime premium.

This serves as an upper bound, since overall total hours worked may decrease due to overtime

regulation.

Following Hamermesh (1993), assume that the percentage change in employment decom-

poses as:

∆ lnE|EH − η ·∆ lnLC · η

α− η
(1)

where η is constant-output demand elasticity for labor, α is a labor supply elasticity. Fol-

lowing Hamermesh (1993) I use ∆ lnLC = 0.7% based on Ehrenberg and Schumann (1982),

calibrated assuming that 80% of labor costs come from wages with overtime representing 2%

of total hours. ∆ lnE|EH is the quantity implied by my estimates: the percentage change in

employment that would occur were the total number of worker-hours EH unchanged. Taking

a preferred estimate of the average effect of the FLSA as reported in Table 5 to be about 1/3

of an hour, I use a value of ∆ lnE|EH = 1/3
40
≈ 0.9%.

“Best-guess” values for the other parameters used by Hamermesh, 1993 are η = −0.3 and

α = 0.1, based on a review of empirical estimates. This yields 0.17 percentage points for the
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η

-0.15 -0.3 -0.5

0 0.76 0.64 0.50

α 0.1 0.80 0.70 0.56

0.5 0.85 0.79 0.68

Table 1: Back-of-the-envelope employment effects based on the average reduction in hours esti-

mated via the bunching design and Equation (1), as a function of the demand elasticity for labor

(rather than capital) η, and labor supply elasticity α. The bold entry reflects “best-guess” values

of η and α.

substitution term η ·∆ lnLC · η
α−η , suggesting that the effect of the FLSA is attenuated from

roughly 0.87 percentage points to about a 0.70 percentage point net increase in employment.

I assume that the FLSA overtime rule applies to a total of 100 million workers, based on

80 million hourly workers combined with an estimated 20 million covered salary workers

Kimball and Mishel (2015). Assuming the same percentage increase in employment applies

to hourly workers and covered salary workers, the above estimate corresponds to 700,000 jobs

created. Generating a negative overall employment response by assuming higher substitution

to capital requires η = −1.25, well outside of empirical estimates.

I.4 Additional figures and treatment effect estimates

Figure 2: Left: distribution of the largest integer m = 1 . . . 10 that maximizes the proportion of

worker i’s paychecks for which hours are divisible by m. This can be thought of as the granularity

of hours reporting for worker i. Right: distribution of changes in total hours between subsequent

pay periods (truncated at -20 and 20)
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(1) (2) (3) (4) (5)

Work hours=40 OT hours Total work hours Work hours=40 OT hours

Tenure 0.000400 0.0515 0.0796

(0.95) (3.95) (3.31)

Age 0.000690 0.00266 0.0250

(3.82) (0.74) (3.25)

Female 0.0140 -1.322 -1.943

(2.08) (-9.07) (-6.08)

Minimum wage worker 0.00121 -1.687 -5.352

(0.29) (-2.39) (-4.08)

Firm just hired -0.00572 0.553

(-2.95) (5.78)

Date FE Yes Yes Yes Yes Yes

Employer FE Yes Yes Yes

Worker FE Yes Yes

Observations 499619 499619 499619 628449 628449

R squared 0.229 0.264 0.260 0.387 0.515

t statistics in parentheses

Table 2: Columns (1)-(3) regress hours-related outcome variables on worker characteristics, with

fixed effects for the date and employer. Standard errors clustered by firm. Columns (4)-(5) show

that bunching and overtime hours among incumbent workers are both responsive to new workers

being hired within a firm, even controlling for worker and day fixed effects. “Firm just hired”

indicates that at least one new worker appears in payroll at the firm this week, and the new workers

are dropped from the regression. “Minimum wage worker” indicates that the worker’s straight-time

wage is at or below the maximum minimum wage in their state of residence for the quarter. Tenure

and age are measured in years, and age is missing for some workers.

(1) (2) (3)

Total work hours Total work hours Total work hours

R squared 0.366 0.499 0.626

Date FE Yes

Worker FE Yes Yes

Employer x date FE Yes Yes

Observations 621011 628449 620854

t statistics in parentheses

Table 3: Decomposing variation in total hours. Worker fixed effects and employer by day fixed

effects explain about 63% of the variation in total hours.
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p=0 p from PTO

Bunching Effect of the kink Net Bunching Effect of the kink

Accommodation and Food Services 0.036 [-0.368, -0.248] 0.036 [-0.368, -0.248]

(N=69427) [0.029, 0.044] [-0.450, -0.192] [0.029, 0.044] [-0.450, -0.192]

Administrative and Support 0.062 [-1.190, -0.681] 0.009 [-0.178, -0.101]

(N=49829) [0.051, 0.074] [-1.424, -0.548] [0.005, 0.013] [-0.256, -0.057]

Construction 0.139 [-1.550, -1.121] 0.029 [-0.330, -0.219]

(N=136815) [0.128, 0.149] [-1.771, -0.944] [0.022, 0.035] [-0.422, -0.157]

Health Care and Social Assistance 0.051 [-0.633, -0.320] 0.005 [-0.065, -0.030]

(N=13951) [0.034, 0.069] [-1.020, -0.129] [0.000, 0.010] [-0.155, 0.012]

Manufacturing 0.137 [-1.167, -0.850] 0.018 [-0.162, -0.110]

(N=112555) [0.126, 0.148] [-1.282, -0.766] [0.016, 0.021] [-0.192, -0.090]

Other Services 0.160 [-0.977, -0.811] 0.037 [-0.235, -0.176]

(N=19263) [0.132, 0.188] [-1.300, -0.538] [0.024, 0.049] [-0.345, -0.095]

Professional, Scientific, Technical 0.136 [-1.192, -0.959] 0.010 [-0.090, -0.063]

(N=47705) [0.117, 0.155] [-1.411, -0.767] [0.003, 0.016] [-0.150, -0.021]

Real Estate and Rental and Leasing 0.187 [-1.766, -1.466] 0.097 [-0.954, -0.725]

(N=13498) [0.141, 0.234] [-2.303, -1.002] [0.060, 0.135] [-1.378, -0.392]

Retail Trade 0.129 [-1.685, -1.342] 0.032 [-0.434, -0.308]

(N=56403) [0.112, 0.146] [-2.274, -0.908] [0.024, 0.040] [-0.626, -0.175]

Transportation and Warehousing 0.091 [-1.590, -0.998] 0.015 [-0.274, -0.166]

(N=25926) [0.070, 0.111] [-1.935, -0.783] [0.009, 0.022] [-0.406, -0.086]

Wholesale Trade 0.126 [-2.122, -1.297] 0.046 [-0.776, -0.476]

(N=66678) [0.110, 0.141] [-2.474, -1.088] [0.037, 0.055] [-1.016, -0.333]

All Industries 0.116 [-1.466, -1.026] 0.027 [-0.347, -0.227]

(N=630217) [0.112, 0.121] [-1.542, -0.972] [0.024, 0.029] [-0.386, -0.202]

Table 4: Estimates of the hours effect of the FLSA by industry, based on p = 0 (left) or p

estimated from paid time off (right). Estimates are reported only for industries having at least

10,000 observations. 95% bootstrap confidence intervals in gray, clustered by firm. In the case of

Accommodation and Food Services, P (hit = 40|ηit > 0) > B, so I take the PTO-based estimate to

be p = 0.

Table 5: Hours distribution by gender, conditional on different than 40 for visibility (bunching can

be read from Fig 6).
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p=0 p from PTO

Net bunching: 0.090 0.011

[0.083, 0.098] [0.009, 0.012]

Buncher ATE [1.507, 1.709] [0.187, 0.190]

[1.387, 1.855] [0.150, 0.227]

Buncher ATE as elasticity [0.093, 0.105] [0.012, 0.012]

[0.086, 0.114] [0.009, 0.014]

Average effect of kink on hours [-0.633, -0.489] [-0.078, -0.054]

[-0.688, -0.446] [-0.094, -0.043]

———————–

Num observations 147953 147953

Num clusters 352 352

p=0 p from PTO

0.124 0.031

[0.119, 0.129] [0.028, 0.034]

[3.074, 3.635] [0.828, 0.868]

[2.777, 3.991] [0.717, 0.986]

[0.190, 0.224] [0.051, 0.053]

[0.171, 0.246] [0.044, 0.061]

[-1.867, -1.271] [-0.482, -0.311]

[-2.060, -1.149] [-0.549, -0.269]

482264 482264

524 524

Table 6: Results of the bunching estimator among women (left) vs. men (right).

p=0 p from non-changers p from PTO

Net bunching: 0.116 0.057 0.027

[0.112, 0.120] [0.055, 0.058] [0.024, 0.030]

Treatment effect

———————–

Linear density 2.794 1.360 0.644

[2.636, 2.952] [1.287, 1.432] [0.568, 0.719]

Monotonic density [2.497, 3.171] [1.215, 1.544] [0.575, 0.731]

[2.356, 3.353] [1.153, 1.629] [0.516, 0.805]

BLC buncher ATE [2.614, 3.054] [1.324, 1.435] [0.640, 0.666]

[2.493, 3.205] [1.264, 1.501] [0.574, 0.736]

———————–

Num observations 630217 630217 630217

Num clusters 566 566 566

Table 7: Treatment effects in levels with comparison to alternative shape constraints. Rows “Linear

density” and “Monotonic density” assume homogenous treatment effects.
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p=0 p from non-changers p from PTO

Buncher ATE as elasticity [0.161, 0.188] [0.082, 0.088] [0.039, 0.041]

[0.153, 0.198] [0.077, 0.093] [0.035, 0.046]

———————–

Average effect of FLSA on hours [-1.466, -1.329] [-0.727, -0.629] [-0.347, -0.294]

[-1.541, -1.260] [-0.769, -0.593] [-0.385, -0.262]

———————–

Avg. effect among directly affected [-2.620, -2.375] [-1.453, -1.258] [-0.738, -0.624]

[-2.743, -2.259] [-1.532, -1.189] [-0.814, -0.560]

———————–

Double-time, average effect on hours [-2.604, -0.950] [-1.239, -0.492] [-0.580, -0.241]

[-2.716, -0.904] [-1.293, -0.464] [-0.639, -0.215]

Table 8: Estimates of policy effects (replicating Table 5) ignoring the potential effects of changes

to straight wages.

J Modeling the determination of wages and “typical”

hours

J.1 A simple model with exogenous labor supply

Each firm faces a labor supply curve N(z, h), indicating the labor force N it can maintain if

it offers total compensation z to each of its workers, when they are each expected to work h

hours per week. The firm chooses a pair (z∗, h∗) based on the cost-minimization problem:

min
z,h,K,N

N · (z + ψ) + rK s.t. F (Ne(h), K) ≥ Q and N ≤ N(z, h) (2)

where the labor supply function is increasing in z while decreasing in h, e(h) represents the

“effective labor” from a single worker working h hours, and ψ represents non-wage costs

per worker. The quantity ψ can include for example recruitment effort and training costs,

administrative overhead and benefits that do not depend on h. Concavity of e(h) captures

declining productivity at longer hours, for example from fatigue or morale effects. The

function F maps total effective labor Ne(h) and capital into level of output or revenue that

is required to meet a target Q, and r is the cost of capital K. For simplicity, workers within

a firm are here identical and all covered by the FLSA.

To understand the properties of the solution to Equation (2), let us examine two illustra-

tive special cases.
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Special case 1: an exogenous competitive straight-time wage (the “fixed-wage

model”)

Much of the literature on hours determination has taken the hourly wage as a fixed input to

the choice of hours, and assumed that at that wage the firm can hire any number of workers,

regardless of hours. This can be motivated as a special case of Equation (2) in which there

is perfect competition on the straight-time wage, i.e. N(z, h) = N̄1(ws(z, h) ≥ w) for some

large number N̄ and wage w exogenous to the firm, where the function ws(·) is defined in

Equation (1). Then Equation (2) reduces to:

min
N,h,K

N · (hw + 1(h > 40)(w/2)(h− 40) + ψ) + rK s.t. F (Ne(h), K) ≥ Q (3)

By limiting the scope of labor supply effects in the firm’s decision, Equation (3) is well-suited

to illustrating the competing forces that shape hours choice on the production side: namely

the fixed costs ψ on the one hand and the concavity of e(h) on the other. Were ψ equal

to zero with e(h) strictly concave globally, a firm solving Equation (3) would always find it

cheaper to produce a given level of output with more workers working less hours each. On

the other hand, were ψ positive and e weakly convex, it would always be cheapest to hire

a single worker to work all of the firm’s hours. In general, fixed costs and declining hours

productivity introduce a tradeoff that leads to an interior solution for hours.2

Equation (3) introduces a kink into the firm’s costs as a function of hours, much as

short-run wage rigidity does in my dynamic analysis. However, the assumption that the firm

can demand any number of hours at a set straight-time wage rate is harder to defend when

thinking about firms long-run expectations, a point emphasized by Lewis (1969). Equilibrium

considerations will also tend to run against the independence of hourly wages and hours - a

mechanism explored in Appendix J.2.

Special case 2: iso-elastic functional forms (the “fixed-job model”)

By placing some functional form restrictions on Equation (2), we can obtain a closed-form

expression for (z∗, h∗). In particular, when both labor supply and e(h) are iso-elastic, produc-

tion is separable between capital and labor and linear in the latter, and firms set the output

target Q to maximize profits, Proposition J.1 characterizes the firm’s choice of earnings and

hours:

Proposition J.1. When i) e(h) = e0h
η and N(z, h) = N0z

βzhβh; ii)F (L,K) = L+φ(K) for

some function φ; and iii) Q is chosen to maximize profits, the (z∗, h∗) that solve Equation

2In the fixed-wage special case, these two forces along with the wage are in fact sufficient to pin down

hours, which do not depend on the production function F or the chosen output level Q. See e.g. Cahuc and

Zylberberg (2014) for the case in which e(h) is iso-elastic.
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(2) are:

h∗ =

[
ψ

e0

· β

β − η

]1/η

and z∗ = ψ · βz
βz + 1

η

β − η

where β := |βh|
βz+1

, provided that ψ > 0, η ∈ (0, β), βh < 0 and βz > 0. Hours and compensation

are both decreasing in |βh| and increasing in βz.

Proof. See Appendix H.

The proposition shows that the hours chosen depend on labor supply via β = |βh|
1+βz

, which

gauges how elastic labor supply is with respect to hours relative to earnings. The more

sensitive labor supply is to a marginal increase in hours as compared with compensation,

the higher β will be and lower the optimal number of hours. The proof of Proposition

J.1 also shows that the general model with N(z, h) differentiable (unlike in Special Case 1)

can support an interior solution for hours even without fixed costs ψ = 0. Proposition J.1

provides an example of the fixed-job model: in the absence of perfect competition on the

straight-wage, anticipated hours h∗, total pay z∗, and employment N∗ := N0 · (z∗)βz(h∗)βh
are unaffected by the FLSA overtime rule, in this simple static model.

J.2 Endogenizing labor supply in an equilibrium search model

The last section treated the labor supply function N(z, h) as exogenous, but in general

it might be viewed as an equilibrium object that reflects both worker preferences over in-

come/leisure and the competitive environment for labor. It is conceivable that equilibrium

forces would lead to a labor supply function like that of the fixed-wage model, in which the

FLSA has an effect on the hours set at hiring.

In this section, I show that the prediction of the fixed-job model that the FLSA has

litte to no effect on h∗ or z∗ is robust to embedding Equation (2) into an extension of the

Burdett and Mortensen (1998) model of equilibrium with on-the-job search.3 In the context

of the search model, the only effect of the overtime rule on the distribution of h∗ is mediated

through the minimum wage, which rules out some of the (z∗, h∗) pairs that would occur in the

unregulated equilibrium. In a numerical calibration, this effect is quite small, suggesting that

equilibrium effects play only a minor role in how the FLSA overtime rule impacts anticipated

hours or straight-time wages. This motivates the strategy in Section 4.4, in which z∗ and h∗

are treated as fixed when considering the impact of the FLSA on straight-wages.

J.2.1 The model

I focus on a minimal extension of Burdett and Mortensen (1998) that takes firms to be

homogeneous in their technology and workers to be homogeneous in their tastes over the

3This remains true even in the perfectly competitive limit of the model, the basic reason being that workers

choose to accept jobs on the basis of their known total earnings z∗, rather than the straight-time wage.
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tradeoff between income and working hours.4 Let there be a large number Nw of workers and

large number Nf of firms, and define m = Nw/Nf .
5 Formally, we model this as a continuum

of workers with mass m, and continuum of firms with unit mass. Firms choose a value of

pay z and hours h to apply to all of their workers. Each period, there is an exogenous

probability λ that any given worker receives a job offer, drawn uniformly from the set of

all firms. Employed workers accept a job offer when they receive an earnings-hours package

that they prefer to the one they currently hold, where preferences are captured by a utility

function u(z, h) taken to be homogeneous across workers and strictly quasiconcave, where

uz > 0 and uh < 0. If a worker is not currently employed, they leave unemployment for a job

offer if u(z, h) ≥ u(b, 0), where b represents a reservation earnings level required to incent a

worker to enter employment. Workers leave the labor market with probability δ each period,

and an equal number enters the non-employed labor force.

Before we turn to earnings-hours posting decision of firms, we can already derive several

relationships that must hold for the earnings-hours distribution in a steady state equilibrium.

First note that the share unemployed v of the workforce must be v = δ
δ+λ

, since massm(1−v)δ

enters unemployment each period, and mλv leaves (taking for granted here that firms only

post job offers that are preferred to unemployment, which is indeed a feature of the actual

equilibrium). Let’s say that job (z, h) is “inferior” to (z′, h′) when u(z, h) ≤ u(z′, h′). Let

PZH be the firm-level distribution over offers (Zj, Hj), and define

F (z, h) := PZH(u(Zj, Hj) ≤ u(z, h)) (4)

to be the fraction of firms offering inferior job packages to (z, h). The separation rate of

workers at a firm choosing (z, h) is thus: s(z, h) = δ+λ(1−F (z, h)). To derive the recruitment

of new workers to a given firm each period, we define the related quantityG(z, h) – the fraction

of employed workers that are at inferior firms to (z, h). In a steady state, note that G(z, h)

must satisfy

m(1− v) ·G(z, h)(δ + λ(1− F (z, h))︸ ︷︷ ︸
mass of workers leaving set of inferior firms

= mvλF (z, h)︸ ︷︷ ︸
mass of workers entering set of inferior firms

since the number of workers at firms inferior to (z, h) is assumed to stay constant. To get

the RHS of the above, note that workers only enter the set of firms inferior to (z, h) from

unemployment, and not from firms that they prefer. This expression allows us to obtain the

4The model presented here bears similarity to that of Hwang et al. (1998), which also considers search

equilibrium with non-wage amenities such as hours. My model generalizes the preferences of workers to

be possibly non-quasilinear, which allows my model to support hours dispersion in equilibrium, even with

identical firms. In their model, by contrast, firms are allowed to be heterogeneous but all firms with the same

production technology would offer the same quantity of hours.
5Here we largely follow the notation of the presentation of the Burdett & Mortensen model by Manning

(2003).
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recruitment function R(z, h) to a firm offering (z, h). Recruits will come from inferior firms

and from unemployment, so that

R(z, h) = λm ((1− v)G(z, h) + v) = m

(
δλ

δ + λ(1− F (z, h))

)
Combining with the separation rate, we obtain the steady-state labor supply function facing

each firm:

N(z, h) = R(z, h)/s(z, h) =
mδλ

(δ + λ(1− F (z, h))2 (5)

Eq. (5) is analogous to the baseline Burdett and Mortensen model without hours, with the

quantity F (z, h) playing the role of the firm-level CDF of wages from the baseline model.

Now we turn to how the form of F (z, h) in general equilibrium. We take the profits of

firms to be

π(z, h) = N(z, h)(p(h)− z) = mδλ · p(h)− z
(δ + λ(1− F (z, h))2 (6)

where the function p(h) corresponds to net revenue per worker e(h)−ψ, with e(h) being some

weakly concave and increasing function with e(0) = 0, and ψ recurring non-wage costs per

worker. To simplify some of the exposition, we will emphasize the simplest case of p(h) = p·h,

such that worker hours are perfectly substitutable across workers.

In equilibrium, the identical firms each playing a best response to F (z, h), and thus all

choices of (z, h) in the support of PZH must yield the same level of profits π∗. This gives an

expression for F (z, h) over all (z, h) in the support of PZH , in terms of π∗:

F (z, h) = 1 +
δ

λ
−
√
mδ

λ
· p(h)− z

π∗
(7)

It follows from Eqs. (7) and (5) that we can rank firms in equilibrium by F (z, h) and

therefore by size according to the quantity z−p(h). Since Eq. (5) is continuously differentiable

in (z, h), we can rule out mass points in PZH by an argument paralleling that in Burdett and

Mortensen (1998).6

To fully characterize the equilibrium, first note that PZH can put a positive density on

at most one point along each isoquant of z − p(h), given that utility is strictly quasiconcave

but z− p(h) is weakly convex. Offers in the support of PZH thus lie along a one dimensional

path through R2, and we can parametrize them by a scalar t ∈ [0, 1], such that supp(PZH) =

{(z(t), h(t))}t∈[0,1] and t = F (z(t), h(t)). Observe that each (z(t), h(t)) must pick out the

6Suppose PZH(z, h) = δ > 0 for some (z, h). Then any firm located at (z, h) and earning positive profits

could increase their profits further by offering a sufficiently small increase in compensation (or reduction in

hours, or a combination of both). Since F (z + δz, h) = F (z, h) + δ to first order, there exists a small enough

δz such that π(z + δt, h) > π(z, h) by Eq. (6).

14



point along its respective isoquant of z − p(h) which delivers the highest utility to workers,

i.e.:

(z(t), h(t)) = argmaxz,hu(z, h) s.t. z − p(h) = η(t) (8)

where η(t) = π∗λ
mδ

(1− t
1+δ/λ

)2 is the value of p(h(t))−z(t) such that F (z(t), h(t)) = t according

to Eq.(7), viewed as a function of t.7 The slope of the path (z(t), h(t)) can be derived from

the first order condition for the above problem and the implicit function theorem:

z′(t)

h′(t)
= −uhh(z, h) + p′′(h)uz(z, h) + p′(h)uzh(z, h)

p′(h)uzz(z, h) + uzh(z, h)

∣∣∣∣
(z,h)=(z(t),h(t))

If preferences were quasilinear in income, then the curve AB shown in Figure 3 would be a

vertical line rising from point A and there would be no hours dispersion in equilibrium (as in

Hwang et al., 1998). Figure 3 instead depicts the path {(z(t), h(t))}t∈[0,1] for a generic case

in which preferences are neither homothetic nor quasilinear. If preferences were homothetic

AB would be a straight line.

h∗

b

z∗

hours h

co
m
p
en
sa
ti
on

z

ICb

F (z, h) = 1

z = ph

F (z, h) = 0

A

B

Figure 3: The support of the equilibrium distribution of compensation-hours offers (z, h) lies along

the arrowed (blue) curve AB. Figure shows the case of perfect hours substitutability p(h) = ph.

Plain curve ICb is the indifference curve passing through the unemployment point (b, 0). The least

desirable firm in the economy lies at the pair (z∗, h∗), labeled by A, where ICb has a slope of p.

The other points chosen by firms are found by starting at point A and moving in the direction of

higher utility, while maintaining a marginal rate of substitution of p between hours and earnings.

This path intersects the line of solutions to F (z, h) = 1 given Eq. (7) at point B. Note that this

line still lies below the zero profit line z = ph, as firms make positive profit.

7If instead we had u(z(t), h(t)) < max(z,h):z−p(h)=F−1(t) u(z, h), then any firm located at (z(t), h(t)) could

profitably deviate to the argmax while keeping profits per worker constant but increasing their labor supply

by attracting workers from (z(t), h(t)).
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To pin down the initial point A, we note that it must lie on the indifference curve passing

through the unemployment point (b, 0), labeled as ICb in Figure 3.8 I assume that the

marginal rate of substitution between compensation and hours is less than p′(0) at (z, h) =

(b, 0) (such that there are gains from trade) and increases continuously with h, eventually

passing p′(h) at some point h∗. This point is unique given strict quasiconcavity of u(·).
Let z∗ be the earnings value such that workers are indifferent between (z∗, h∗) and unem-

ployment (b, 0), which represents a reservation level of utility required to enter employment.

Using that F (z∗, h∗) = 0 and π∗ = π(z∗, h∗), we can rewrite Equation (7) as:

F (z, h) =

(
1 +

δ

λ

)[
1−

√
p(h)− z
p(h∗)− z∗

]
(9)

The firms at point B in Figure 3 thus solve z − p(h) =
(

δ
δ+λ

)2
(z∗ − p(h∗)), and equilibrium

profits are π∗ = m(p(h∗)− z∗) · λ/δ

(1+λ/δ)2
. Note that in equilibrium, there exists dispersion not

only in both earnings and in hours (provided preferences are not quasi-linear), but also in

effective hourly wages, as the ratio z(t)/h(t) is also strictly increasing with t. Note that π∗

goes to zero in the limit that λ/δ → ∞. In this limit dispersion over hours, earnings, and

hourly earnings all disappear as the line AB collapses to a single point on the zero profit line

z = p(h).9

J.2.2 Effects of FLSA policies

Now consider the introduction of a minimum wage, which introduces a floor on the hourly

wage w := z/h. I assume that the point (z∗, h∗) does not satisfy the minimum wage, so that

the minimum wage binds and rules out part of the unregulated support of PZH . The left

panel of Figure 4 depicts the resulting equilibrium, in which the initial point (z(0), h(0)) moves

to the point marked A′, at which the marginal rate of substitution between compensation

and hours is p′(h), but the compensation-hours pair just meets the minimum wage. This

compresses the distribution PZH compared with the unregulated equilibrium from Figure 3,

which now follows a subset of the original path AB, reflecting a reduction in hours and an

increase in total compensation.

The right panel of Figure 4 shows how equilibrium is further affected if in addition to

a binding minimum wage, premium pay is required at a higher minimum wage 1.5w for

hours in excess of 40, provided that the point A′ lies at an hours value that is greater than

8If it were to the northwest of the ICb curve, a firm located there could increase profits by offering a lower

value of z−p(h), since given that F (z(0), h(0)) = 0 their steady state labor supply already only recruits from

unemployment. However, they cannot offer a pair that lies to the southeast of ICb, since they could never

attract workers from unemployment.
9Note that there is no contradiction here as the argument that point A must be on ICb relies on

F (z(0), h(0)) = 0, which is implied by no mass points in PZH , in turn implied by firms making positive

profit.

16



h∗

b

z∗

hours h

co
m
p
en
sa
ti
o
n
z

ICb

IC ′

z = ph

A

z = wminh

A′B

40 h∗

b

z∗

hours h

co
m
p
en
sa
ti
o
n
z

ICb

IC ′

z = ph

A

z = w(h)

A′
A′′
B

Figure 4: Left panel shows the support of the equilibrium distribution of compensation-hours

offers (z, h) under a binding minimum wage. The compensation hours pairs that do not meet w

are indicated by the shaded region. The lowest-wage offer in the economy moves from point A

in the unregulated equilibrium to the point A′ on the minimum wage line z = wh at which the

marginal rate of substitution between compensation and hours equals p. Right panel shows how

this effect is augmented when overtime premium pay for hours in excess of 40 is required, and A′

lies at greater than 40 hours. In this case the support of PZH begins at point A′′, which lies on the

kinked minimum wage function w(h).

40. In this case, (z(0), h(0)) will lie at point A′′, at which the marginal rate of substitution

between compensation and hours is equal to h′, and compensation is equal to the minimum-

compensation function under both the minimum wage and overtime policies.

J.2.3 Calibration

To allow wealth effects in worker utility while facilitating calibration based on existing em-

pirical studies, I take worker utility to follow the Stone-Geary functional form:

u(z, h) = β log(z − γz) + (1− β) log(γh − h)

This simple specification allows a closed form solution to the path (z(t), h(t)), given by the

following Proposition, which follows from the optimization problem (8) and working out the

initial point (z(0), h(0)) in each policy regime.

Proposition. Under Stone-Geary preferences and linear production p(h) = ph − ψ, the

equilibrium offer distribution is a uniform distribution over {(z(t), h(t))}t∈[0,1], where:(
z(t)

h(t)

)
=

(
pβγh + (1− β)γz − βψ − βη(t)

βγh + 1−β
p

(γz + ψ) + (1−β)
p
η(t)

)

where η(t) =
(

1− t
1+δ/λ

)2

· (ph(0)− z(0)− ψ). The initial point (z(0), h(0)) is
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1. h(0) = γh −
(

(b−γc)(1−β)
pβ

)β
γ1−β
h and z(0) = z∗ = γz +

(
pβγh
1−β

)1−β
((b− γc)(1− β))β in

the unregulated equilibrium

2. h(0) = ( pβ
1−βγh + γz)(w− pβ

1−β )−1 and z(0) = wh(0) with a binding minimum wage of w

(binding in the sense that z∗ < wh∗)

3. h(0) = ( pβ
1−βγh + γz + 20w)(1.5w− pβ

1−β )−1 and z(0) = 1.5wh(0)− 20w with a minimum

wage of w and time-and-a-half overtime pay after 40 hours, if the expression for h(0)

in item 2. is greater than 40

Moments with respect to the worker distribution can be evaluated for any measurable function

φ(z, h) as:

Eworkers[φ(Zi, Hi)] =

(
1 +

λ

δ

)∫ 1

0

φ(z(t), h(t)) ·
(

1 +
λ

δ
(1− t)

)−2

dt

I calibrate the model focusing on a lower-wage labor market where productivity is a

constant p = $15. I allow non-wage costs of ψ = $100 a week, with the value based on

estimates of benefit costs in the low-wage labor market.10 I take b = $250 corresponding

to unemployment benefits that can be accrued at zero weekly hours of work.11. I calibrate

the factor λ/δ using estimates from Manning (2003) using the proportion of recruits from

unemployment. Using Manning’s estimates from the US in 1990 of about 55% of recruits

coming from unemployment, this implies a value of λ/δ ≈ 3 in the baseline Burdett and

Mortensen (1998) model.

To calibrate the preference parameters, I first pin down β from estimates of the marginal

propensity to reduce earnings after random lottery wins (Imbens et al. 2001; Cesarini et al.

2017). Both of these studies report a value in the neighborhood of β = 0.85. I take a value of

γz = $200 as the level of consumption at which the marginal willingness to work is infinite,

and take γh = 50 hours of work per week. I choose this value according to a rule-of-thumb

as the average hours among full-time workers in the US (42.5), divided by β.12

Given these values, we can compute moments of functions of the joint distribution of

compensation and hours using the Proposition and numerical evaluation of the integrals.

Table 9 reports worker-level means of hours, weekly compensation, and the hourly wage

z/h, as well as employment and profits per worker averaged across the firm distribution. In

10Specifically, I take a benefit cost of $2.43 per hour worked for the 10th percentile of wages in 2019: BLS

ECEC, multiplied by the average weekly hours worked of 42.5 from the 2018 CPS summary, which results

in 102.425 ≈ 100.
11Iuse the UI replacement rate for single adults 2 months after unemployment from the OECD. Taking

this for individuals at 2/3 of average income (the lowest available in this table), and then use a BLS figure

for average income at the 10% percentile of 22, 880 , we have b ≈ $22, 880 · 0.6/52.25 = $263
12 Cesarini et al. (2017) point out that when γc and no-unearned income, optimal hours choice is βγh. By

comparison, these authors calibrate γh to be about 35 hours in the Swedish labor market.
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the unregulated equilibrium, the lowest-compensated workers work about 49 hours a week

earning about $300, while the highest-compensated workers work about 46 hours and earn

more than $550. This equates to a more than doubling of the hourly wage, which is about $6

for the t = 0 workers and over $12 for the t = 1 workers. For each of the first three variables,

the mean across workers is much closer to the t = 1 value than the t = 0 value (the largest

firm is about 16 times as large as the smallest).

Unregulated equilibrium w = 7.25
w = 7.25

& OT

w = 12

& OT

t=0 t=1 mean mean mean mean

weekly hours 48.85 45.71 46.34 46.18 46.11 45.51

weekly earnings 297.36 564.68 511.22 524.31 530.93 581.78

hourly wage 6.09 12.35 11.06 11.37 11.53 12.78

firm size / smallest 1.00 16.00 4.00 4.00 4.00 4.00

weekly profit per worker 335.46 20.97 146.76 119.81 106.18 1.49

Table 9: Results from the calibration. The parameter t ∈ [0, 1] indicates firm rank in desirability

from the perspective of workers. Means for weekly hours, weekly earnings, and hourly wages are

computed with respect to the worker distribution, while firm size and profits per worker is averaged

with respect to the firm distribution.

The third column of Table 9 adds a minimum wage set at the current federal rate of

$7.25. This provides a small increase of about 30 cents to the average hourly wage, which

now begins at $7.25 for t = 0 rather than $6.06. Note that the minimum wage provides

spillovers by reallocating firm mass up the entire wage ladder, beyond the mechanical effect

of increasing the wages of those previously below 7.25. Average hours worked are decreased

slightly due to the minimum wage, by about ten minutes per week. As this effect is mediated

by a wealth effect in labor supply, we can expect it to be small unless worker preferences

deviate significantly from quasi-linearity with respect to income. With β = .85, this effect

is reasonably modest but non-negligible. In the fourth column, we see that the combination

of the minimum wage and overtime premium has little effect beyond the direct effect of

the minimum wage: hourly earnings increase another 15 cents and hours worked go down

by another 0.07. Finally, we see that increasing the minimum wage to $12 has much larger

effects: adding another dollar to average wages and reducing working time by a bit more than

half an hour per week. Given the fixed costs assumed in this calibration, a $12 minimum wage

causes employers to run on extremely thin margins for these workers (who have $15 an hour

productivity). However, note that in this model a minimum wage causes neither an increase

nor decrease in aggregate non-employment, as this is governed in the steady state only by

λ/δ. Thus, the average absolute firm size is unchanged across the policy environments.
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K Further identification results for the bunching de-

sign

This section presents several additional sufficient conditions for point or partial identification

in the bunching design, beyond Theorem 1 from the main text. In this section, I continue

with the notation Yi rather than hit as in Appendix B. For simplicity, I in this section assume

that Y0 and Y1 admit a density everywhere so there is no counterfactual bunching at the kink.

However, the results here can be applied given a known p = P (Y0i = Y1i = k), as in Section

4.3, by trimming p from the observed bunching and re-normalizing the distribution F (y).

I first consider parametric assumptions when treatment effects are assumed homogeneous,

recasting some existing results from the literature into my generalized framework. Then I

turn to nonparametric restrictions that also assume homogeneous treatment effects, before

stating some results with heterogeneous treatments.

K.1 A generalized notion of homogeneous treatment effects

Recall that in the isoelastic model, treatment effects are homogeneous across units after a log

transformation of the choice variable y. In order to formalize and generalize results from the

literature that have focused on the isoleastic model, let begin with a generalized notion of

homogenous treatment effects. For any strictly increasing and differentiable transformation

G(·), let us define for each unit i:

δGi := G(Y0i)−G(Y1i)

The iso-elastic model common in the bunching-design literature predicts that while ∆i is

heterogeneous across i, δGi is homogeneous when G is taken to be the natural logarithm func-

tion. In this case ∆G
i is proportional to a reduced form elasticity measuring the percentage

change in yi(x) when moving from constraint B1i to B0i. In particular, in the simplest case

of a bunching design in which B0 and B1 are linear functions of y with slopes ρ0 and ρ1

respectively, and utility follows the iso-elastic quasi-linear form of Equation (4), we have:

δGi = δ := |ε| · ln(ρ1/ρ0)

for all units i, when G is taken to be the natural logarithm.

Note that under CHOICE and CONVEX the result of Lemma 1 holds with G(·) applied

to each of Yi, Y0i, and Y1i, since G is strictly increasing. When δGi is homogeneous for some G

with common value δ, we thus have that B = P (G(Y0i) ∈ [G(k), G(k) + δ]) by Proposition

1. Since G(·) is strictly increasing, we can still write the bunching condition in terms of

counterfactual “levels” Y0i as

B = P (Y0i ∈ [k, k + ∆]) where ∆ = G−1 (G(k) + δ)− k (10)
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For example, ∆ = k(eδ − 1) in the iso-elastic model. The parameter ∆ is equal to the

parameter ∆∗0 introduced in Section 4.3, since δGi = δ implies rank invariance between Y0i

and Y1i. ∆ can be seen as a pseudo-parameter plays the same role as ∆ would in a setup in

which we assumed a constant treatment effects in levels ∆i = ∆. If it can be pinned down,

it will also be possible to identify δ. Nevertheless, it will be important to keep track of the

function G when δGi is assumed homogeneous. For instance, homogeneous δGi = δ implies

that fG0 (G(k) + δ) = fG1 (G(k)) but not that f0(k + ∆) = f1(k), where fGd is the density of

G(di) for each d ∈ {0, 1}.

K.2 Parametric approaches with homogeneous treatment effects

The approach introduced by Saez 2010 assumes that the density f0(y) is linear on the bunch-

ing interval [k, k + ∆]. This affords point-identification of ε in an iso-elastic utility model.

We can use the notation above to provide the following generalization of this result:

Proposition K.1 (identification by linear interpolation, à la Saez 2010). If δGi = δ

for some G, F1(y) and F0(y) are continuously differentiable, and f0(y) is linear on the interval

[k, k + ∆], then with CONVEX, CHOICE:

B =
1

2

(
G−1 (G(k) + δ)− k

){
lim
y↑k

f(y) +
G′(G−1 (G(k) + δ))

G′(k)
lim
y↓k

f(y)

}
Proof. See Section H.

In particular, given the iso-elastic model with budget slopes ρ0 and ρ1:

B =
∆

2

{
lim
y↑k

f(y) +
k

k + ∆
lim
y↓k

f(y)

}
=
k

2

((
ρ0

ρ1

)ε
− 1

)(
lim
y↑k

f(y) +

(
ρ0

ρ1

)−ε
lim
y↓k

f(y)

)
(11)

which serves as the main estimating equation from Saez (2010) (and can be solved for ε by

the quadratic formula). The empirical approach of Saez (2010) can thus be seen as applying

a result justified in a much more general model than the iso-elastic utility function assumed

therein, provided that the researcher is willing to assume homogeneous treatment effects

(possibly after some known transformation G, and/or conditional on observables).13 Note

that the linearity assumption of Proposition K.1 could be falsified by visual inspection: it

implies that right and left limits of the derivative of the density of Yi at the kink are equal.

A more popular approach, following Chetty et al. (2011), is to use a global polynomial

approximation to f0(y), which interpolates f0(y) inwards from both directions across the

13Note that if we had instead assumed that fG0 (y) is linear (on the interval [G(k), G(k) + δG]), then we

simply replace f(y) by fG(y) in the above and let G be the identity function, which can be readily solved

for δG with the simpler expression δG = B/ 1
2

{
limy↑k fG(y) + limy↓k fG(y)

}
.
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missing region of unknown width ∆. This technique has the added advantage of accommo-

dating diffuse bunching, for which the relevant B is the total “excess-mass” around k rather

than a perfect point mass at k. I focus here on the simplest case in which bunching is exact,

as in the overtime setting. The polynomial approach can be seen as a special case of the

following result:

Proposition K.2 (identification from global parametric fit, à la Chetty et al. 2011).

Suppose f0(y) exists and belongs to a parametric family g(y; θ), where f0(y) = g(y; θ0) for

some θ0 ∈ Θ, and that δGi = δ for some G and CONVEX and CHOICE hold. Then, if:

1. g(y; θ) is an analytic function of y for all θ ∈ Θ, and

2. g(y; θ0) > 0 for all y ∈ [k, k + ∆],

it follows that ∆ (and hence δ) is identified as ∆(θ0), where for any θ, ∆(θ) is the unique ∆

such that B =
∫ k+∆

k
g(y; θ)dy, and θ0 satisfies

f(y) =

g(y; θ0) y < k

g(y + ∆(θ0); θ0) y > k
(12)

Proof. See Section H.

The standard approach of fitting a high-order polynomial to f0(y) can satisfy the assumptions

of Proposition K.2, since polynomial functions are analytic everywhere. Proposition K.2

yields an identification result that can justify an estimation approach similar to one often

made in the literature, based on Chetty et al. (2011).14 However, it requires taking seriously

the idea that f0(y) = g(y; θ0), treating the approach as parametric rather than as a series

approximation to a nonparametric density f0(y). This assumption is very strong. Indeed,

assuming that g(y; θ0) follows a polynomial exactly has even more identifying power than

is exploited by Proposition K.2. In particular, if we also have that f1(y) = g(y; θ1) then

we could use data on either side of the kink to identify by θ0 and θ1, which would allow

identification of the average treatment effect with complete treatment effect heterogeneity.

K.3 Nonparametric approaches with homogeneous treatment ef-

fects

The additional assumptions from the preceding section have allowed for point-identification of

causal effects under an assumption of homogenous treatment effects. These assumptions have

14The estimation technique proposed by Chetty et al. (2011) ignores the shift term ∆(θ) in Equation (12), a

limitation discussed by Kleven (2016). This is perhaps less problematic in typical settings where the bunching

is somewhat diffuse around the kink, in contrast to the overtime setting in which bunching is exact, and the

slope of the density is far from zero near 40. A more robust estimation procedure for parametric bunching

designs could be based on iterating on Equation (12) after updating ∆(θ), until convergence. This presents

an interesting topic for future research.
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taken the form of parametric restrictions on the density of counterfactual choices Y0i in the

missing region [k, k+∆]: that this density is linear or more generally fits a parametric family

of analytic functions. As has been argued in Blomquist and Newey (2017), these parametric

assumptions drive all of the identification, an undesirable feature from the standpoint of

robustness to departures from them. I now explore some non-parametric assumptions about

f0(y) that yield bounds on ∆ in a model with homogeneous treatment effects.

For example, monotonicity of f0(y) has been suggested by Blomquist and Newey (2017)

as an alternative assumption in the context of the iso-elastic model. A result based on mono-

tonicity that allows heterogeneous treatment effects is presented in Section K.4. However,

monotonicity may be restrictive if the density of Y0 has a mode near the kink point. In this

case, local log-concavity of f0(y) may be a more attractive assumption (concavity or convex-

ity would be another). 15 Note that log-concavity is a stronger version of the bi-log-concavity

assumption used in the main text, but still nests many common parametric distributions such

as the uniform, normal, exponential extreme value and logistic. For simplicity, this result

assumes homogeneous treatment effects in levels (rather than after applying a function G).

Proposition K.3 (bounds from log-concavity). Suppose that ∆i = ∆ and that f0(y)

is log-concave in the interval y ∈ [k, k + ∆] and continuously differentiable at k and k + ∆.

Then, under CONVEX and CHOICE:

∆ ∈ [∆L,∆U ]

where

∆U = B· ln(f+)− ln(f−)

f+ − f−
and ∆L =

(
f−
f ′−
− f+

f ′+

)
ln

B +
f2−
f ′−
− f2+

f ′+
f−
f ′−
− f+

f ′+

+
f+

f ′+
ln f+−

f−
f ′−

ln f−

where f ′− := limy↑k f
′(y) and f ′+ := limy↓k f

′(y)

Proof. See Figure 5. Derivation of expressions available by request.

Intuition for Proposition K.3 is provided in Figure 5. If f0(y) is log convex rather than log-

concave in the missing region, then the bounds ∆L and ∆U can simply be swapped. Or, if we

suppose that f0 is either log-concave or log-convex locally: ∆ ∈ [min{∆U ,∆L},max{∆U ,∆L}].

K.4 Alternative identification strategies with heterogeneous treat-

ment effects

An argument made in Saez 2010 and Kleven and Waseem (2013) uses a uniform density

assumption to allow heterogeneous treatment in the bunching-design. If a kink is very small,

15Log concavity has previously been assumed as a shape restriction in the context of bunching by Diamond

and Persson (2016), though to study the effects of manipulation on other variables, rather than for the effect

of incentives on the variable being manipulated.
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k k + ∆

g(y)

k k + ∆

g(y)

Figure 5: The left and right panels of this figure depict intuition for the lower and upper bounds

on ∆ in Proposition K.3. In both panels, the hatched region is the missing region [k, k + ∆] which

contains known mass B. The function plotted is g(y), the logarithm of f0(y). Outside of the missing

region, this function is known. Concavity of g(y) provides both upper and lower bounds for the

values of g(y) inside the missing region, yielding the analytic bounds in Proposition K.3.

then this might be justified as an approximation given smoothness of f(∆, y), since ∆i will

be “small” for all i. Below I state an analog of this result in the generalized bunching design

framework of this paper. The result will make use of the following Lemma, which states that

treatment effects must be positive at the kink:

Lemma POS (positive treatment effect at the kink). Under WARP and CHOICE,

P (∆i ≥ 0|Y0i = k) = P (∆i ≥ 0|Y1i = k) = 1.

Proof. See proof of Lemma 1, which rules out the events Y0i ≤ k < Y1i and Y0i < k ≤ Y1i.

Proposition K.4 (identification of an ATE under uniform density approximation).

Let ∆i and Y0i admit a joint density f(∆, y) that is continuous in y at y = k. For each ∆

assume that f(∆, Y0) = f(∆, k) for all Y0 in the region [k, k + ∆]. Under Assumptions

WARP and CHOICE

E [∆i|Y0i = k] ≥ B
limy↑k f(y)

,

with equality under CONVEX.

Proof. Note that

B ≤ P (Y0i ∈ [k, k + ∆i]) =

∫ ∞
0

d∆

∫ k+∆

k

dy · f(∆, y) =

∫ ∞
0

f(∆, k)∆d∆

= f0(k)P (∆i ≥ 0|Y0i = k)E [∆i|Y0i = k,∆ ≥ 0]

≤ lim
y↑k

f(y) ·E [∆i|Y0i = k]

using Lemma POS in the last step. The inequalities are equalities under CONVEX.
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Lemma SMALL in Appendix A formalizes the idea that the uniform density approximation

from Proposition K.4 becomes exact in the limit of a “small” kink.

We can also produce a result based on monotonicity, allowing heterogeneous treatment

effects. Let τ0 := E[∆i|Y0i = k] and τ1 := E[∆i|Y1i = k].

Proposition K.5 (monotonicity with heterogeneous treatment effects). Assume

CONVEX and CHOICE, and suppose the joint density f0(∆, y) of ∆i and Y0i and the joint

density f1(∆, y) of ∆i both exist. Suppose first that f0(∆, y) is weakly increasing on the

interval y ∈ [k, k + ∆] for all ∆ in the support of ∆i. Then

τ1 ≥
B

limy↓k f(y)
and τ0 ≤

B
limy↑k f(y)

Alternatively, if f1(∆, y) is weakly decreasing on the interval y ∈ [k −∆, k] for each ∆, then

τ0 ≥
B

limy↑k f(y)
and τ1 ≤

B
limy↓k f(y)

Proof. Note that f1(∆, y) = f0(∆, y + ∆) for any y,∆, and hence f0(y,∆) is increasing

(decreasing) on [k, k + ∆] whenever f1(y,∆) is increasing (decreasing) on [k −∆, k]. Then:

B =

∫ ∞
0

d∆

∫ k+∆

k

dy · f0(∆, y) ≤
∫ ∞

0

∆f0(∆, k)d∆ = f0(k)τ0

B =

∫ ∞
0

d∆

∫ k

k−∆

dy · f1(∆, y) ≥
∫ ∞

0

∆f1(∆, k)d∆ = f1(k)τ0

for example in the first case, where we have used Lemma POS. The reverse case is analogous

This result implies that when treatment effects are statistically independent of Y0 (for example

when they are homogenous): ∆i ⊥ Y0i, we have thatE[∆i] = τ0 = τ1 ∈
[

B
max{f−,f+} ,

B
min{f−,f+}

]
.

Other approaches to identification with heterogeneous treatment effects are possible when

the researcher observes covariates Xi that are unaffected by a counterfactual shift between B1

and B0. For example, assuming that E[Xi|Y0i = y] or E[Xi|Y1i = y] are Lipschitz continuous

with a known constant leads to a lower bound on maximum of τ0 and τ1 from an observed

discontinuity of E[Xi|Yi = y] at y = k. Another strategy for using covariates would be to

model the potential outcomes Y0i and Y1i as functions of them. If we are willing to suppose

that

Y0i = g0(Xi) + U0i and Y1i = g1(Xi) + U1i

with U1i and U0i each statistically independent of Xi, then the censoring of the distributions

of Y0i and Y1i in Lemma 1 can be “undone”, following the results of Lewbel and Linton
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(2002).16. This would allow estimation of the unconditional average treatment effect as well

as quantile treatment effects at all levels. However, the assumption that U0 and U1 are

independent of X is quite strong.

K.5 Two bunching design settings from the literature

Below I discuss two examples from the literature that illustrate the general kink bunching

design framework described in Section 4. The first is the classic labor supply example, where

convexity of preferences arises from increasing opportunity costs of time allocated to labor.

In the second example, firms are again the decision makers but now the “running variable”

y is a function of two underlying choice variables x.

Example 1: Labor supply with taxation

Individuals have preferences ũi(c, y) over consumption c, and labor earnings y, where εi is a

vector of parameters capturing heterogeneity over the disutility of labor, labor productivity,

etc. The agent’s budget constraint is c ≤ y − B(y) where B(y) is income tax as a function

of pre-tax earnings y. ũi(c, y) is taken to be strictly quasi-concave in (c, y) for each i as

the opportunity cost of leisure rises with greater earnings, and monotonically increasing in

consumption. Define z = y − c to be tax liability, and let ui(z, y) = ũi(y − z, y) which is

monotonically decreasing in tax. Individuals now choose a value of y (e.g. by adjusting

hours of work, number of jobs, or misreporting) given a progressive tax schedule Bk(y) =

τ0y + 1(y ≥ k)(τ1 − τ0)(y − k), with the kink arising from an increase in marginal tax rates

from τ0 to τ1 > τ0 at y = k. The budget functions are B0(y) = τ0y, B1(y) = τ1y− (τ1− τ0)k,

and the kinked budget constraint can bewritten z ≥ Bk(y) = max{B0(y), B1(y)}.

Example 2: Minimum tax schemes

Best et al. (2015) study a feature of corporate taxation in Pakistan in which firms pay the

maximum of a tax on output and a tax on reported profits:

B(r, ŵ) = max{τπ(r − ŵ), τrr}

where r is firm revenue, ŵ is reported costs, and τr < τπ. Under the profit tax, firms

have incentive to reduce their tax liability by inflating the value ŵ above their true costs of

production wi(r). One can write tax liability as a piecewise function in which the tax regime

16Lewbel and Linton (2002) establish identification of g(x) and FU (u) in a model where the econometrician

observes censored observations of Y = g(X) + U . Given knowledge of the distribution of X, the estimated

marginal distributions of U1 and U2, and the estimated function g(x) the researcher could estimate the

distributions F1(y) = P (Y1i ≤ y) and F0(y) = P (Y0i ≤ y) by deconvolution, and then estimate causal effects.
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depends on reported profits as a fraction of output: y = r−ŵ
r

= 1− ŵ
r
:

B(r, ŵ) =

τrr if y ≤ τr/τπ

τπ(r − ŵ) if y > τr/τπ

This function has a “kink” in both r and ŵ when y(r, ŵ) = k = τr/τπ. In this setting,

B0(r, ŵ) = τrr, corresponding to a tax on output while B1(r, ŵ) = τπ(r − ŵ) describes a

tax on (reported) profits. Both functions are linear, and hence weakly convex, in the vector

(r, ŵ). The functions B0i, B1i and yi are all common across firms.

Assume that firm i chooses the pair x = (r, ŵ) according to preferences ui(z,x), which

are strictly decreasing in tax liability z and strictly quasiconcave in (z, r, ŵ). In Best et al.

(2015), preferences are for example taken to be in a baseline model:

ui(z, r, ŵ) = r − wi(r)− gi(ŵ − wi(r))− z (13)

where gi(·) represents costs of tax evasion by misreporting costs. This specification of

ui(z, r, ŵ) is strictly quasi-concave provided that the production and evasion cost functions

wi(·) and gi(·) are strictly convex.

With such preferences, the presence of the minimum tax kink can be expected to lead

to a firm response among both margins of x: r and ŵ. In particular, consider a linear

approximation to ∆i = Yi(0)− Yi(1) for a buncher with Y0i ≈ k, keeping the i implicit:

∆ ≈ dy(r, ŵ)

ŵ

∣∣∣∣
(r0,ŵ0)

∆ŵ +
dy(r, ŵ)

r

∣∣∣∣
(r0,ŵ0)

∆r

=
ŵ0

r2
0

∆r −
1

r0

(
∆w(r) + ∆(ŵ−w(r))

)
≈ ŵ0

r2
0

∆r −
1

r0

(
w′(r0)∆ri + ∆(ŵ−w(r))

)
=

1

r0

{(1− Y0 − w′(r0))∆r∆ŵ} ≈
1

r

{
−k∆r −∆(ŵ−w)

}
≈ 1

r0

{
− τr
τπ
· rεr d(1− τE)

τE
−∆ŵi

}
=
τ 2
r

τπ
εr −

∆(ŵ−w)

r0

(14)

where εr is the elasticity of firm revenue with respect to the net of effective tax rate 1−τE. In

this case, when crossing from the output to reported profits regime d(1−τE)
τE

= −τr, implying

the final expression (see Best et al. 2015 for definition of τE). We have also used the optimality

condition that w′(r0) = 1. Expression (14) shows that the response to the minimum tax kink

is almost entirely driven by a response on the difference between reported and actual costs:

ŵi − wi(r). This is because τr is less than 1%, so the first term ends up not contributing

meaningfully in practice (it scales as the square of τr). In this empirical setting, it is thus

possible to interpret the bunching response as a response to one of the components of x,

despite x being a vector.
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We can also situate the setting of Best et al. (2015) in terms of a continuum of cost

functions, as in Section B.7. In particular, let ρ ∈ [0, 1] and define

B(r, ŵ; ρ, k) =
τr

1− ρ(1− k)
(y − ρc)

Then B0(r, ŵ) = B(r, ŵ; 0) and B1(r, ŵ; τr/τπ) = B(r, ŵ; 1, τr/τπ). It can be verified that for

any ρ′ > ρ and k, B(r, ŵ; ρ′, k) > B(r, ŵ; ρ, k) iff yi(r, ŵ) > k, with equality when yi(r, ŵ) = k.

The path from ρ0 = 0 to ρ1 = 1 passes through a continuum of tax policies in which the tax

base gradually incorporates reported costs, while the tax rate on that tax base also increases

continuously with ρ.

L Further proofs

L.1 Proof of Proposition E.1

Note: this proof follows the notation of Yi from Appendix B, rather than h1it from Appendix

E and the main text. Begin with the following observations:

• (Y < k) =⇒ (Y0 = Y ) and (Y > k) =⇒ (Y1 = Y ) both follow from convexity

of preferences, and linearity of the cost functions B1 and B0. From these two it also

follows that (Y1 ≤ k ≤ Y0) =⇒ (Y = k). See proof of Theorem 1, which treats this

case.

• For firm-choosers: (Y0 < k) =⇒ (Y = Y0), since the cost function B0 coincides with

Bk for y ≤ k, and is higher otherwise. Similarly (Y1 > k) =⇒ (Y = Y1). Together

these also imply that (Y = k) =⇒ (Y1 ≤ k ≤ Y0).

• By analagous logic, for worker-choosers: (Y0 ≥ k) =⇒ (Y = Y1), and (Y1 ≤ k) =⇒
(Y = Y0) using that their utility functions are strictly increasing in c. Together these

also imply that Y1 ≤ k ≤ Y0 can only occur if Y0 = Y1 = k.

Now consider the claims of the Proposition:

• P (Yit = k and K∗it = 0) = P (Y1it ≤ 40 ≤ Y0it and K∗it = 0 and Wit = 0)

• limy↑40 f(y) = P (Wit = 0) limy↑40 f0|W=0(y)

• limy↓40 f(y) = P (Wit = 0) limy↓40 f1|W=0(y)

First claim:

P (Yit = k and K∗it = 0) = P (Yit = k and K∗it = 0 and Wit = 0) + P (Yit = k and K∗it = 0 and Wit = 1)

= P (Y1it ≤ 40 ≤ Y0it and K∗it = 0 and Wit = 0) + 0
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where for the first term I’ve used that when Wit = 0, (Yit = k) ⇐⇒ (Y1it ≤ 40 ≤ Y0it)

following Theorem 1. For the second, I’ve used that by the absolute continuity assumption:

P (Y0it = k or Y1it = k|K∗it = 0) = 0, so:

P (Yit = k and K∗it = 0) = P (Yit = k and K∗it = 0 and Wit = 1 and Y0it < k)

+ P (Yit = k and K∗it = 0 and Wit = 1 and Y0it > k)

= P (Yit = k and K∗it = 0 and Wit = 1 and Y0it < k and Y1it = k)

+ P (Yit = k and K∗it = 0 and Wit = 1 and Y0it > k and Y1it = k)

= 0 + 0 = 0

where I’ve used that Wit = 1 and Y0it < k and implies that Yit = Y0it if Y1it < k, and

Yit ∈ {Y0it, Y1it} if Y1it > k to eliminate the first term. The second term uses that Y1 ≤ k ≤ Y0

can only occur when Y0 = Y1 = k.

Second claim:

lim
y↑k

f(y) = lim
y↑k

d

dy
P (Yit ≤ y)

= lim
y↑k

d

dy
P (Yit ≤ y and Wit = 0) + lim

y↑k

d

dy
P (Yit ≤ y and Wit = 1)

The first term is equal to P (Wit = 0) limy↑k f0|W=0(y), and I now show that the second is

equal to zero:

lim
y↑k

d

dy
P (Yit ≤y and Wit = 1)

= lim
y↑k

d

dy
P (Y0it ≤ y and Yit = Y0it and Wit = 1)

= lim
y↑k

d

dy
P (Y0it ≤ y and {u(B0(Y0it), Y0it) ≥ uit(B1(y), y) for all y > k} and Wit = 1)

For it′s utility underBk at Y0it to be greater than that attainable at any y > k, the indifference

curve IC0it passing through Y0it must lie above B1it(y) = wity+ wit
2

(y−k) for all y > k. Using

that IC0it passes through the point (witY0it, Y0it) with derivative wit there (by the first-order

condition for an optimum), we may write it as

IC0it(y) = witY0it +

∫ y

Y0it

IC ′0it(y
′)dy′ = witY0it +

∫ y

Y0it

{
wit +

∫ y′

Y0it

IC ′′0it(y
′′)dy′′

}
dy′

≤ wity +

∫ y

Y0it

M(y′ − Y0it)dy = wity +
1

2
(y − Y0it)

2Mit

using that IC0it is twice differentiable. Now IC0it(y) ≥ B1it(y) for y > k implies that

wit
Mit

(y − k) ≤ (y − Y0it)
2
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Taking for example y = 80 − Y0it, such that y − k = y − Y0it, we have that Y0it ≤ k − wit
Mit

.

Thus:

lim
y↑k

d

dy
P (Yit ≤y and Yit > Y0it and Wit = 1)

≤ lim
y↑k

lim
δ↓0

1

δ
P (Y0it ∈ (y − δ, y] and Y0it ≤ k − wit

Mit

and Wit = 1)

≤ lim
y↑k

lim
δ↓0

1

δ
P (Y0it ∈ (y − δ, y] and

wit
Mit

≤ k − y + δ and Wit = 1)

≤ lim
y↑k

lim
δ↓0

1

δ
P (

wit
Mit

≤ k − y + δ and Wit = 1)

≤ lim
δ↓0

1

δ
P

(
wit
Mit

≤ δ and Wit = 1

)
= fw/m|W=1(0) = 0

where we may interchange the limits given that wit
Mit

conditional on Wit = 1 admits a density

fw/m|W=1 that is bounded in a neighborhood around 0. This, and that fw/m|W=1(0) = 0

follows from the assumption that the distribution of Mit/wit is bounded.

We have now proved the second claim, that limy↑k f(y) = P (Wit = 0) limy↑k f0|W=0(y).

Third claim: Analogous logic to the second claim, using the bounded 2nd derivative of IC1it.

L.2 Proof of Theorem 1*

Note: this proof follows the notation of Yi from Appendix B, rather than h1it from Appendix

E and the main text. Let Ti = 1 be a shorthand for firm-choosers who are not counterfactual

bunchers, i.e. the event K∗it = 0 and Wit = 0.

By Theorem 1 of Dümbgen et al., 2017: for d ∈ {0, 1} and any t, bi-log concavity implies

that:

1− (1− Fd|T=1(k))e
−

fd|T=1(k)

1−Fd|T=1(k)
t
≤ Fd|T=1(k + t) ≤ Fd|T=1(k)e

fd|T=1(k)

Fd|T=1(k)
t

Defining u = F0|T=1(k + t), we can use the substitution t = Q0|T=1(u) − k to translate the

above into bounds on the conditional quantile function of Y0i, evaluated at u:

F0|T=1(k)

f0|T=1(k)
· ln
(

u

F0|T=1(k)

)
≤ Q0|T=1(u)− k ≤ −

1− F0|T=1(k)

f0|T=1(k)
· ln
(

1− u
1− F0|T=1(k)

)
And similarly for Y1, letting v = F1|T=1(k − t):

1− F1|T=1(k)

f1|T=1(k)
· ln
(

1− v
1− F1|T=1(k)

)
≤ k −Q1|T=1(v) ≤ −

F1|T=1(k)

f1|T=1(k)
· ln
(

v

F1|T=1(k)

)
By RANK, we have that Yi = k ⇐⇒ F0|T=1(Y0i) ∈ [F0|T=1(k), F0|T=1(k) + B∗] ⇐⇒
F1|T=1(Y1i) ∈ [F1|T=1(k)− B∗, F1|T=1(k)] where B∗ := P (Yi = k|T = 1), and thus:

E[Y0i − Y1i|Yi = k, Ti = 0] =
1

B∗

∫ F0|T=1(k)+B∗

F0|T=1(k)
{Q0|T=1(u)− k}du+

1

B∗

∫ F1|T=1(k)

F1|T=1(k)−B∗
{k −Q1|T=1(v)}dv
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A lower bound for E[Y0i − Y1i|Yi = k, Ti = 0] is thus:

F0|T=1(k)

f0|T=1(k)(B∗)

∫ F0|T=1(k)+B∗

F0|T=1(k)
ln

(
u

F0|T=1(k)

)
du+

1− F1|T=1(k)

f1|T=1(k)(B∗)

∫ F1|T=1(k)

F1|T=1(k)−(B∗)
ln

(
1− v

1− F1|T=1(k)

)
dv

= g(F0|T=1(k), f0|T=1(k),B∗) + h(F1|T=1(k), f1|T=1(k),B∗)

where as in Theorem 1: g(a, b, x) = a
bx

(a+ x) ln
(
1 + x

a

)
− a

b
and h(a, b, x) = g(1 − a, b, x).

Similarly, an upper bound is:

−
1− F0|T=1(k)

f0|T=1(k)(B∗)

∫ F0|T=1(k)+B∗

F0|T=1(k)

ln

(
1− u

1− F0|T=1(k)

)
du

−
F1|T=1(k)

f1|T=1(k)(B∗)

∫ F1|T=1(k)

F1|T=1(k)−(B∗)
ln

(
v

F1|T=1(k)

)
dv

= g̃(F0|T=1(k), f0|T=1(k),B∗) + h̃(F1|T=1(k), f1|T=1(k),B∗)

where again g̃(a, b, x) = −g(1 − a, b,−x) and h̃(a, b, x) = −g(a, b,−x). We have then that

E[Y0i − Y1i|Yi = k, Ti = 0] ∈ [∆L
k ,∆

U
k ], where:

∆L
k = g(F0|T=1(k), f0|T=1(k),B∗) + g(1− F1|T=1(k), f1|T=1(k),B∗)

= g
(
P (Y0i ≤ k and Ti = 1), P (Ti = 1)f0|T=1(k), P (Yi = k and Ti = 1)

)
+ g

(
P (Y1i > k and Ti = 1), P (Ti = 1)f1|T=1(k), P (Yi = k and Ti = 1)

)
∆U
k = −g(1− F0|T=1(k), f0|T=1(k),−B∗)− g(F1|T=1(k), f1|T=1(k),−B∗)

= −g
(
P (Y0i > k and Ti = 1), P (Ti = 1)f0|T=1(k),−P (Yi = k and Ti = 1)

)
− g

(
P (Y1i ≤ k and Ti = 1), P (Ti = 1)f1|T=1(k),−P (Yi = k and Ti = 1)

)
where I’ve used that the function g(a, b, x) is homogeneous of degree zero and multiplied each

argument by P (Ti = 1). The bounds are sharp as CHOICE, CONVEX and RANK imply no

further restrictions on the marginal potential outcome distributions.

Next, note that:

lim
y↑k

f(y) = lim
y↑k

d

dy
P (Y0i ≤ y and Wi = 0) = lim

y↑k

d

dy
P (Y0i ≤ y and Wi = 0 and K∗i = 0)

= P (Ti = 1) · lim
y↑k

d

dy
P (Y0i ≤ y|Ti = 1) = P (Ti = 1) · f0|T=1(k)

lim
y↓k

f(y) = − lim
y↓k

d

dy
P (Y1i ≥ y and Wi = 0) = − lim

y↓k

d

dy
P (Y1i ≥ y and Wi = 0 and K∗i = 0)

= P (Ti = 1) · − lim
y↓k

d

dy
P (Y1i ≥ y|Ti = 1) = P (Ti = 1) · f1|T=1(k)
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B−p = P (Yi = k and K∗i = 0) = P (Yi = k and K∗i = 0 and Wi = 0) = P (Yi = k and Ti = 1)

As shown by Dümbgen et al., 2017, BLC implies the existence of a continuous density func-

tion, which assures that these density limits exist and are equal to the corresponding potential

outcome densities above. Thus, the quantities P (Yi = k and Ti = 1), P (Ti = 1) · f0|T=1(k)

and P (Ti = 1) · f1|T=1(k) are all point-identified from the data.

Now we turn to the CDF arguments of ∆L
k and ∆U

k . Note that the desired quantities can

be written

• P (Y0i ≤ k and Ti = 1) = P (Y0i < k and Ti = 1) = P (Y0i < k and Wi = 0)

• P (Y1i > k and Ti = 1) = P (Y1i > k and Wi = 0)

• P (Y0i > k and Ti = 1) = P (Y0i > k and Wi = 0)

• P (Y1i ≤ k and Ti = 1) = P (Y1i < k and Ti = 1) = P (Y1i < k and Wi = 0)

Let

A := P (Y0i < k and Yi = Y0i and Wi = 1) and B := P (Y1i > k and Yi = Y1i and Wi = 1)

The desired quantities are related to observables via A and B:

• P (Yi < k) = P (Y0i < k and Wi = 0) + A

• P (Yi > k) = P (Y1i > k and Wi = 0) +B

• P (Yi ≤ k) − p = P (Yi ≤ k and K∗i = 0) = P (Yi ≤ k and Ti = 1) + A = P (Y1i ≤
k and Wi = 0) + A

• P (Yi ≥ k) − p = P (Yi ≥ k and K∗i = 0) = P (Yi ≥ k and Ti = 1) + B = P (Y0i >

k and Wi = 0) +B

The four CDF arguments appearing in ∆L
k and ∆U are thus identified up to the correction

terms A and B. A simple sufficient condition for A = B = 0 is that there are no worker-

choosers.

L.3 Proof of Proposition J.1

The first order conditions with respect to z and h are:

λFL(L,K)e(h) = φ+
βY (z, h) + 1

βY (z, h)
z

and

λFL(L,K)e(h)(η(h)/βh(z, h) + 1) = z + φ
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where L = N(z, h)e(h), η(h) := e′(h)h/e(h), βh(z, h) := Nh(z, h)h/N(z, h) and βz(z, h) :=

Nz(z, h)Y/N(z, h) are elasticity functions and λ is a Lagrange multiplier. I have assumed

that the functions |βh|, βh, and η are strictly positive and finite globally. Combining the two

equations, we have that an interior solution must satisfy either: z =
φ η
βh

1−βz+1
βz

βh+η

βh

(Case 1), or

that the denominator of the above is zero: βh
βh+η

= βz+1
βz

(Case 2), where the dependence of

βz and βh has been left implicit. Defining β(z, h) = |βh(z, h)|/(βz(z, h) + 1), we can rewrite

the condition for Case 2 as β(z, h) = η(h).

With φ = 0, we must be in Case 2 for any z > 0 to have positive profits, and not that

positivity of z requires β < η in case one. On the other hand if φ > 0 we cannot have

Case 1 provided that η/βh > 0. Now specialize to the conditions set out in the Proposition:

that FL = 1, λ = 1 (profit maximization), and βh, βz and η are all constants. Then

z =
φ η
βh

1−βz+1
βz

βh+η

βh

= φ · βz
βz+1

and the first order condition for hours becomes

e(h) = φ+ φ
η

β − η

which simplifies to h =
[
φ
e0
· β
β−η

]1/η

.

L.4 Proof of Proposition K.1

By constant treatment effects, fG1 (y) = fG0 (y + δ) and note that both fG0 (k) and fG1 (k)

are identified from the data. These can be transformed into densities for Y0i and Y1i via

fd(y) = G′(y)fGd (G(y)) for d ∈ {0, 1}. With f0(y) linear on the interval [k, k + ∆], the

integral
∫ k+∆

k
f0(y)dy evaluates to B = ∆

2
(f0(k) + f0(k + ∆)). Although f0(k) = limy↑k f(y)

by CONT, f0(k + ∆) is not immediately observable. However:

f0(k + ∆) = f0

(
G−1 (G(k) + δ)

)
= G′(k + ∆)fG0 (G(k) + δ)

and furthermore by constant treatment effects:

fG0 (G(k) + δ) = fG1 (G(k)) = (G′(k))−1f1(k) = (G′(k))−1 lim
y↓k

f(y)

Combining these equations, we have the result.

L.5 Proof of Proposition K.2

We seek a ∆ such that for some θ0:

B =

∫ k+∆

k̃

g(y; θ0)dy (15)
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and

f(y) =

g(y; θ0) y < k

g(y + ∆; θ0) y > k
(16)

and

g(y; θ0) > 0 for all y ∈ [k, k + ∆] (17)

Recall from Equation (10) that ∆ = G−1 (G(k) + δ) − k and hence δ = G(k + ∆) − G(k).

Thus if we find a unique ∆ satisfying the two equations, we have found a unique value of δ:

the true value of the homogenous effect δG.

Suppose we have two candidate values ∆′ > ∆. For them to both satisfy (15), we would

need ∆′ = ∆(θ′) and ∆ = ∆(θ) for θ, θ′ ∈ Θ, where ∆(θ) is the ∆ that satsifies Eq. (15) for

a given θ, (which is unique for each permissible value of θ since g(y; θ0) > 0. To satisfy (16),

we would also need

g(y; θ) =

f(y) y < k

f(y −∆(θ)) y > k + ∆(θ)
g(y; θ′) =

f(y) y < k

f(y −∆(θ′)) y > k + ∆(θ′)
(18)

Since g(y; θ) is a real analytic function for any θ ∈ Θ, the function hθθ′(y) := g(y; θ)−g(y; θ′)

is real analytic. An implication of this is that if hθθ′(y) vanishes on the interval [0, k̃], as it

must by Equation (18), it must vanish everywhere on R. Thus for any y > k + ∆(θ):

g(y + ∆(θ′)−∆(θ); θ) = g(y + ∆(θ′)−∆(θ); θ′) = g(y; θ)

So g(y; θ) is periodic with period ∆(θ′)−∆(θ). Since g is non-negative, it cannot integrate

to unity globally, and thus cannot be the same function as f0(y).

L.6 Details of calculations for policy estimates

L.6.1 Ex-post evaluation of time-and-a-half after 40

E[Y0i − Yi] = (B − p)E[Y0i − k|Yi = k,K∗i = 0] + p · 0 + P (Y1i > k)E[Y0i − Y1i|Yi > k]

Consider the first term

(B − p)E[Y0i − k|Yi = k,K∗i = 0] = (1− p)B∗ · 1

B∗

∫ F0|K∗=0(k)+B∗

F0|K∗=0(k)

{Q0|K∗=0(u)− k}du

where B∗ := P (Yi = k|K∗ = 0) = B−p
1−p . Bounds for the rightmost quantity are given by

bi-log-concavity of Y0i, just as in Theorem 1. In particular:

(B − p)E[Y0i − k|Yi = k,K∗i = 0] ≥ (1− p)B∗ ·
F0|K∗=0(k)

f0|K∗=0(k)(B∗)

∫ F0|K∗=0(k)+B∗

F0|K∗=0(k)

ln

(
u

F0|K∗=0(k)

)
du

= (1− p)B∗ · g(F0|K∗=0(k), f0|K∗=0(k),B∗)
= (B − p) · g(F−, f−,B − p)
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and

(B − p)E[Y0i − k|Yi = k,K∗i = 0] ≤ −(1− p)B∗ ·
1− F0|K∗=0(k)

f0|K∗=0(k)(B∗)

∫ F0|K∗=0(k)+B∗

F0|K∗=0(k)

ln

(
1− u

1− F0|K∗=0(k)

)
du

= (1− p)B∗ · g′(F0|K∗=0(k), f0|K∗=0(k),B∗)
= −(B − p) · g(1− p− F−, f+, p− B)

where as before g(a, b, x) = a
bx

(a+ x) ln
(
1 + x

a

)
− a

b
and g′(a, b, x) = −g(1− a, b,−x).

Now consider the second term of E[Y0i − Yi]: P (Y1i > k)E[Y0i − Y1i|Yi > k]. Taking as a

lower bound an assumption of constant treatment effects in levels: P (Y1i > k)E[Y0i−Y1i|Yi >
k] ≥ P (Y1i > k)∆L

k .

For an upper bound, we assume that E
[
dYi(ρ)
dρ

ρ
Yi(ρ)

∣∣∣Yi(ρ′) = y,K∗i = 0
]

= E for all ρ, ρ′

and y. Consider then the buncher ATE in logs:

E [lnY0i − lnY1i|Yi = k,K∗i = 0] = E
[
lnY0i − lnY1i|Y0i ∈ [k,Q0|K∗=0(F1|K∗=0)], K∗i = 0

]
=

∫ ρ1

ρ0

dρ ·E
[
dYi(ρ)

dρ

1

Yi(ρ)

∣∣∣∣Y0i ∈ [k, k + ∆∗0], K∗i = 0

]
=

∫ ρ1

ρ0

d ln ρ · 1

B∗

∫ k+∆∗0

k

dy · f0(y) ·E
[
dYi(ρ)

dρ

ρ

Yi(ρ)

∣∣∣∣Y0i = y,K∗i = 0

]
(19)

= E
∫ ρ1

ρ0

d ln ρ = E ln(ρ1/ρ0)

with the notation that ∆∗0 := Q0|K∗=0(F1|K∗=0)− k. Moreover:

E[Y0i − Y1i|Yi > k] =

∫ ρ1

ρ0

dρ ·E
[
dYi(ρ)

dρ

∣∣∣∣Y1i > k,K∗i = 0

]
= P (Y1i > k)−1

∫ ρ1

ρ0

d ln ρ ·
∫ ∞
k

y · f1(y) ·E
[
dYi(ρ)

dρ

ρ

Yi(ρ)

∣∣∣∣Y1i = y,K∗i = 0

]
dy

= E ·E[Y1i|Y1i > k]

∫ ρ1

ρ0

d ln ρ = E ln(ρ1/ρ0) ·E[Y1i|Y1i > k]

Thus in the isoelastic model

E[Y0i−Yi] = (B−p)E[Y0i−k|Yi = k,K∗i = 0]+E[Y1i|Y1i > k]·P (Y1i > k)E [lnY0i − lnY1i|Yi = k,K∗i = 0]

and an upper bound is

δUk · E[Yi|Yi > k]− (B − p) · g(1− p− F−, f+, p− B)

where δUk is an upper bound to the buncher ATE in logs E [lnY0i − lnY1i|Yi = k,K∗i = 0].
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L.6.2 Moving to double time

I make use of the first step deriving the expression for ∂ρ1E[Y
[k,ρ1]
i ] in Theorem 2, namely

that:

∂ρ1E[Y
[k,ρ1]
i ] = k∂ρ1B[k,ρ1] + ∂ρ1 {P (Yi(ρ1) > k)E[Yi(ρ1)|Yi(ρ1) > k]}

Thus:

E[Y
[k,ρ1]
i ]− E[Y

[k,ρ̄1]
i ] = −

∫ ρ̄1

ρ1

∂ρE[Y
[k,ρ]
i ]dρ = −

∫ ρ̄1

ρ1

{
k∂ρB[k,ρ] + ∂ρ {P (Yi(ρ) > k)E[Yi(ρ)|Yi(ρ) > k]}

}
dρ

= −k(B[k,ρ̄1] − B[k,ρ1]) + P (Yi(ρ1) > k)E[Yi(ρ1)|Yi(ρ1) > k]− P (Yi(ρ̄1) > k)E[Yi(ρ̄1)|Yi(ρ̄1) > k]

= −k(B[k,ρ̄1] − B[k,ρ1]) + {P (Yi(ρ1) > k)− P (Yi(ρ̄1) > k)} ·E[Yi(ρ̄1)|Yi(ρ̄1) > k]

+ P (Yi(ρ1) > k) (E[Yi(ρ1)|Yi(ρ1) > k]−E[Yi(ρ̄1)|Yi(ρ̄1) > k])

= (E[Y1i|Y1i > k]− k) (B[k,ρ̄1] − B[k,ρ1]) + P (Y1i > k) (E[Y1i|Y1i > k]−E[Yi(ρ̄1)|Yi(ρ̄1) > k])

≤ (E[Yi(ρ̄1)|Yi(ρ̄1) > k]− k) (B[k,ρ̄1] − B[k,ρ1]) + P (Y1i > k)E[Yi(ρ1)− Yi(ρ̄1)|Y1i > k]

≤ (E[Yi(ρ̄1)|Yi(ρ̄1) > k]− k) (B[k,ρ1] − p) + P (Y1i > k)E[Yi(ρ1)− Yi(ρ̄1)|Y1i > k]

≤ (E[Yi(ρ̄1)|Yi(ρ̄1) > k]− k) (B[k,ρ1] − p) + P (Y1i > k)E[Y0i − Y1i|Y1i > k]

≈ (E[Y1i|Y1i > k]− k) (B[k,ρ1] − p) + P (Y1i > k)E[Y0i − Y1i|Y1i > k]

≤ (E[Y1i|Y1i > k]− k) (B[k,ρ1] − p) + P (Y1i > k)E[Yi|Yi > k] · δUk

In the iso-elastic model, making use instead of the final expression for ∂ρ1E[Y
[k,ρ1]
i ] in Thm.

2:

E[Y
[k,ρ1]
i ]− E[Y

[k,ρ̄1]
i ] = −

∫ ρ̄1

ρ1

∂ρE[Y
[k,ρ1]
i ]dρ =

∫ ρ̄1

ρ1

dρ

∫ ∞
k

fρ(y)E

[
dYi(ρ)

dρ

∣∣∣∣Yi(ρ) = y

]
dy

=

∫ ρ̄1

ρ1

d ln ρ

∫ ∞
k

fρ(y)y ·E
[
dYi(ρ)

dρ

ρ

Yi(ρ)

∣∣∣∣Yi(ρ) = y

]
dy

≥ E
∫ ρ̄1

ρ1

d ln ρ

∫ ∞
k

fρ(y)y · dy = E
∫ ρ̄1

ρ1

d ln ρ · P (Yi(ρ) > k)E[Yi(ρ)|Yi(ρ) > k]

≥ E ln(ρ̄1/ρ1) · P (Yi(ρ̄1) > k)E[Yi(ρ̄1)|Yi(ρ̄1) > k]

= E ln(ρ̄1/ρ1) · {P (Y1i > k)E[Y1i|Y1i > k] + (P (Yi(ρ̄1) > k)E[Yi(ρ̄1)|Yi(ρ̄1) > k]− P (Y1i > k)E[Y1i|Y1i > k])}

= E ln(ρ̄1/ρ1) ·
{
P (Y1i > k)E[Y1i|Y1i > k]−

(
E[Y

[k,ρ1]
i ]− E[Y

[k,ρ̄1]
i ]

)
+ k(B[k,ρ̄1] − B[k,ρ1])

}
where in the fourth step I’ve used that Yi(ρ) is decreasing in ρ with probability one, which

follows from SEPARABLE and CONVEX. So:

E[Y
[k,ρ1]
i ]− E[Y

[k,ρ̄1]
i ] ≥ E ln(ρ̄1/ρ1)

1 + E ln(ρ̄1/ρ1)
·
{
P (Y1i > k)E[Y1i|Y1i > k] + k(B[k,ρ̄1] − B[k,ρ1])

}
≥ E ln(ρ̄1/ρ1)

1 + E ln(ρ̄1/ρ1)
· P (Y1i > k)E[Y1i|Y1i > k]
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L.6.3 Effect of a change to the kink point on bunching

Using that p(k∗) = p and p(k′) = 0:

B[k′,ρ1] − B[k∗,ρ1] =
(
B[k′,ρ1] − p(k′)

)
−
(
B[k∗,ρ1] − p(k∗)

)
− p = −p+

∫ k′

k∗
dk · ∂k

(
B[k′,ρ1] − p(k)

)
= −p+

∫ k′

k∗
dk · (f1(k)− f0(k)) = −p+ F1(k′)− F1(k∗)− F0(k′) + F0(k∗)

= P (k∗ < Y1i ≤ k′)− P (k∗ < Y0i ≤ k′)− p
= P (k∗ < Yi ≤ k′)− P (k∗ < Y0i ≤ k′)− p

if k′ > k∗. Similarly, if k′ < k∗:

B[k′,ρ1] − B[k∗,ρ1] = P (k′ ≤ Y0i < k∗)− P (k′ ≤ Y1i < k∗)− p = P (k′ ≤ Yi < k∗)− P (k′ ≤ Y1i < k∗)− p

The lemma in the next section gives identified bounds on the counterfactual quantity that

appears in the expression in each case.

L.6.4 Average effect of a change to the kink point on hours

E[Y
[k′,ρ1]
i ]− E[Y

[k∗,ρ1]
i ] =

∫ k′

k∗
∂kE[Y

[k,ρ1]
i ]dk =

∫ k′

k∗

{
B[k,ρ1] − p(k)

}
dk

= k
(
B[k,ρ1] − p(k)

)∣∣k′
k∗
−
∫ k′

k∗
k · ∂k

{
B[k,ρ1] − p(k)

}
dk

= k′B[k′,ρ1] − k∗(B − p)−
∫ k′

k∗
y (f1(y)− f0(y)) dy

= (k′ − k∗)B[k′,ρ1] + k∗
(
B[k′,ρ1] − B

)
+ pk∗ −

∫ k′

k∗
y (f1(y)− f0(y)) dy

For k′ > k∗, this is equal to

(k′ − k∗)B[k′,ρ1] + k∗
(
B[k′,ρ1] − (B − k)

)
+ P (k∗ < Y0i ≤ k′)(E[Y0i|k∗ < Y0i ≤ k′]− P (k∗ < Y1i ≤ k′)(E[Y1i|k∗ < Y1i ≤ k′]

= (k′ − k∗)B[k′,ρ1] + P (k∗ < Y0i ≤ k′)(E[Y0i|k∗ < Y0i ≤ k′]− k∗)− P (k∗ < Y1i ≤ k′)(E[Y1i|k∗ < Y1i ≤ k′]− k∗)
= (k′ − k∗)B[k′,ρ1] + P (k∗ < Y0i ≤ k′)(E[Y0i|k∗ < Y0i ≤ k′]− k∗)− P (k∗ < Yi ≤ k′)(E[Yi|k∗ < Yi ≤ k′]− k∗)

The first term represents the mechanical effect from the bunching mass under k′ being trans-

ported from k∗ to k′, and can be bounded given the bounds for B[k′,ρ1] − B[k∗,ρ1] in the last

section. The last term is point identified from the data, while the middle term can be bounded

using bi-log concavity of Y0i conditional on K∗ = 0. Similarly, when k′ < k∗, the effect on

hours is:

(k′ − k∗)B[k′,ρ1] + P (k′ ≤ Y0i < k∗)(k∗ −E[Y0i|k′ ≤ Y0i < k∗])− P (k′ ≤ Y1i < k∗)(k∗ −E[Y1i|k′ ≤ Y1i < k∗])

= (k′ − k∗)B[k′,ρ1] + P (k′ ≤ Yi < k∗)(k∗ −E[Yi|k′ ≤ Yi < k∗])− P (k′ ≤ Y1i < k∗)(k∗ −E[Y1i|k′ ≤ Y1i < k∗])
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with the middle term point identified from the data and last term bounded by bi-log concavity

of Y1i conditional on K∗ = 0. The analytic bounds implied by BLC in each case are given

by the Lemma below.

Lemma. Suppose Yi is a bi-log concave random variable with CDF F (y). Let F0 := F (y0)

and f0 = f(y0) be the CDF and density, respectively, evaluated at a fixed y0. Then, for any

y′ > y0:

A ≤ P (y0 ≤ Yi ≤ y′) (E[Yi|y0 ≤ Yi ≤ y′]− y0) ≤ B

and for any y′ < y0:

B ≤ P (y′ ≤ Yi ≤ y0) (y0 −E[Yi|y′ ≤ Yi ≤ y0]) ≤ A

where A = g(F0, f0, FL(y′)) and B = g(1− F0, f0, 1− FU(y′)), with

FL(y′) = 1− (1− F0)e
− f0

1−F0
(y−y0)

, FU(y′) = F0e
f0
F0

(y′−y0)

and

g(a, b, c) =

ac
b

(
ln
(
c
a

)
− 1
)

+ a2

b
if c > 0

a2

b
if c ≤ 0

In either of the two cases max{0, FL(y′)} ≤ F (y′) ≤ min{1, FU(y′)}.

Proof. As shown by Dümbgen et al., 2017, bi-log concavity of Yi implies not only that f(y)

exists, but that it is strictly positive, and we may then define a quantile function Q = F−1

such that Q(F (y)) = y and y = Q(F (y)). Theorem 1 of Dümbgen et al., 2017 also shows

that for any y′:

1− (1− F0)e
− f0

1−F0
(y−y0)︸ ︷︷ ︸

:=FL(y′)

≤ F (y′) ≤ F0e
f0
F0

(y′−y0)︸ ︷︷ ︸
:=FU (y′)

We can re-express this as bounds on the quantile function evaluated at any u′ ∈ [0, 1]:

y0 +
F0

f0

ln

(
u

F0

)
︸ ︷︷ ︸

QL(u′)

≤ Q(u′) ≤ y0 −
1− F0

f0

ln

(
1− u
1− F0

)
︸ ︷︷ ︸

QU (u′)

Write the quantity of interest as:

P (y0 ≤ Yi ≤ y′) (E[Yi|y0 ≤ Yi ≤ y′]− y0) =

∫ y′

y0

(y − y0)f(y)dy =

∫ F (y′)

F0

(Q(u)− y0)du
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Given that Q(u) ≥ y0, the integral is increasing in F (y′). Thus an upper bound is:

P (y0 ≤ Yi ≤ y′) (E[Yi|y0 ≤ Yi ≤ y′]− y0) ≤
∫ FU (y′)

F0

(QU(u)− y0)du

= −1− F0

f0

∫ FU (y′)

F0

ln

(
1− u
1− F0

)
du

=
(1− F0)2

f0

∫ 1−FU (y′)
1−F0

1

ln (v) dv

=
(1− F0)(1− FU(y′))

f0

(
ln

(
1− FU(y′)

1− F0

)
− 1

)
+

(1− F0)2

f0

where we’ve made the substitution v = 1−u
1−F0

and used that
∫

ln(v)dv = v(ln(v) − 1)). In-

spection of the formulas for FU and FL reveal that FU ∈ (0,∞) and FL ∈ (−∞, 1). In the

event that FU(y′) ≥ 1, the above expression is undefined but we can replace FU(y′) with one

and still obtain valid bounds:

P (y0 ≤ Yi ≤ y′) (E[Yi|y0 ≤ Yi ≤ y′]− y0) ≤ −(1− F0)2

f0

∫ 1

0

ln (v) dv =
(1− F0)2

f0

where we’ve used that
∫ 1

0
ln(v)dv = −1.

Similarly, a lower bound is:

P (y0 ≤ Yi ≤ y′) (E[Yi|y0 ≤ Yi ≤ y′]− y0) ≥
∫ FL(y′)

F0

(QL(u)− y0)du =
F0

f0

∫ FL(y′)

F0

ln

(
u

F0

)
du

=
F 2

0

f0

∫ FL(y′)/F0

1

ln (v) du

=
F0FL(y′)

f0

(
ln

(
FL(y′)

F0

)
− 1

)
+
F 2

0

f0

where we’ve made the substitution v = u
F0

. If FL(y′) ≤ 0, then we replace with zero to obtain

P (y0 ≤ Yi ≤ y′) (E[Yi|y0 ≤ Yi ≤ y′]− y0) ≥ −F
2
0

f0

∫
0

1 ln (v) du =
F 2

0

f0

When y′ < y, write the quantity of interest as:

P (y′ ≤ Yi ≤ y0) (y0 −E[Yi|y′ ≤ Yi ≤ y0]) =

∫ y0

y′
(y0 − y)f(y)dy =

∫ F0

F (y′)

(y0 −Q(u))du
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This integral is decreasing in F (y′), so an upper bound is:

P (y′ ≤ Yi ≤ y0) (y0 −E[Yi|y′ ≤ Yi ≤ y0]) ≤
∫ F0

FL(y′)

(y0 −QL(u))du = −F0

f0

∫ F0

FL(y′)

ln

(
u

F0

)
du

= −F
2
0

f0

∫ 1

FL(y′)/F0

ln (v) du

=
F0FL(y′)

f0

(
ln

(
FL(y′)

F0

)
− 1

)
+
F 2

0

f0

or simply F 2
0 /f0 when FL(y′) ≤ 0, and a lower bound is:

P (y′ ≤ Yi ≤ y0) (y0 −E[Yi|y′ ≤ Yi ≤ y0]) ≥
∫ F0

FU (y′)

(y0 −QU(u))du

=
1− F0

f0

∫ F0

FU (y′)

ln

(
1− u
1− F0

)
du

= −(1− F0)2

f0

∫ 1

1−FU (y′)
1−F0

ln (v) dv

=
(1− F0)(1− FU(y′))

f0

(
ln

(
1− FU(y′)

1− F0

)
− 1

)
+

(1− F0)2

f0

or simply (1− F0)2/f0 when FU(y′) ≥ 1.

In estimation, I censor intermediate CDF bound estimates based on he above lemma at

zero and one. These constraints are not typically binding so I ignore the effect of this on

asymptotic normality of the final estimators, when constructing confidence intervals.

L.7 Details of calculating wage correction terms

For the ex-post effect of the kink

Suppose that straight-time wages w∗ are set according to Equation (1) for all workers, where

h∗ are their anticipated hours. The straight-wages that would exist absent the FLSA w∗0,

yield the same total earnings z∗, so:

w∗0h
∗ = w∗(h∗ + (ρ1 − 1)(h∗ − k)1(h∗ > k))

where k = 40 and ρ1 = 1.5. The percentage change is thus

(w∗0 − w∗)/w∗ =
(ρ1 − 1)(h∗ − k)1(h∗ > k)

h∗ + (ρ1 − 1)(h∗ − k)1(h∗ > k)

If h0i is constant elasticity in the wage with elasticity E , then we would expect

h0it − h∗0it
h0it

= 1−
(

1 +
(ρ1 − 1)(h∗ − k)1(h∗ > k)

h∗ + (ρ1 − 1)(h∗ − k)1(h∗ > k)

)E
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Taking h0it ≈ h1it ≈ h∗ and integrating along the distribution of h1it, we have:

E[h0it − h∗0it] ≈ E

[
1(hit > k)hit

(
1−

(
1 +

(ρ1 − 1)(hit − k)

hit + (ρ1 − 1)(hit − k)

)E)
]

]

which will be negative provided that E < 0.The total ex-post effect of the kink is:

E[hit − h∗0it] = E[hit − h0it] +E[h0it − h∗0it]

For a move to double-time

The straight-wages w∗2 that would exist with double time, for workers with h∗ > k, that yield

the same total earnings z∗ as the actual straight wages w∗ satisfy:

w∗2(k + (ρ̄1 − 1)(h∗ − k)) = w∗(k + (ρ1 − 1)(h∗ − k))

where ρ̄1 = 2. The percentage change is thus

(w∗2 − w∗)/w∗ =
k + (ρ1 − 1)(h∗ − k)

k + (ρ̄1 − 1)(h∗ − k)
− 1

Let h̄0i be hours under a straight-time wage of w∗2. By a similar calculation thus:

E[h̄
[ρ̄1,k]
i − h[ρ̄1,k]

it ] ≈ E

[
1(hit > k)hit

((
k + (ρ1 − 1)(h∗ − k)

k + (ρ̄1 − 1)(h∗ − k)

)E
− 1

)
]

]

The total effect of a move to double-time is:

E[h̄
[ρ̄1,k]
it − hit] = E[h̄

[ρ̄1,k]
it − h[ρ̄1,k]

it ] +E[h
[ρ̄1,k]
it − hit]

The above definitions are depicted visually in Figure 6 below.
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40 h1 h∗
0 h∗ h0
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z∗ = w∗
0h

∗

h

Figure 6: Depiction of h∗, h0, h∗0 and h1 for a single fixed worker that works overtime at h1 hours

this week. Their realized wage w∗ has been set to yield earnings z∗ based on anticipated hours h∗

given the FLSA kink. In a world without the FLSA, the worker’s wage would instead be w∗0 = z∗/h∗,

and this week the firm would have chosen h∗0 hours, where the worker’s marginal productivity this

week is w∗0 (in the benchmark model). Note: while (z∗, h∗) is chosen jointly with employment and

on the basis of anticipated productivity, choice of h∗0 is instead constrained by the contracted purple

pay schedule (with the worker already hired) and on the basis of updated productivity. h1 may

differ from h∗ for this same reason. In the numerical calculation h∗ is approximated by h1 – which

corresponds to productivity variation being small and h∗ being a credible choice given the FLSA.

If credibility (the firm not wanting to renege too far on hours after hiring) were a constraint on the

choice of (z∗, h∗) in the no-FLSA counterfactual, then h∗ would be smaller without the FLSA, but

I consider this “second-order” and do not attempt a correction here.

Changing the location of the kink

Let B[k]
w denote bunching with the kink at location k and (a distribution of) wages denoted

by w. Then the effect of moving k on bunching is

B[k′]
w′ − B

[k∗]
w =

(
B[k′]
w − B[k∗]

w

)
+
(
B[k′]
w′ − B

[k′]
w

)
where w′ are the wages that would occur with bunching at the new kink point k′. The first

term has been estimated by the methods described above, with the second term representing

a correction due to wage adjustment. Taking Y0i ≈ Y1i ≈ h∗, the straight-time wages w∗

set according to Equation (1) that would change are those between k′ and k∗. Consider the

case k′ < k∗. We expect wages to fall, as the overtime policy becomes more stringent, and(
B[k′]
w′ − B

[k′]
w

)
is only nonzero to the extent that the increase in Y0 and Y1 changes the mass

of each in the range [k′, k∗]. With the range [k′, k∗] to the left of the mode of Y0i, it is most

plausible that this mass will decrease. Similarly, for Y1i, it is most likely that this mass will

decrease, making the overall sign of
(
B[k′]
w′ − B

[k′]
w

)
ambiguous However, since most of the
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adjustment should occur for workers who are typically found between k and k′, we would not

expect either term to be very different from zero.

Now consider the effect of average hours:

E[Y
[k′]
w′ − Y

[k∗]
w ] = E[Y [k′]

w − Y [k∗]
w ] +E[Y

[k′]
w′ − Y

[k′]
w ]

For a reduction in k, we would expect wages w′ to be lower with k = k′ and hence the second

term positive. This will attenuate the effects that are bounded by the methods above, holding

the wages fixed at their realized levels.

Consider first the case of k′ < k∗. Let w′ be wages under the new kink point k′, and

assuming they adjust to keep total earnings z∗ constant, wages w′ will change if h∗ is between

k and k′ as: w′(k′+0.5(h∗−k′)) = w∗h∗, and the percentage change for these workers is thus

(w′ − w∗)/w∗ =
h∗

k′ + 0.5(h∗ − k′)
− 1

E[Y
[k′]
w′ − Y

[k′]
w ] ≈ E

[
1(k′ < Yi < k∗)Yi

((
Yi

k′ + 0.5(Yi − k′)

)E
− 1

)
]

]

In the case of k′ > k∗, we will have wages change as: w′h∗ = w∗(k∗ + 0.5(h∗ − k∗)) if h∗ is

between k and k′. The percentage change for these workers is thus

(w′ − w∗)/w∗ =
k∗ + 0.5(h∗ − k∗)

h∗
− 1

E[Y
[k′]
w′ − Y

[k′]
w ] ≈ E

[
1(k∗ < Yi < k′)Yi

((
k∗ + 0.5(Yi − k∗)

Yi

)E
− 1

)]
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