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Abstract

Survey questions often elicit responses on ordered scales for which the definitions of the categories

are subjective, possibly varying by individual. This paper clarifies what is learned when these

subjective responses are used as an outcome in regression-based causal inference. When a continuous

treatment variable is statistically independent of both i) potential outcomes; and ii) heterogeneity in

reporting styles, a nonparametric regression of response category number on that variable uncovers

a positively-weighted linear combination of causal effects among individuals who are on the margin

between adjacent response categories. Though the weights do not integrate to one, the ratio of local

regression derivatives with respect to two such explanatory variables identifies the relative magnitudes

of convex averages of their effects. When results are extended to discrete treatment variables, different

weighting schemes apply to different regressors, making comparisons of magnitude less informative.

Under further assumptions, I obtain bounds on the possible bias when comparing the effects of a

discrete treatment variable to those of another discrete or continuous treatment variable.

1 Introduction

Survey questions often ask respondents to choose from a set of ordered categories that

lack clear definitions, and are thus interpreted subjectively by those respondents. These

categorical responses are then commonly used as outcome variables in social science re-

search.1 Examples include self-reported health status in health economics, job satisfaction

in labor economics, or life-satisfaction questions as a measure of overall wellbeing.

A key question when analyzing these responses as an outcome is how “reporting

functions”—the way that individuals map an underlying latent variable into one of the

available response categories—impact conclusions drawn from the data.2 Bond and Lang

(2019) influentially show that even if individuals share a common reporting function (but

it is not ex-ante known to the researcher), averages of the latent variable cannot be

meaningfully compared between groups of individuals, absent strong restrictions on its

unobservable distribution. More fundamentally, if the response categories lack objective

definitions, reporting functions might also vary between individuals, possibly confounding

any attempt to study relationships between explanatory variables and the latent variable.

This paper shows that the observed categorical responses can still be informative about

causal effects on this latent outcome, despite the dual threats of reporting functions being
∗Department of Economics, University of Calgary. For useful conversations, I thank Christopher Barrington-Leigh,

Carol Caetano, Andrew Clark, Ben Crost, John Helliwell, Peter Hull, Caspar Kaiser, Jean-William Laliberté, Simon Lee,
Guy Mayraz, Max Norton, Bernard Salanié, Adam Rosen, Kevin Song and Sam Viavant.

1See e.g. Hamermesh (2004) for an overview.
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a) unknown to the researcher; and b) heterogenous across individuals. This paper takes

the perspective of Bond and Lang (2019) that the latent variable driving individuals’

responses is the researcher’s ultimate outcome of interest, and establish new results re-

lating the observed joint distribution of responses and covariates to the causal effects of

those covariates on the latent variable. I do so by extending the selection-on-observables

assumption—familiar from causal inference—that explanatory variables are (condition-

ally) independent of potential outcomes, adding to it the assumption that explanatory

variables are also (conditionally) independent of heterogeneity in reporting functions. I

then consider the practice that is common in empirical work of regressing categorical

response numbers on explanatory variables, and show how the regression estimand from

this exercise can be interpreted in terms of the causal effects of those regressors on the

latent variable of interest.

Specifically, I consider a model of the general form:

Ri = ri(Hi) = r(Hi, Vi)

Hi = hi(Xi) = h(Xi, Ui)

where Hi ∈ RK reflects a set of unobserved latent variables, and Ri an observed response

mapped to a real number in some set R (e.g. R = {0, 1} for a binary yes/no question).

For simplicity, I consider a scalar latent variable before later generalizing to K > 1.

The function hi(x) above denotes the potential outcomes of H for individual i, in-

dicating the value of H that would occur if a vector of observed explanatory variables

X took counterfactual value x. The function ri(h) represents individual i’s reporting

function, which I assume to be weakly increasing in h for each i. The random vectors Ui

and Vi parameterize heterogeneity across individuals in potential outcomes and reporting

functions, respectively, and the main statistical assumption of the model can be stated

simply as Xi ⊥⊥ (Ui, Vi). This is later relaxed to conditional independence given control

variables. The researcher’s objective is to learn how hi(x) varies with x, while observing

only Ri and Xi.

One of the main results of this paper is that if x1 and x2 reflect two continuously

distributed components of the vector x, then

∂
∂x1
E[Ri|Xi = x]

∂
∂x2
E[Ri|Xi = x]

=
β̃1(x)

β̃2(x)
(1)

where β̃j(x) reflects a weighted average of the causal effect of a small change in the jth

component of X on H, when X = x. In particular, when R reflects a set of integers

R = {0, 1, . . . R̄} for some R̄, the quantity β̃j(x) averages ∂xjh(x, Ui) over individuals i

who are on the margin between two response categories r−1 and r, for any r ∈ {1, . . . R̄}.
2The use of the term “reporting function” for subjective data appears to have first appeared in the economics literature

in Oswald (2008), but the general concept certainly predates its discussion in economics (e.g. Banks and Coleman 1981).
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More generally, when one compares the mean of R between any two values x and x′

of the vector X, we have that:

E[Ri|Xi = x′]−E[Ri|Xi = x] = E
[
f̄(∆i, Vi, x) ·∆i

]
(2)

where ∆i = h(x′, Ui) − h(x, Ui) is the “treatment effect” of changing X from x to x′

on outcome H for individual i, and f̄(∆, v, x) ≥ 0 for all ∆, v, x.3 Eq. (2) implies

that if the sign of the treatment effect ∆i is the same for all individuals, then the sign of

E[Ri|Xi = x′]−E[Ri|Xi = x] will be the same as that of the causal effect. Meanwhile, Eq.

(1) implies that when the conditional expectation of R given X is linear in X (justifying

linear regression), the ratio of regression coefficients corresponding to two continuously

distributed explanatory variables can capture the relative magnitudes of marginal causal

effects corresponding to each.

Despite a growing trend in papers leveraging natural experiments with subjective out-

come data,4 empiricists have lacked formal results to interpret precisely what is estimated

by regressions in which “subjective” ordinal responses R are used as the outcome. This

paper helps to fill this gap by showing that when the selection-on-observables research

design is extended to include reporting-function heterogeneity, the shape of how the

regression function of integer category numbers varies with X recovers positive linear

aggregations of causal effects of X on H, with intuitive weights.5 The results illuminate

how mean regression can remain a useful—while in some ways limited—tool for causal

inference about H, without assuming cardinality or interpersonal comparability of H.

For ease of exposition, I take as a running example survey questions that ask respon-

dents about their overall satisfaction with life, and refer to H as “happiness”.6 This

draws connections to the notion of cardinal utility as a measure of welfare (Fleming,

1952; Harsanyi, 1955), and motivates the treatment of H as an outcome of normative

interest. However, results are equally applicable to other outcomes elicited on ordered

scales, e.g. self-reported health status, mental health indicators, job satisfaction, ratings

of products and services, or other settings in which ordered response models might be

employed with random individual-specific thresholds.7

Intuition for the main results: To appreciate the the role of the independence assumption

Xi ⊥⊥ (Ui, Vi) in the above results, consider a study investigating the connection between

wealth and Hi conceived of as general satisfaction with life. Suppose that the study makes

use of life evaluations from the popular “Cantril Ladder” question, which asks (Gallup,

3The function f̄ is defined in Sec. 4, and no longer depends upon ∆ as x′ → x and the difference becomes a derivative.
4Some prominent examples include Card et al. (2012), Benjamin et al. (2014), Lindqvist et al. (2020), Perez-Truglia

(2020), and Dwyer and Dunn (2022).
5When the researcher is interested in establishing correlations rather than causation, the same results capture changes

to the conditional quantile function of the underlying latent variable, rather than causal effects.
6I do this for simplicity only, ignoring e.g. important distinctions between hedonic, affective and evaluative notions of

wellbeing (Deaton, 2018; Helliwell and Barrington-Leigh, 2010).
7A broad class of such examples are survey questions that use so-called Likert scales: e.g. allowing responses such as

“strongly agree”, “agree” . . . “strongly disagree” to indicate agreement with a given statement, or to categorize quantities
such as frequencies (“often”, “sometimes”, . . . “almost never”).
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2021): Please imagine a ladder with steps numbered from zero at the bottom to ten at the

top. Suppose we say that the top of the ladder represents the best possible life for you and

the bottom of the ladder represents the worst possible life for you. If the top step is 10

and the bottom step is 0, on which step of the ladder do you feel you personally stand at

the present time?. In this example, the response space is R = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
We can appreciate the importance of independence between Xi and Vi by supposing

that the mean response Ri among wealthy individuals Xi = 1 is higher than among less-

wealthy individuals Xi = 0. While this correlation could be due to wealthier individuals

tending to have higher Hi, it could in principle instead simply reflect that wealthier

individuals tend to operationalize the question differently, having lower threshold values

of experienced happiness Hi at which they would evaluate their life as being in a particular

category, e.g. an “eight” or a “nine”.

Contrast the above study with one that compares the life satisfaction of lottery winners

to those who played but did not win.8 Before the lottery, heterogeneity Vi in reporting

functions is balanced between treatment and control groups by virtue of the random se-

lection of winners. This guarantees balance after the win as well, if individuals have fixed

reporting functions that do not themselves change due to winning the lottery. Equations

(1) and (2) show that randomization can be helpful both in confronting the classic prob-

lem of selection bias (wealthier individuals tend to differ from the less-wealthy in many

unobserved dimensions relevant to their happiness—captured by Ui) and the possibility of

confounding heterogeneity Vi in how they map that happiness into a subjectively-defined

response category in R, as allowed by the question.

Relationship to literature: The results in this paper are related both to the literature on

subjective well-being (SWB)—which is often measured using survey questions involving

integer scales such as the Cantril Ladder—as well as to ordered response models which

are used widely throughout economics.

Empirical studies using SWB data often regress the integer category number Ri on

explanatory variables Xi, either implicitly or explicitly treating observed responses as a

direct observation of the ultimate outcome of interest (amounting to ri(h) = h, or “car-

dinality”). This justifies familiar regression-based approaches to studying the average

effects of Xi on Ri, given selection on observables. Other authors instead estimate para-

metric ordered response models (such as the ordered probit or logit) to recover causal

effects, on the grounds that Ri represents an ordinal variable only. However, such ap-

proaches generally trade the restrictiveness of imposing cardinality for the potential for

misspecification bias, by introducing strong parametric assumptions. The ordered probit

model for example assumes that h(x, u) = x′β+u where u follows a normal distribution,

a structure that cannot be verified empirically.

8As an example, Lindqvist et al. (2020) document that lottery winners in Sweden report higher life satisfaction than
lottery losers, persistent for many years after their payout.
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A recent methodological literature that has considered the robustness of conclusions

drawn from SWB data whether using either the ordered response or regression approach, if

one accepts that comparisons of Ri are only ordinally meaningful (Schröder and Yitzhaki

2017; Bond and Lang 2019; Kaiser and Vendrik 2022; Chen et al. 2022; Chesher et al.

2022). These papers mostly abstract away from of heterogeneity Vi in reporting functions,

representing a special case of my setup in which ri(·) = r(·) is common across individuals.9

A common reporting function r amounts to assuming it possible to make interpersonal

comparisons of happiness, since if Ri > Rj for two individuals i and j it must then be the

case that Hi > Hj, provided that r is weakly increasing. The possibility of interpersonal

comparisons of utility is widely disputed (Binmore, 2009).

However, comparisons of H between specific pairs of individuals is rarely the goal of

analysis. Instead, researchers are typically interested in documenting features of how

the conditional distribution of H varies with X, or to establish the causal effects of

components of X on H.

A major challenge to this enterprise is articulated by Bond and Lang (2019) (hence-

forth, BL), who suggest that using observations of Ri to learn about Hi can be misleading.

BL point out that the implied ranking of mean happiness H between two groups can differ

depending on which function r(·) generated the data. To see the issue, let x′ and x stand

for two groups defined by X. In general, E[Ri|Xi = x′] ≥ E[Ri|Xi = x] is insufficient to

conclude that E[Hi|Xi = x′] ≥ E[Hi|Xi = x]. Intuitively, this also depends on how “con-

cave” or “convex” the function r(h) is in h. BL show that even if the distribution of Ri

given Xi = x′ stochastically dominates that of Ri given Xi = x (a much stronger condition

than having a higher mean), it is still possible that E[Hi|Xi = x′] < E[Hi|Xi = x].10

This result may appear to be odds with Eqs. (1) and (2) above, which suggest that

comparing E[Ri|Xi = x] across values of x can be informative about causal effects.

However BL focus their attention on the sign of E[Hi|Xi = x′] − E[Hi|Xi = x], which

given random assignment of X (ignoring control variables for now) corresponds to the

overall average treatment effect E[∆i], in the notation of Eq. (2). Although this paper

finds that regressions of R on X identify positively-weighted combinations of the causal

effects of X on H, the weights cannot be chosen by the researcher, and relative to the

uniform weighting of E[∆i] may over or under-represent particular types of individuals.

In principle, studying the conditional mean of Ri could therefore lead to misleading

inferences if causal effects are sufficiently heterogeneous: for example if they are large

and positive for some while large and negative for others.11 As a means of addressing

this, I show that average characteristics of the individuals that are suitably “marginal”

between response categories to be reflected in the regression function can be identified

9A common reporting function r is also assumed in the literature on measuring inequality from ordinal data (Allison
and Foster, 2004; Cowell and Flachaire, 2017); though Kaplan and Zhao (2022) allow group-level differences in reporting.

10By saying that R|X = x′ (first order) stochastically dominates R|X = x, I mean that P (Ri ≤ r|Xi = x′) ≤ P (Ri ≤
r|Xi = x′) for all values r.

11This is arguably less of a problem when conducting causal inference as compared with comparing actual distributions
of happiness, as BL do. Causal effects may be fairly homogeneous within observable strata, while the distribution functions
of realized happiness for two groups are likely to cross or exhibit more widely varying gaps.
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from the data (assuming that these characteristics are themselves unaffected by Xi). This

allows the researcher to reason about the subpopulations that contribute.

Existing results in the SWB literature that allow for heterogeneity in reporting func-

tions (e.g. Layard et al. 2008) incorporate additive heterogeneity in the mapping between

R and H into the error term of fully linear models relating X, H and R.12 Instead, I let

latent happiness H and responses R exist on entirely different scales, in common with

ordered response models. This also distinguishes the approach of this paper from models

of rounding (Hoderlein et al., 2015), classical measurement error (Schennach and Hu,

2013), or discrete missclasification (Hu, 2008; Oparina and Srisuma, 2022).13

My results show what simple mean regressions having R on the left-hand side identify

in a model in which reporting functions are left fully unrestricted except that heterogene-

ity in these functions is unrelated to the regressors, and without any side information.

My setup nests familiar econometric models for ordered response, such as the ordered

probit or logit, but drops any parametric or functional-form assumptions. It also gener-

alizes nonparametric ordered response models that assume scalar or additively separable

heterogeneity (e.g. Matzkin 1992; Matzkin 1994).

Outline: The remainder of this paper proceeds as follows. In Section 2, I propose a non-

parametric model of ordered response with non-separable heterogeneity, which assumes

only that i) each individual’s responses are weakly increasing in their value of the latent

outcome of interest (Appendix C extends to a multivariate latent variable); and ii) that

a vector of treatment variables X is conditionally independent of all unobserved hetero-

geneity in the model. While the model serves as a potential outcomes notation when the

goal is causal inference, it can also serve as a representation of the unobserved conditional

distribution of the latent variable, without reference to causality.

Section 3 establishes my main identification result when there is continuous variation

in a component of X, showing that the slope of changes in the conditional distribution of

responses with respect to that variable identifies a positively-weighted linear combination

of heterogeneous causal responses, among individuals who are on the margin between ad-

jacent response categories. When the sign of those effects is common across individuals,

the regression derivative of integer response numbers with respect to X thus reveals the

direction of causal effects. More strikingly, it remains meaningful to compare the magni-

tudes of two partial derivatives (at the same value of X) of the conditional expectation

function of responses with general heterogeneity in causal effects, as we saw through Eq.

(1). I show that under additional conditions, the ratio of regression derivatives in fact

12Further results that allow for reporting heterogeneity rely on auxiliary data sources or particular models of that
heterogeneity. The approach of “anchoring vignettes” (King et al., 2004) adjusts for heterogeneity by asking respondents to
rate the hypothetical well-being of others (see e.g. Kapteyn et al. 2013; Molina 2017; Montgomery 2022 for applications).
Kaiser (2022) uses memories of one’s own past life satisfaction, and Liu and Netzer (2023) use survey response times.
Barrington-Leigh (2018) extends parametric ordered response models to allow for individuals to differ with respect to
whether they make use of the entire response scale, or restrict themselves only to “focal” values.

13Other measurement error models (Hu and Schennach, 2008; Nadai and Lewbel, 2016; Breunig and Martin, 2020) might
also be applied to subjective outcomes, but identification typically relies on instrumental variables or special regressors.
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captures a local average marginal rate of substitution between the two X.

In Section 4, I turn to identification with a discrete treatment variable. In this case, a

comparison of mean responses at two values of the covariatesX again captures a positively

weighted combination of causal effects, as we saw in Eq. (2). However, the weights are

no longer “local” to particular threshold values of happiness, and unfortunately the total

weight placed on causal effects generally differs from that recovered by a derivative using

a continuous X. This suggests that comparing the magnitudes of discrete regression

coefficients to one another or comparing the coefficients of a discrete and a continuous

regressor is not guaranteed to be quantitatively meaningful. I assess this implication

through simulations with a variety of assumed distributions of latent happiness. While

the distortion due to differential weighting can be severe in principle, I only find evidence

that it is in practice when treatment effects are made implausibly large.

To shed light on these simulation results, I consider a “dense response limit” in which

we view the number of response categories along a sequence that tends towards infinity.

This delivers analytical results that hold approximately when there are many categories

of response. I use the dense response limit to derive bounds on the ratio of the total

weight that the conditional expectation applies to causal effects when comparing contin-

uous to discrete variation in X. In particular, when individual reporting functions are

approximately linear, discrete contrasts will tend to overstate causal effects relative to

continuous ones, by a factor that is upper bounded by two. I also demonstrate a second

set of bounds that are typically much narrower, and hold when individuals furthermore

do not differ too much in how “sensitive” their reporting functions are. These theoreti-

cal bounds are quite conservative when compared with the simulation results, but hold

without parametric knowledge of the underlying distribution of happiness.

Some further results are given in the appendices. In Appendix A I discuss testable

implications of my main model, in particular given the assumption that reporting func-

tions are unaffected by covariates. Appendix B illustrates the results of the paper by

estimating causal effects in a synthetic dataset. In Appendix C.1, I extend results for

the continuous X case to a nonparametric instrumental variables setup. Appendix C.2

extends the model to embed a second notion of “subjectivity” in subjective responses:

not only do individuals differ in their definitions of the response categories in terms of

a latent variable, but also in how they conceptualize the latent variable that the survey

question is asking about. In Appendix D, I discuss identification when the researcher is

interested in understanding the correlation between the underlying latent variable and

covariates, rather than establishing causal effects.

2 Model

To begin let us take for granted that there exists a meaningful latent value Hi for each

individual, that the researcher is ultimately interested in as an outcome. With the life
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satisfaction example in mind, I will often refer to Hi as i′s underlying “happiness”, which

the researcher aims to learn about given those individuals’ responses Ri.
14

The researcher observes a sample of (Ri, Xi) across individuals i generated as:

Ri = ri(Hi) = r(Hi, Vi) (3)

Hi = hi(Xi) = h(Xi, Ui) (4)

where ri(h) is in individual-specific function mapping happiness h to the space of possible

responsesR. The above model indexes heterogeneity in ri(·) by a heterogeneity parameter

Vi ∈ V ⊆ R
dv . Since no constraints are placed on dv, this is without loss of generality

and the model is compatible with each individual having their own reporting function

ri(h). Figure 1 depicts some examples of reporting functions when R = {0, 1, 2}.

0

1

2

v = v1

H

R

0

1

2

v = v2

H

R

Figure 1: Examples of two different reporting functions, in a case with three categories: R = {0, 1, 2}.

Similarly, for each individual there is a function hi(·) mapping values of a vector of ex-

planatory variables X into a value of H via (4), where heterogeneity in the function hi(·)
is represented by parameter Ui ∈ U ⊆ Rdu . The intended interpretation of the function

hi(x) is that it denotes potential outcomes for individual i as a function of counterfactual

values of x, in some set of possible treatments X ⊆ Rdx . The function h is our object of

interest: how it varies with x holding u fixed yields the causal effect of that change on H.

Since the dimension du is again left unrestricted, the above model places no restriction

on how heterogeneous these causal effects can be across individuals.

Remark: An alternative interpretation of h(x, u) that requires no causal assumptions is

that it represents the conditional quantile function of Hi given Xi, with Ui ∈ [0, 1] a

scalar indicating i’s rank in a distribution of their peers.15 This representation is helpful

when causal effects are not the target, and the researcher is instead interested in the more

14The model extends naturally to a setting in which the definition of “H” is itself subjective, in the sense that different
individuals use different latent variables when constructing their responses. The key requirement is that these subjectively
defined latent variables in turn reflect increasing transformations of an objective variable of interest. See Appendix C.2.

15 In particular, let θi := FH|XV (Hi|Xi, Vi) be i’s “rank” in the conditional happiness distribution of individuals sharing

their value of X and V , where FH|XV denotes a cumulative distribution function of H. Now let Ui = (θi, Vi)
T , and define

h(x, u) := QH|XV (θ|x, v) for any u = (θ, v)T , where QH|XV denotes the conditional quantile function of H given X and
V . Eq. (4) now follows from these definitions. See Appendix D for details.
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modest goal of uncovering statistical features of the joint distribution of Hi and Xi.

Note that model (3)-(4) embeds an exclusion restriction: X does not directly enter in

the equation for R, and only affects reports through H. This is important for drawing

inferences about the relationship between H and X from the observable joint distribution

of R and X. The model can be generalized slightly to allow reporting behavior to depend

directly on observables, as described in Appendix A. The appendix also describes how

restrictions on effect heterogeneity yield overidentification restrictions that can then be

used to test the assumption that reporting functions are invariant with respect to X.

The following two subsections introduce the additional identifying assumptions of the

model: first, that reporting functions are weakly increasing in h; and second, that the

researcher as exogenous variation in some components of Xi.

2.1 Weakly increasing reporting

The main assumption that I make about the reporting functions ri(·) themselves is that

they are increasing in Hi:

Assumption HONEST (weak honesty). r(h, v) is weakly increasing and left-continuous

in h for all v ∈ V

The left-continuity assumption of HONEST is essentially a normalization, since any

weakly increasing function of bounded variation is continuous except at isolated points

within its support.16 The first part of Assumption HONEST rules out cases in which

individuals would report a lower value of R if H were increased.

The following lemma shows that Assumption HONEST is equivalent to there being a

set of “thresholds” τv(r) that separate the ordered categories in R. This characterization

is useful in developing formal results.

Lemma 1. HONEST holds iff for all v ∈ V , r ∈ R and h ∈ H:

r(h, v) ≤ r ⇐⇒ h ≤ τv(r) (5)

where τv(r) = sup{h ∈ H : r(h, v) ≤ r} or τv(r) :=∞ if the supremum does not exist.

Proof. See Appendix G.

As an illustration of Lemma 1, suppose that R = {0, 1, . . . R̄} for some integer R̄. Then

16Hence a reporting function that is, say, right continuous rather than left continuous could be made left continuous by
modifying the function on a set of Lebesque measure zero.
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τv(0) τv(1)
0

1

2

H
R

Figure 2: Depiction of the thresholds corresponding to reporting function r(·, v) for v = v1 from Figure 1.

Lemma 1 implies that any given reporting function r(h, v) can be written as:

r(h, v) =



0 if h ≤ τv(0)

1 if τv(0) < h ≤ τv(1)

2 if τv(1) < h ≤ τv(2)
...

R̄ if h > τv(R̄− 1)

(6)

Remark: Assumption HONEST does not require that respondents are motivated only

by “honesty” when choosing Ri. Instead, they may have direct preferences for cer-

tain response categories. Consider a utility maximization model in which r(h, v) =

argmaxr∈R u(r, h, v), with utility u depending not only on happiness h, but also directly

on the response category r. As an example, let us further assume that the utility function

takes the form

u(r, h, v) = φv(r)− |h∗v(r)− h|

where individuals of type v obtain utility φv(r) from giving a response of r, but also

value giving an answer close to a value h∗v(r) that is perceived by them to correspond

to response r. Provided that h∗v(r) is strictly increasing in r (i.e. higher responses are

subjectively associated with higher values of happiness), then u satisfies the property of

increasing differences (cf. Milgrom and Shannon 1994) in (r, h), which in turn implies

HONEST.17

2.2 Conditional independence

The final piece of the model is a conditional independence assumption for variation in

X. Denote the elements of the vector X as Xi = (X1i, X2i . . . XJ,i,Wi)
T , where the first

J components of X will be variables for which causal effects are of interest, while the

remaining components Wi = (XJ+1,i . . . Xdx,i)
′, will serve as control variables. For a given

17Note that heterogeneity v in this form for utility need not be additively separable from quantities that depend on x
(i.e. h). Such separability is shown by Allen and Rehbeck (2019) to admit important identification results for latent utility.
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value x of X, I will use w to denote these final dx − J components of x.18

With this notation, I now suppose that conditional on W , each Xj is as good as randomly

assigned in the following sense:

Assumption EXOG (conditionally exogenous components of X). Both

• {Xji ⊥⊥ Vi} | Wi

• {Xji ⊥⊥ Ui} | (Wi, Vi)

for each j = 1 . . . J .

Note that Assumption EXOG follows if for each j:

{Xji ⊥⊥ (Ui, Vi)} | Wi (7)

Eq. (7) provides a natural foundation for EXOG and is easier to interpret, but is

technically stronger than the results require. For causal inference, an assumption like

{Xj ⊥⊥ U}|W is generally already necessary for identification: one needs some kind of

experiment or natural experiment providing exogenous variation in Xj. Eq. (7) then

simply requires this natural experiment to make Xj (conditionally) independent of V as

well. Note that under EXOG, U and V may be arbitrarily correlated with one another

(e.g. if happier individuals have more optimistic reporting functions).19 In Section C.1,

I relax EXOG to consider identification using instrumental variables.

The assumption that response behavior is independent of a treatment variable may

be restrictive in many contexts, especially in the absence of a credible research design.

For example, Barrington-Leigh (2018) notes that the tendency to bunch at endpoints or

the mid-point of scales for life-satisfaction questions is higher among individuals with less

formal education, which suggests that a regression of life satisfaction on years of schooling

might conflate reporting heterogeneity with variation in actual life satisfaction.20 While

a natural experiment could yield variation in schooling that is orthogonal to this hetero-

geneity, the assumption that education does not directly change individuals’ reporting

functions (i.e. their definition of say an “eight” out of ten in life satisfaction) may be

strong. I show that when causal effects are assumed to be homogeneous, the model has

testable implications that can be used to assess this assumption of reporting function

invariance. More broadly, whether reporting functions are themselves plausibly affected

by a given treatment variable must be considered on a case-by-case basis.

18Although I use the terminology of “potential outcomes” to describe the structural function hi(x), the components w
of x that simply serve as controls need not be manipulable or enter the function h directly.

19This is a feature that distinguishes my approach from the treatment of measurement error by Abrevaya and Hausman.
(1999), who assume (in my notation) that R ⊥⊥ X|H, which amounts to V ⊥⊥ U |H. They also restrict the model functionally,
with a linear index structure for h and scalar errors with monotonicity.

20See also Conti and Pudney (2011) and Montgomery (2022) for evidence of non-independence between V and gender.
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2.3 Relationship to existing ordered response models

The model described above nests familiar econometric models of ordered response, that

typically make parametric assumptions about the functions h, r and the distribution of

unobservables, while entirely eliminating heterogeneity in v.

For example, the probit model treats the case in which R = {0, 1}, and lets

Ri = 1(X ′iβ + Ui ≥ 0)

where Ui|Xi ∼ N(0, σ2) where often σ is normalized to 1. This fits into the general

model if Vi is taken to be degenerate (all units share a value v), τ(0) = 0, Ui is a

scalar and h(x, u) = xTβ + u for some β ∈ Rdx . The assumption that U is normally

distributed independent of Xi implies EXOG. In the probit model, the effect on H of a

switch from x to x′ is common across units, given by (x′ − x)Tβ. The ordered probit

model maintains the structural function h(x, u) = xTβ+u and distributional assumption

on Ui, but allows for a reporting function that maps to a larger set of categories R =

{0, 1, . . . R̄}. The reporting function continues to be homogeneous across units, with

thresholds τ(0), τ(1), . . . , τ(R̄− 1).

Despite the popularity of probit and ordered logit models, it is not necessary to im-

pose a parametric structure on h(x, u) or the distribution of U to obtain identification in

binary and ordered choice settings. Matzkin (1992) shows that h can be identified up to

scale under fairly general conditions provided that u is a scalar and h admits a separable

structure: h(x, u) = g(x)+u for some function g. This model allows for individual-specific

reporting functions in a trivial sense, since owing to the additive separability the distinc-

tion between thresholds τv(r) and the error u is a matter of normalization.21 However, a

separable model like h(x, u) = g(x) + u for potential outcomes also imposes homogeneity

of treatment effects, which is often an unpalatable assumption when conducting causal

inference. The Matzkin (1992) result also requires all of the X to be continuously dis-

tributed. My results allow for treatment effect heterogeneity, and nests a leading case of

her identification result when regressors are continuous (see Proposition 3).

3 What is identified from continuous variation in X

Given the model outlined in the last section, let us now turn to what can be identified

by looking at responses given variation in X. In this section, we suppose that at least

one component of X is continuously distributed.

Let ∂xj denote a partial derivative with respect to xj, and assume the following:

Assumption REG (regularity conditions). The following hold:

21Indeed, fixing any r and defining Y ri = 1(Ri ≤ r) we may write Y ri = 1(g(Xi)+ηri ≤ 0) where ηri = Ui−τVi
(r). Under

conditions given by Matzkin (1992), the function g and the distribution of ηr can be identified (up to a scale normalization).
See also Cunha et al. (2007). Since this can be done for each value r, the function g is in fact overidentified with more
than two categories (see Appendix A for a generalization). Matzkin (1994) establishes conditions for identification of g in
a weakly separable model Yi = r(h(g(Xi), ηi)), but requires ηi to be scalar.
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• component Xji of Xi is continuously distributed

• Hi is continuously distributed conditional on Xi and Vi

• ∂
∂xj
QH|XV (α|h, v) ≤M <∞ for all α ∈ [0, 1], h ∈ H, where QH|X is the conditional

quantile function of H given X and V

• fH,∂xjh|XV (h, h′|x, v) exists and is upper bounded by some c(h′) where
∫
c(h′)|h′|dh′ <

∞, for all v ∈ V.

I denote by fH(h|x, v) the conditional density of Hi at h, conditional on Xi = x and

Vi = v. With this notation in mind, we have the following result:

Theorem 1. Assume HONEST and EXOG, and that REG holds for some j ∈ {1, . . . , J}.
Then:

∂xjP (Ri ≤ r|Xi = x) = −E
{
fH(τVi(r)|x, Vi) ·E

[
∂xjh(x, Ui)|Hi = τVi(r), x, Vi

]∣∣Xi = x
}

Proof. See Appendix G.

The inner expectation in Theorem 1 (indicated by square brackets [ ]) is over heterogeneity

in causal effects Ui, while the outer expectation (indicated by curly brackets { }) is over

heterogeneity Vi in reporting functions. Expanding this second expectation out, we have

∂xjP (Ri ≤ r|Xi = x) = −
∫
dFV |W (v|w) · fH(τv(r)|x, v) ·E

[
∂xjh(x, Ui)|Hi = τv(r), x, v

]
(8)

where recall that for a value x, we let w denote it’s final components (xJ+1 . . . xdx), fixed

as control variables.

Theorem 1 shows that the derivative of P (Ri ≤ r|Xi = x) with respect to changes in xj

provides a positively-weighted linear combination of the structural change in H due to Xj.

When h is interpreted as potential outcomes, ∂xjh(x, Ui) yields marginal causal effects.

Under the weaker interpretation of Footnote 15, ∂xjh(x, Ui) captures an average of how the

conditional quantile of H varies with Xj.
22. The proof of Theorem 1 relates the derivative

of the conditional CDF of R to a mixture of (infeasible) quantile regressions that condition

on response type Vi, and then makes use of a connection between quantile regressions

and local average structural derivatives (Hoderlein and Mammen, 2007; Sasaki, 2015).23

By (8), the “weight” on an individual with happiness close to τv(r) is positive and

proportional to dFV |W (v|w) · fH(τv(r)|x, v). Figure 3 provides some intuition for this

particular weighting. By the law of iterated expectations, we can write ∂xjP (Ri ≤ r|Xi =

x) as a weighted average of ∂xjP (Ri ≤ r|Xi = x, Vi = v) across the various reporting

22In particular, Theorem 1 shows that

∂

∂xj
P (Ri ≤ r|Xi = x) = −E

{
fH(τVi

(r)|x, Vi) ·
∂

∂xj
QH|XV (α|x, Vi)

∣∣
α=FH|XV (τVi

(r)|x,Vi)]

∣∣∣∣Xi = x

}
23A version of Theorem 1 that analyzes the estimand of quantile regression ∂xjQR|X instead of the CDF does not admit

the first of these steps, which uses of the law of iterated expectations to condition on latent reporting heterogeneity Vi.
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functions v in the population. For a given v, ∂xjP (Ri ≤ r|Xi = x, Vi = v) captures the

“flow” of individuals over the threshold τv(r) due to a small change in xj, in one direction

or the other. Some of these individuals can have negative effects: ∂xjh(x, Ui) < 0, denoted

by arrows to the left in Figure 3. Others can have positive effects ∂xjh(x, Ui) > 0,

indicated by rightward arrows in Figure 3. The net effect captured by ∂xjP (Ri ≤ r|Xi =

x, Vi = v) depends on the average derivative E
[
∂xjh(x, Ui)|Hi = τv(r), x, v

]
local to the

threshold. Since the derivative ∂xj considers an infinitesimal change in X, any such

“flow” over the threshold requires a positive density there: fH(τv(r)|x, v) > 0. The

quantity fH(h|x, v) · E
[
∂xjh(x, Ui)|Hi = h, x, v

]
at a given h is sometimes referred to as

a “flow density”, and appears in Kasy, 2022, Goff (2022) and in the physics of fluids,

where it arises from the conservation of mass.

τv(0) τv(1)
0

1

2

H

R

τv(0) τv(1)
0

1

2

H

R

Figure 3: Intuition for Theorem 1: the derivative of P (Ri ≤ r|Xi = x) with respect to xj captures the “flow”
of individuals over threshold τv(r) due to a small change in xj . Left: ∂xjP (Ri ≤ 1|Xi = x) captures flows over
τv(0). Right: ∂xjP (Ri ≤ 1|Xi = x) captures flows over τv(1). The gray shaded curve in the background depicts
the density of Hi.

Note that the marginal respondents averaged over in the RHS of Theorem 1 cannot

be individually identified, since neither Hi nor τVi(r) are observed for a given i. However,

if the sign of causal effects is common across individuals, the following proposition shows

that average characteristics of these marginal respondents can be identified.

Proposition 1. Let Ai ∈ {0, 1} be a binary covariate that is unaffected by Xi. Then if

the sign of ∂xjh(x, Ui) is the same for all individuals:

E[Ai|h(x, Ui) = τVi(r), Xi = x] =
∂xjE[Ai · 1(Ri ≤ r)|Xi = x]

∂xjP (Ri ≤ r|Xi = x)

Proof. See Appendix G.

One could estimate, for example, the proportion of respondents at a particular reponse

margin r that are women, and compare this to the population as a whole.24

24This result parallels identification of average complier characteristics in instrumental variables models (Abadie, 2003),
with the restriction of a common effect sign playing a role analagous to the LATE monotonicity assumption.
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3.1 Implications

Theorem 1 generalizes the well-known formula for “marginal effects” in the probit model.

∂xjP (Ri = 1|Xi = x) = σ−1φ(xTβ/σ) · βj

where φ is the standard normal probability density function. In the probit model, v is

degenerate and the single threshold τv(0) = 0, while h(x, u) = xTβ + u and Hi|Xi = x ∼
N (xTβ, σ2). Thus, fH(τ(0)|x) = fH(0|x) = 1/σ · φ(−x′β/σ) = φ(x′β).

It is well-known that β in the probit model is only identified up to an overall scale

normalization, often achieved by fixing the variance of the error distribution σ2 = 1. Sim-

ilarly, we lack from Theorem 1 the ability to pin down the overall scale of derivatives of the

structural function ∂xjh(x, Ui). Put another way, the weights dFV |W (v|w) · fH(τv(r)|x, v)

do not necessarily integrate to one. However, considering the ratio of two derivatives

removes any scale-dependence of the estimand:

∂
∂x1
P (Ri = 1|Xi = x)

∂
∂x2
P (Ri = 1|Xi = x)

=
E {wr(x, Vi) ·E [∂x1h(x, Ui)|Hi = τv(0), x, v] |Xi = x}
E {wr(x, Vi) ·E [∂x2h(x, Ui)|Hi = τv(0), x, v] |Xi = x}

(9)

where

wr(x, v) := fH(τv(r)|x, v)/E[fH(τVi(r)|x, Vi)|Xi = x]

gives a weighting function that is positive and integrates to one, i.e. E[wr(x, Vi)|Xi =

x] = 1. To contrast this with the positive but non-normalized measure that appears in

(8), I refer to weights such as those appearing in (9) as “convex”. Note that the convex

weight applied to each group characterized by Hi = τv(r), Xi = x, Vi = v is exactly the

same in both the numerator and denominator of (9).

Beyond the case of binary survey questions, it is not typical to estimate regressions of

response CDF at some fixed category r, as contemplated by Theorem 1. However, the

result allows us to study the more common practice of modeling the conditional mean of

Ri given Xi. To see this, suppose that R consists of integers {0, 1, . . . , R̄} for some R̄.

Note that the following identity holds for all i:

Ri =
R̄∑
r=1

1(r ≤ Ri) =
R̄−1∑
r=0

1(r < Ri) (10)

From this it then follows that for any x: E[Ri|Xi = x] =
∑R̄−1

r=0 P (r < Ri|Xi = x) =

R̄−
∑R̄−1

r=0 P (Ri ≤ r|Xi = x). Then, applying Theorem 1:

∂xjE[Ri|Xi = x] =

∫
dFV |W (v|w) ·

R̄−1∑
r=0

fH(τv(r)|x, v) ·E
[
∂xjh(x, Ui)|Hi = τv(r), x, v

]
(11)
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For brevity, I use the shorthand
∑

r for the definite sum
∑R̄−1

r=0 .

τv(0) τv(1)
0

1

2

H

R

Figure 4: With R integers, the derivative of E[Ri ≤ r|Xi = x] with respect to xj captures the “flow” of
individuals over either threshold τv(r) due to a small change in xj . Compare to left and right panels of Fig 3.

Collecting (11) across all continuous regressors, we can summarize as:

Corollary 1. Under the assumptions of Theorem 1, if R = {0, 1, . . . , R̄} then

∇xE[Ri|Xi = x] = E

{∑
r

fH(τVi(r)|x, Vi) ·E [∇xh(x, Ui)|Hi = τVi(r), x, Vi]

∣∣∣∣∣Xi = x

}

where for any function g(x) we let ∇xg(x) = (∂x1g(x), ∂x2g(x), . . . )T be a vector of partial

derivatives with respect to whichever of the first J components of X are continuously

distributed and satisfy REG.

Remark: if instead of the integers, the researcher associates alternative numerical val-

ues rj with the ordered responses R, where r0 < r1 < . . . , then instead of (10) we

have Ri = r0 +
∑R−1

j=0 (rj+1 − rj) · 1(rj < Ri). The above results thus generalize with

fH(τv(rj)|x, v) upweighted by the positive factor (rj+1 − rj). While different labeling

schemes could be used in estimation to achieve different weightings over local causal ef-

fects, the most information one could learn is by simply repeating Theorem 1, one r at a

time. When considering mean regression, using integer category labels is natural in that

it weighs each threshold equally.

Another way to express Corollary 1 is as follows. Let τv := {h : τv(r) for some r}
denote the set of all thresholds for individuals with reporting function v. Then

∇xE[Ri|x] = E [w(x, Vi) · ∇xh(x, Ui)|Hi ∈ τVi , Xi = x] (12)

where w(x, v) :=
∑

r fH(τv(r)|x, v). This expression shows that ∇xE[Ri|x] averages over

all units having Xi = x, located at any of their individual-specific happiness thresholds,

with (positive but not convex) weights w(Xi, Vi).

In the subjective well-being literature, it is common to regress Ri on multiple ex-
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planatory variables and compare coefficients. For example, Luttmer (2005) compares the

regression coefficient for i’s own income to that of the income of i’s neighbors, finding

that the latter is negative and roughly twice as large in magnitude. If the conditional ex-

pectation of Ri given Xi is in fact linear in two continuous x1 and x2 (see Sec. 6), then the

OLS coefficient γ1 on x1 captures ∂x1E[Ri|Xi = x], and similarly γ2 = ∂x2E[Ri|Xi = x].

Accordingly, the ratio γ1/γ2 is equal to ∂x1E[Ri|Xi = x]/∂x2E[Ri|Xi = x], which by Corol-

lary 1 can be written

∂x1E[Ri|Xi = x]

∂x2E[Ri|Xi = x]
=
β̃1(x)

β̃2(x)
(13)

where β̃j(x) := E
[
w̃(x, Vi) · ∂xjh(x, Ui)|Hi ∈ τVi , Xi = x

]
and

w̃(x, v) :=
w(x, Vi)

E [w(x, Vi)|Hi ∈ τVi , Xi = x]

For any given x, β̃j(x) is a convex combination of treatment effects with respect to Xj

across individuals in the population. Note that the weights appearing in the numerator

and denominator are again the same for a fixed value of x, as in (9).

A special case in which (13) simplifies further when the structural function h(x, u) is

weakly separable between x and u, i.e.

h(x, u) = h(g(x), u) (14)

where some function g : X → R aggregates over the components in X into some scalar

g(x), which is then combined through h with heterogeneity u in a way that may or may

not be additively separable. For example, a linear structural function h(x, u) = xTβ + u

sets g(x) = XTβ and h(g, u) = g+u, combining a linear causal response with an additive

scalar error term. Weakly separable models for ordered response in which u is a scalar

have been studied by Matzkin (1994). When (14) holds, Corollary 1 yields

∂x1E[Ri|x]

∂x2E[Ri|x]
=

∫ ∑
r fH(τv(r)|x, v) · ∂x1g(x) ·E [∂x1h(x, Ui)|Hi = τv(r), x, v]∫ ∑
r fH(τv(r)|x, v) · ∂x2g(x) ·E [∂x2h(x, Ui)|Hi = τv(r), x, v]

=
∂x1g(x)

∂x2g(x)

(15)

where the highlighted factors cancel out in the numerator and denominator, since the

derivatives of g(x) do not depend on v or r.

In the still simpler case of a partially linear h function, (15) leads to the following:

Corollary 2. If the assumptions of Theorem 1 hold for j = 1 and j = 2, and h(x, u) takes

the form h(x, u) = x1β1 + x2β2 + g(x3, . . . xdx) + u (e.g. h(x, u) = xTβ + u) with β2 > 0,

then the observable conditional expectation function E[Ri|x] is also weakly separable, i.e.

E[Ri|x] = φ (γ1x1 + γ2x2, x3 . . . xdx) for some function φ, and γ1/γ2 = β1/β2.

Proof. Let m(x) := E[Ri|Xi = x]. By (15), we have that ∂x1m(x)/∂x2m(x) = β1/β2,
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independent of x. This implies that m takes the form of φ above.

A convenient feature of a weakly separable model like (14) is that since individual hetero-

geneity U affects theX variables after they are aggregated by g, ratios like ∂x1g(x)/∂x2g(x)

captures the marginal rate of substitution between x1 and x2 for each unit. By contrast,

(13) is not necessarily equal to a weighted average over marginal rates of substitution in

the population, when they are heterogeneous between units. The following proposition

gives a special case in which it does, without the strong condition of weak separability.

Proposition 2. If in addition to the assumptions of Theorem 1 with j = 1, 2, we have

• Cov
(
∂x1h(x,Ui)

∂x2h(x,Ui)
, ∂x2h(x, Ui)

∣∣∣Hi ∈ τVi , x
)

= 0

• {Vi ⊥⊥ Ui} | (Hi ∈ τVi , Xi)

then

E

[
∂x1h(x, Ui)

∂x2h(x, Ui)

∣∣∣∣Hi ∈ τVi , Xi = x

]
=
∂x1E[Ri|Xi = x]

∂x2E[Ri|Xi = x]

If instead Cov
(
∂x1h(x,Ui)

∂x2h(x,Ui)
, ∂x2h(x, Ui)

∣∣∣Hi ∈ τVi , x
)
≤ 0, then E

[
∂x1h(x,Ui)

∂x2h(x,Ui)

∣∣∣Hi ∈ τVi , Xi = x
]
≥

∂x1E[Ri|Xi=x]

∂x2E[Ri|Xi=x]
and vice-versa if the inequality is reversed.

Proof. See Appendix G.

Proposition 2 requires reporting heterogeneity Vi to be conditionally orthogonal to struc-

tural function heterogeneity Ui, similar to Assumption IDR (but here also conditional

on Hi ∈ τVi .). Further, one must be able to sign the correlation of marginal rates of

substitution and heterogeneity in marginal effects with respect to x2. This correlation

might be negative, if for example, individuals with high returns to x2 do not have returns

to x1 that are proportionally as high, on average.

As a final note, we can see how Theorem 1 recovers an identification result of Matzkin

(1992) for the function g(x) when h(x, u) = g(x)+u (i.e. causal effects are homogeneous).

Note first that given the weakness of the assumptions made, we could only ever hope to

identify g(x) up to an increasing transformation. One functional restriction that removes

this arbitrariness, considered by Matzkin (1992), is to suppose g(x) is homogeneous of

degree one. In this case, I show below that g is identified up to scale, under somewhat

different assumptions than those of Matzkin (1992).

Proposition 3. Suppose HONEST and EXOG hold, there are no controls W , and each of

the X1 . . . XJ are continuously distributed satisfying REG. Suppose further that h(x, u) =

h(g(x), u), where g is homogeneous of degree one, continuously differentiable, and for

some k: ∂xkg(x) 6= 0 for all x ∈ X with X a convex set in RJ . Then g(x) is identified

up to an overall scale.

Proof. See Appendix G. Eq. (37) gives an explicit expression for g(x).
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4 What is identified from discrete variation in X

Section 3 considered what was identified by examining the distribution of R over infinites-

imal differences in X. Now let us instead consider any two fixed values x and x′ (differing

only in their first J components), and let ∆i := h(x′, Ui) − h(x, Ui) be the “treatment

effect” of moving from Xi = x to Xi = x′ for unit i. Further, let fH(y|∆, x, v) denote the

density of Hi conditional on ∆i = ∆, Xi = x and Vi = v. The following expression shows

what can be identified from the conditional distribution of Ri across this discrete change:

Theorem 2. Under HONEST and EXOG:

P (Ri ≤ r|Xi = x′)− P (Ri ≤ r|Xi = x) = −E[f̄(∆i, τVi(r), x, Vi) ·∆i|Xi = x]

where f̄(∆, y, x, v) := 1
∆

∫ y
y−∆

fH(h|∆, x, v)dh is the average density between y − ∆ and

y, among units with reporting function v, treatment effect ∆, and Xi = x.25

Proof. See Appendix G.

Similar to Theorem 1, Theorem 2 shows that the change in P (Ri ≤ r|x) over discrete

changes in x can be written as a positive linear combination of the causal effect of that

variation in X on H.

A similar expression to the above shows up in the “bunching design”, which lever-

ages bunching at kinks in decision-makers’ choice sets for identification of behavioral

elasticities. An assumption sometimes used in that literature is that fH(h|∆, x, v) is ap-

proximately constant for all h between τv(r) −∆ and τv(r) (see e.g. Saez 2010; Kleven

2016; Goff 2022 for a discussion).26 Under this assumption, Theorem 2 would simplify

to:

P (Ri ≤ r|X = x′)− P (Ri ≤ r|X = x)

= −
∫
dFV |W (v|w) ·

∫
d∆ ·∆ · fH(∆, τv(r)|Xi = x, Vi = v)

= −
∫
dFV |W (v|w) · fH(τv(r)|x, v) ·E[∆i|Hi = τv(r), Xi = x, Vi = v]

(16)

Eq. (16) exactly recovers the weighting over individuals achieved by Theorem 1 using

continuous variation in x. In particular, the quantity E[∆i|Hi = τv(r), Xi = x, Vi = v]

appears above with the same weight −dFV |W (v|w) · fH(τv(r)|x, v) as E[∂xjh(x, Ui)|Hi =

τv(r), Xi = x, Vi = v] does in Eq. (8). Unfortunately, the constant density assumption

used to derive the above is hard to justify except as an approximation if ∆ is very small.27

25By “between y−∆ and y” I mean in the interval [min{y−∆, y},max{y−∆, y}], without taking a stand on the sign of
∆. Note that f̄(∆, y, x, v) is positive even if ∆ < 0, in which case it is equal to the average density between y and y+ |∆i|.

26 The constant density restriction could also help motivate an identification condition used by Kaiser and Vendrik (2022)
for the signs of coefficients in wellbeing regressions. See Appendix D for details.

27If we consider the limit x′ → x with the two differing only in component j, then this approximation becomes exact and
Eq. (16) applied to (P (Ri ≤ r|x′)− P (Ri ≤ r|x))/(x′j − xj) reduces to Theorem 1. See Lemma SMALL in Goff (2022).

19



Note that Theorem 2 exhausts all implications of the observable data (Ri, Xi) regarding

variation in the structural functions h(x, u) with respect to x, when the control variables

w are held fixed. Once P (Ri ≤ r|Xi = x) is known for all r for some fixed reference

value x of the explanatory variables, along with the marginal distribution of Xi, the only

remaining information available from the joint distribution of (Ri, Xi) takes the form of

differences P (Ri ≤ r|Xi = x′)− P (Ri ≤ r|Xi = x) for various values of x′ and r.

As our main focus is the conditional mean of responses with an integer response scale,

let us as in Eq. (11) aggregate Theorem 2 across the response categories r to obtain:

E[Ri|Xi = x′]−E[Ri|Xi = x] = E

[
R̄−1∑
r=0

f̄(∆i, τv(r), x, Vi) ·∆i

∣∣∣∣∣Xi = x

]
(17)

To obtain the notation of Eq. (2), define f̄(∆, v, x) :=
∑R̄−1

r=0 f̄(∆, τv(r), x, v).

Recall from Theorem 1 that derivatives of the conditional distribution of R yield causal

effects ∇xh(x, Ui) with weights proportional to
∑

r fH(τv(r)|x, v). By contrast, discrete

differences in X recover treatment effects ∆i = h(x′, Ui) − h(x, Ui) with “weights” that

themselves depend upon ∆i through
∑

r f̄(∆i, τv(r), x, v). Since this quantity depends

not only on the density of H at response thresholds τv(r) but also the density at points

within a treatment effect ∆ of such thresholds, the two weighting schemes do not lead to

estimands that can obviously be directly compared.

Note: whether or not E[Ri|x′]− E[Ri|x] is positive or negative does not reflect the sign

of the average treatment effect: E[∆i]. Rather, it depends on how positive and negative

treatment effects are aggregated over by the weights
∑

r f̄(∆, τv(r), x, v). If the CDF

functions (or equivalently, quantile functions) of h(x, Ui) and h(x′, Ui) cross, then there

must be some individuals with ∆i < 0 while others with ∆i > 0.28. While the weights

that emerge from a discrete contrast x, x′ are less “local” than the ones that emerge

when leveraging continuous variation in x (Section 3), they are still not uniform over the

support of H: the ATE or its sign is not identified.

5 Comparing discrete and continuous regressors

Given the results of the last two sections, suppose we are now interested in comparing

the magnitude of a local regression derivative to the mean difference across two discrete

groups, i.e.
E[Ri|Xi = x′]−E[Ri|Xi = x]

∂xjE[Ri|Xi = x′′]
(18)

28Specifically, then P (∆i < 0) ≥ supt
{
Fh(x′,Ui)

(t)− Fh(x,Ui)
(t)
}

and P (∆i > 0) ≥ supt
{
Fh(x,Ui)

(t)− Fh(x′,Ui)
(t)
}

;
see e.g. Fan and Park (2010)
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for some x,x′, and x′′. By Corollary 1 and Eq. (17), we know that this ratio is equal to

E
[∑

r f̄(∆i, τVi(r), x, Vi) ·∆i|Xi = x
]

E
{∑

r fH(τVi(r)|x′′, Vi) ·E
[
∂xjh(x′′, Ui)|Hi = τVi(r), x

′′, Vi
]∣∣Xi = x′′

}
To interpret this ratio quantitatively in terms of averages of ∆i and ∂x2h(x′′, Ui), the rele-

vant question is how similar the sum
∑

r fH(τVi(r)|x′′, Vi) over densities at the thresholds

is to the corresponding sum over averaged densities:
∑

r f̄(∆i, τVi(r), x, Vi). The total

“weight” placed on causal effects in the numerator, after averaging over reporting func-

tion heterogeneity Vi, is E
[∑

r f̄(∆i, τVi(r), x, Vi)|Xi = x
]
. In the denominator, the total

weight is E [
∑

r fH(τVi(r)|x′′, Vi)|Xi = x′′]. If these quantities are close to one another in

magnitude, then Eq. (18) uncovers something close to the ratio of two convex averages

of causal effects. If they differ by an unknown amount, then interpreting (18) in terms of

the relative magnitudes of causal effects is not possible.

Given the definition of f̄ , notice that
∑

r fH(τv(r)|x′′, v) and
∑

r f̄(τv(r),∆, x, v) are

similar for a given (∆, v) if

∑
r

1

∆

∫ τv(r)

τv(r)−∆

fH(y|∆, x, v)dy ≈
∑
r

fH(τv(r)|x′′, v) (19)

Observe that the two sides of (19) can only differ because the summation occurs over Hi

evaluated at the thresholds τv(r). If instead the sums over r were replaced by integrals

over all possible values of Hi, we would have∫ {
1

∆

∫ h

h−∆

fH(y|∆, x, v)dy

}
dh =

∫
fH(h|x′′, v) · dh

which holds trivially because both sides evaluate to unity, regardless of the values of

∆, v, x, and x′′. This is immediate for the RHS, which integrates a density. To see it for

the LHS, reverse the order of the integrals to obtain
∫
dy ·fH(y|∆, x, v)·

{
1
∆

∫ y+∆

y
dh
}

= 1.

However, we know from Section E that discrete sums over the thresholds do not

correspond to equal-weighted integrals over h, even in the limit of a continuum of response

categories. Rather, the integrals also involve the quantity r′(h, v), which measures how

responsive response function v is at h: the local “density” of thresholds τv(r) around

h. Nevertheless, the intuition provided by the above logic suggests that looking at the

dense response limit may be informative in evaluating the approximation (19). The next

section does exactly this, while Section 5.2 evaluates the approximation across a variety

of simulated data generating processes.

5.1 Analytical results in the dense response limit

Suppose that the response categories are “dense” in the sense described in Section E, and

defined formally in Appendix G.7. From Proposition 9, we know that the derivative of

E[Ri|Xi = x] with respect to a continuous component of x depends on the steepness of
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response curves r′(h, v) across h. Analogously, when using discrete variation in Xi, what

matters for a unit with treatment effect ∆ is instead r̄′(y,∆, v) := 1
∆

∫ y+∆

y
r′(h, v)dh, the

average slope of the response function r(h, v) for h between y and y + ∆:

Proposition 4. Under HONEST, EXOG, and REG, then in the dense response limit

E[Ri|Xi = x′]−E[Ri|Xi = x]
R→ R̄ ·E[∆i · r̄′(Hi,∆i, Vi)|Xi = x]

Proof. See Appendix G.

Since r̄′ is weakly positive, we see from Proposition 4 that E[Ri|Xi = x′]−E[Ri|Xi = x]

identifies a positive aggregation of treatment effects ∆i = h(x′, Ui) − h(x, Ui). Further-

more, the weights on ∆i aggregate up to29

wx,x′ := R̄ ·E[r̄′(Hi,∆i, Vi)|Xi = x]

By comparison, note that the total weight on causal effects in a derivative ∂xjE[Ri|Xi = x]

are, by Proposition 9:

wx :=

∫
dFV |W (v|w)

∫
dh · fH(h|∆, x, v) · r′(h, v) = R̄ ·E[r′(Hi, Vi)|Xi = x]

A comparison of wx and wx,x′ allows us to interpret the relative magnitudes of discrete

and continuous differences in E[Ri|Xi = x], as in Eq. (18). If we have, for example, a

binary X1 and continuous X2, and we let x′ = (1, x2) and x = (0, x2) for some x2 ∈ R,

then:
E[Ri|Xi = x′]−E[Ri|Xi = x]

∂x2E[Ri|Xi = x]

R→ β̃1

β̃2

· wx,x
′

wx
(20)

where β̃1 is a convex weighted average over the causal effect of X1 on H and β̃2 is a convex

weighted average over causal effects of X2 on H. If the aggregate weights are close in

magnitude, i.e. wx,x′/wx ≈ 1, then we can identify the relative magnitudes of the causal

effects β̃1 and β̃2 to a good approximation.

Let us say that heterogenous linear reporting holds if with R = {0, 1, . . . R̄} for some

integer R̄, we have that:

τv(r) = `(v) + r · µ(v)− `(v)

R̄
(21)

where `(v) = τv(r) is the threshold between the lowest and second-lowest category for an

individual with Vi = v, and µ(v) is the threshold between the second-highest and highest

category. Note that in the limit of many categories R̄, (21) can be well approximated by

the piecewise-linear reporting function limR̄→∞
r(h,v)
R

= 1(`(v) ≤ h ≤ µ(v)) · h−`(v)
µ(v)−`(v)

.

Heterogeneous linear reporting may be a reasonable assumption if individuals aim to

maximize the informativeness of their responses by equally spreading out the response

29Note that if ∆i and r̄′(Hi,∆i, Vi) are uncorrelated conditional on Xi = x, then we can further write the RHS of
Proposition 4 as E[∆i|Xi = x] · R̄ ·E[r̄′(Hi,∆i, Vi)|Xi = x].
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categories (van Praag, 1991), given their subjective definitions `(v) and µ(v) of the mini-

mum and maximum category thresholds.30 Kaiser and Vendrik (2022) summarize empir-

ical evidence in support of linearity, for example from asking individuals directly about

their response thresholds, or using objectively verifiable outcomes such as an individual’s

height.

With heterogeneous linear reporting, we can derive a partial identification result ana-

lytically in the dense response limit:

Proposition 5. Suppose that the following hold in addition to HONEST,EXOG,REG:

1. r(h, v)
R→ `(v) + h−`(v)

µ(v)−`(v)
, i.e. reporting is (heterogeneously) linear in the dense

response limit; and

2. For each ∆ in the support of ∆i, fH(h|∆, x, v) is increasing on the interval [`(v)−
|∆|, `(v) + |∆|], and decreasing on the interval [µ(v)− |∆|, µ(v) + |∆|]

Then
wx,x′

1
2
(wx + wx′)

∈ [1, 2],

where wx,x′ = R̄ · E[r̄′(Hi,∆i, Vi)|Xi = x], wx = R̄ · E[r′(Hi, Vi)|Xi = x]
R→, and

wx′ = R̄ ·E[r′(Hi, Vi)|Xi = x].

Furthermore, suppose that

V ar

[
1

µ(Vi)− `(Vi)

∣∣∣∣Xi = x

]
≤ V ar

[
P (0 < Ri < R̄|x, Vi)

∣∣x]·E{ 1

µ(Vi)− `(Vi)

∣∣∣∣Xi = x

}2

,

i.e. the lengths of reporting intervals are not too variable relative to variability in bunching

at the endpoints 0 and R̄, then

1

2
≤ wx,x′

wx
≤ 1

P (0 < Ri < R̄|Xi = x)2
,

Proof. See Appendix G.

Proposition 5 provides two sets of bounds on the ratio of the total weight on causal effects

in E[Ri|Xi = x′]−E[Ri|Xi = x], to the total weight on causal effects in ∇xE[Ri|Xi = x].

The first bound,
wx,x′

1
2

(wx+wx′ )
∈ [1, 2] implies that, in the setup of Eq. (20):

E[Ri|Xi = x′]−E[Ri|Xi = x]
1
2
∂x2E[Ri|Xi = x′] + 1

2
∂x2E[Ri|Xi = x]

R→ θ · β1

β2

(22)

where θ is some number between 1 and 2. This bound requires no assumptions on

how variable the happiness scale lengths µ(Vi) − `(Vi) can be across individuals with

30Many studies justify the use of regression based approaches to studying subjective data Ri by interpreting such data as
a direct measurement of Hi. However, the function r(·, v) cannot literally be the identity function if R is a set of integers,
unless we think that “true” happiness also only takes integer values. We might view the cardinality approach as instead
supposing that r(h) is homogeneous across individuals and that the thresholds τ(r) are equally spaced apart.
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different Vi. By contrast, the second set of bounds requires us to place an upper bound

on V ar
[

1
µ(Vi)−`(Vi)

∣∣∣Xi = x
]
. While its upper bound is a universal one, the upper bound

can be estimated from the data by a nonparametric regression of observed bunching at

the endpoints of the scale (0 and R̄) on Xi.

Proposition 5 does not appear to generalize easily away from the heterogeneous linear

reporting benchmark, which is particularly tractable. However, we can obtain a result

that holds more generally (but is less informative), by observing that we may understand

Equation (17) in terms of a convolution between the happiness random variable Hi and

a fictional second random variable Ti that represents the thresholds of a given response

function. Let Ti take values τv(r) for r = 0 . . . R̄ − 1, with equal probability p(r) =

P (Ti = τv(r)) = 1/R̄ for each, and let Ti be independent of all other random variables.

The conditional CDF of Ti −Hi would be:31

FT−H|∆,v,x(t) =
R̄−1∑
r=0

p(r) · P (τv(r)−Hi ≤ t|∆, v, x) =
1

R̄

R̄−1∑
r=0

(1− FH|∆,v,x(τv(r)− t))

Some algebra shows that the weight
∑

r f̄(∆, τv(r), x, v appearing in Eq. (17) is given by

the average density of T −H between t = 0 and t = ∆:

∑
r

f̄(∆, τv(r), x, v) = R̄ ·
FT−H|∆,v,x(∆)− FT−H|∆,v,x(0)

∆

In the dense response limit, the variable Ti becomes continuously distributed with density

r′(h, v). To understand the resulting distribution of T −H, we can make use of the fact

that convolution with a log concave density preserves quasiconcavity (Uhrin, 1984):

Proposition 6. Suppose that fH(y|∆, v, x) = fH(y|v, x), i.e. treatment effects are inde-

pendent of Hi (conditional on Xi and Vi), where fH(y|∆, v, x) is log-concave, and that

rn(h, v)
R→ r(h, v) where r′(h, v) is quasiconcave in h. Then d

dt
FT−H|∆,v,x(t) is a quasi-

concave function of t.

Quasiconcavity of r′(h, v) is a reasonable assumption if reporting functions have a roughly

“sigmoidal” shape, in which they are less sensitive r′ is lower in the extremes and have a

slope that peaks for some some intermediate value. Log-concavity of fH(y|∆, v, x) would

hold if happiness were, for example, normally distributed.

As a quasiconcave function, the derivative of FT−H|∆,v,x(t) will under Proposition 6 be

increasing up to some point t = t∗ and then decreasing for all values t > t∗. Accordingly, if

t∗ < 0, and treatment effects are positive for all individuals ∆ ≥ 0, then individuals with

larger values of ∆ will receive smaller weights. Similarly, if treatment effects are negative

and t∗ > 0, then individuals with larger magnitudes of treatment effects will receive

smaller weights. However, when t∗ belongs to the interior of the support of treatment

effects, the weights will be non-monotonic in ∆.
31If instead of R being represented by integers 0 . . . R̄, a value rj is associated with each element in R as in the discussion

following Eq. (11), then we replace p(r) with p(j) = (rj+1 − rj), which must be kept inside the sum.
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5.2 Simulation evidence

To gather some further suggestive evidence on the comparability of estimates that use

discrete vs. continuous variation in X. I in this section simulate several data-generating-

processes (DGPs) for Hi and for the response functions r(·, Vi). Throughout, I take the

response space R to be a set of integers 0, 1, 2 . . . R̄, where the value of R̄ will be varied

across DGPs.

Consider a researcher comparing E[Ri|Xi = x′]−E[Ri|Xi = x] to ∂xjE[Ri|Xi = x] and

∂xjE[Ri|Xi = x′] for some given values x′ and x, and regressors Xj. Given the results of

the last section, we seek to compare wx,x′ , wx and wx′ to understand the relative weights

each of these estimands place on causal effects.

For now, I suppose heterogeneous linear reporting, so that Proposition 5 holds in the

dense-response limit R̄→∞. Individual reporting functions can be charaterized by `(v),

the value of happiness at which an individual with Vi = v moves from response category

0 to response category 1, and µ(v), the value at which this individual would move from

category R̄−1 to the highest category R̄. Response functions are sampled independently

of everything else, which implies Ui ⊥ Vi.

In a first set of simulations, I take Hi to have a standard normal distribution, con-

ditional on Xi = x. Note that since the overall location and scale of the happiness

distribution is not inherently meaningful, this choice of mean and variance is arbitrary.

Next, I suppose that individuals’ values of `(Vi) are distributed uniformly between −1

and −0.5, and that µ(Vi) is independent of `(Vi) and drawn uniformly from [0.5, 1]. The

left panel of Figure 5 provides a visualization. These choices aim to reflect a world in

which while individuals differ e.g. in the point µ(Vi) at which they would report R = 10,

this threshold for the highest possible category is for all individuals at least above the

mean level of happiness in the population.

The table on the right side of Figure 5 reports
wx,x′

1
2

(wx+wx′ )
as a function of the num-

ber of response categories R̄ ∈ [2, 5, 11, 100], supposing a constant treatment effect ∆

which is varied from −0.5 to 5. Alternatively, the results can be interpreted as report-

ing conditional analogs of the quantity
wx,x′

1
2

(wx+wx′ )
among individuals sharing a value of

∆i = h(x′, Ui)− h(x, Ui), in a setting in which Hi is independent of treatment effects ∆i,

conditional on Xi = x.

Proposition 5 implies that as R̄ → ∞, wx,x′/
1
2
(wx + wx′) should lie between 1 and

2, for any values ∆ such that `(Vi) < −|∆| and µ(Vi) > |∆| for all Vi (so that fH(h|x)

is increasing on the interval [`(Vi) − |∆|, `(Vi) + |∆|], and analogously for `(v)). This

is true for all of the values reported in Figure 5, aside from ∆ = 1 and ∆ = 5. In all

but the case of ∆ = 5, wx,x′/
1
2
(wx + wx′) is in fact quite close to unity, well within the

refined bounds [1, 1/NB] which holds under the variance restriction in Proposition 5,

where NB = P (0 < Ri < R|X = x) is the “non-bunching” probability.

With the exception of ∆ = 5, the standard-normal DGP reported in Figure 5 provides
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∆ R̄=2 R̄=5 R̄=11 R̄=100

-0.5 1.017758 1.016489 1.018028 1.018884
-0.1 1.000335 1.000441 1.000664 1.000809
0.1 1.000837 1.000283 1.001079 1.001052
0.25 1.003905 1.005432 1.004132 1.003522
0.5 1.020549 1.019535 1.017904 1.014529
1 1.060440 1.062557 1.061607 1.051899
5 0.504738 0.531706 0.544236 0.549753

1/NB 1.867396 1.878186 1.874115 1.873973

Figure 5: Hi|Xi = x is standard normal, and 1000 reporting functions are drawn from `(v) ∼ U [−1, 1/2],
µ(v) ∼ U [1/2, 1]. The left panel depicts the supports of `(v) (green) and µ(v) (yellow) with the density of Hi.
The right panel reports values of wx,x′/

1
2
(wx +wx′) as a function of ∆ and the number of response categories R̄.

an optimistic picture that {E[Ri|Xi = x′]−E[Ri|Xi = x]} /∂xjE[Ri|Xi = x] uncovers

something close to a ratio of weighted averages of causal effects, i.e. β1/β2 in the case

described by Equation (20). In this case, results do not differ substantially whether the

number of response categories is small (e.g. R̄ = 2, the case of binary response) or e.g.

R̄ = 100. Appendix Table 1 shows that results also do not differ much whether there are

few or many different reporting functions present in the population.

The ∆ = 5 case nevertheless shows that the ratio in (20) may be quite misleading in

principle, even with this distribution of Hi. The R̄ = 2 value of wx,x′/
1
2
(wx + wx′) ≈ 0.5

means that the magnitude of β1 relative to that of β2 would be under-estimated by a factor

of 2, when using x′ = (1, x2) and x = (0, x2) in a linear model h(x, u) = β1x1 + β2x2.

On the other hand, it is implausible that binary treatment variable being analyzed would

have an effect on happiness that is 5 times the variance of happiness in the population.

While the quantity wx,x′/
1
2
(wx +wx′) averages over the reporting heterogeneity in the

population, Figure 6 disaggregates this by Vi. Define δ∆,x,v :=
∑
r f̄(∆,τv(r),x,v)−

∑
r fH(τv(r)|x,v)∑

r fH(τv(r)|x,v)
.

An individual with Xi = x and Vi = v will receive similar weights when using either dis-

crete or continuous variation at x if δ∆,x,v ≈ 0. Write Eq. (17) as:

E[Ri|x′]−E[Ri|x] =

∫
dFV |W (v|w) ·

(∑
r

fH(τv(r)|x, v)

)
·E[∆i|Xi = x, Vi = v]

+

∫
dFV |W (v|w) ·

∫
d∆ · fH(∆|x, v) ·∆ · δ∆,x,v

Figure 6 reports the distributions of
∑
r f̄(∆,τv(r),x,v)∑
r fH(τv(r)|x,v)

= 1 + δ∆,x,v, across 1000 reporting

functions sampled the same as in Figure 5. The distributions of δ∆,x,Vi are approximately

unimodal in each case, with a variance that tends to increase with the magnitude of ∆.

Figures 7,8 and 9 repeat the exercise of Figure 5 with alternative distributions assumed

for Hi|Xi = x. Figure 7 first relaxes unimodality of the normal distribution by letting Hi

be distributed as a mixture of two normals, leading to a “double-peaked” shape. Upper
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Figure 6: The distribution of 1 + δ∆,x,Vi across Vi is depicted across alternative values of ∆i, with Hi|Xi = x
standard normal, R̄ = 100, and 1000 reporting functions are drawn from `(v) ∼ U [−1, 1/2], µ(v) ∼ U [1/2, 1].

and lower thresholds µ and ` are sampled from the decreasing and increasing (respectively)

portions of this distribution’s density. The table shows that wx,x′/
1
2
(wx + wx′) is again

close to unity across a wide range of treatment effect sizes, with β1/β2 now being over-

estimated in the case of an extremely large treatment effect ∆ = 5. Figure 16 reports

the distributions of δ∆,x,Vi , as in Figure 6.

∆ R̄=2 R̄=5 R̄=11 R̄=100

-0.5 0.945228 0.999726 1.002822 1.002350
-0.1 0.996596 1.000027 1.000005 1.000072
0.1 0.998344 1.000034 1.000106 1.000211
0.25 0.989510 0.999942 1.000275 1.001007
0.5 0.958623 1.000036 1.003705 1.004092
1 0.901081 0.999569 1.009504 1.013429
5 3.335567 1.361256 1.225963 1.154723

1/NB 1.470781 1.481656 1.480439 1.483049

Figure 7: Hi|Xi = x is an equal mixture of N (−2, 1) and N (2, 1), and 1000 reporting functions are drawn from
`(v) ∼ U [−3,−2], µ(v) ∼ U [2, 3]. The left panel depicts the supports of `(v) (green) and µ(v) (yellow) with the
density of Hi. The right panel reports values of wx,x′/

1
2
(wx+wx′) as a function of ∆ and the number of response

categories R̄.

Figure 8 instead uses a uniform distribution for Hi. This allows us to sample the

thresholds µ and ` from regions that abut the extremes of the population happiness dis-

tribution. Results here are encouraging, except in the cases where ∆ moves a significant

portion of the population outside of [0, 1] (e.g. |∆| ≥ 0.5. In such cases, there is sig-

nificant non-overlap between the distributions of Hi|Xi = x′ and Hi|Xi = x). Notably,

wx,x′/
1
2
(wx + wx′) is non-monotonic in the magnitude of ∆, first increasing above unity

and then falling much below it, with opposing effects canceling out when ∆ = 1. Figure

17 reports the distributions of δ∆,x,Vi , as in Figure 6.
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∆ R̄=2 R̄=5 R̄=11 R̄=100

-0.5 1.348617 1.334445 1.332001 1.334231
-0.1 1.0 1.0 1.005277 1.010828
0.1 1.0 1.0 1.004095 1.002599
0.25 1.0 1.031953 1.031220 1.035741
0.5 1.320108 1.135912 1.101178 1.081512
1 0.999805 0.998796 0.995304 0.995515
5 0.199587 0.199893 0.199174 0.200451

1/NB 1.350946 1.361273 1.355604 1.357831

Figure 8: Hi|Xi = x uniform [0, 1], and 1000 reporting functions are drawn from `(v) ∼ U [0, 1/4], µ(v) ∼
U [3/4, 1]. The left panel depicts the supports of `(v) (green) and µ(v) (yellow) with the density of Hi. The right
panel reports values of wx,x′/

1
2
(wx + wx′) as a function of ∆ and the number of response categories R̄.

Finally, Figure 9 introduces skewness by letting happiness have a standard log-normal

distribution. Corresponding to the long right-tail in the happiness distribution, I take

µ(Vi) to have support over a large range of values relative to `(Vi). The results are less

optimistic, as compared with the normally distributed case. For |∆| > 0.1, wx,x′/
1
2
(wx +

wx′) differs from unity by more than 10%. However, the worst-case ∆ = 5 is not much

worse than in the normally-distributed DGP, with wx,x′/
1
2
(wx + wx′) at least about 0.45

for all R̄. Figure 18 reports the distributions of δ∆,x,Vi , as in Figure 6.

∆ R̄=2 R̄=5 R̄=11 R̄=100

-0.5 0.684805 0.840033 0.891200 0.928110
-0.1 0.909362 0.931933 0.954190 0.979041
0.1 1.098319 1.075785 1.052181 1.026204
0.25 1.256482 1.182417 1.118010 1.066896
0.5 1.505123 1.278124 1.185238 1.120666
1 1.643653 1.258917 1.196697 1.137716
5 0.494329 0.453087 0.439618 0.452964

1/NB 1.467527 1.447327 1.460737 1.445131

Figure 9: Hi|Xi = x is standard log-normal, and 1000 reporting functions are drawn from `(v) ∼ U [1/100, 1/4],
µ(v) ∼ U [1, 3]. The left panel depicts the supports of `(v) (green) and µ(v) (yellow) with the density of Hi. The
right panel reports values of wx,x′/

1
2
(wx + wx′) as a function of ∆ and the number of response categories R̄.

Appendix F reports further results and variations on the DGPs discussed above. Ap-

pendix Tables 2, 3 and 4 show that as with the normal DGP, results also do not differ much

whether there are few or many different reporting functions present in the population.

Taking the lognormal distribution of H as representing the worst-case among the distri-

butions considered, Appendix F also considers some variations on the reporting-function

DGP used above. Appendix Figure 19 allows the support of ` and µ to “overlap” so that

the minimum threshold ` for some individuals is higher than that maximum threshold

µ is for others. Appendix Figure 20 eliminates all heterogeneity in reporting functions.

28



Appendix Figures 21 and 22 dispense with (heterogeneously) linear reporting, instead

sampling the thresholds for a given individual from a specified distribution and sorting

them in ascending order to define that individual’s reporting function. In all cases, results

fall within the range of those presented above.

6 Implications for regression analysis

From Theorems 1 and 2, it is clear that learning from the conditional distribution of

responses Ri given variation in Xi, one can uncover positive linear combinations of causal

effects, but with weights that are not under the researcher’s control. Rather, they depend

on individuals’ unobserved and heterogeneous reporting functions, and the distribution

of underlying happiness Hi near the thresholds at which those individuals move between

successive response categories.

One immediate implication is that if causal effects have the same sign for all indi-

viduals, this sign can be identified empirically by mean regression of responses Ri on

variation in Xi, whether that variation is continuous or discrete.32 The same-sign as-

sumption in fact leads to over-identification restrictions, because ∂xjP (Ri ≤ r|Xi = x) or

P (Ri ≤ r|Xi = x′)− P (Ri ≤ r|Xi = x) must have the same sign for all r.

However, researchers often want to be more ambitious and compare the magnitudes of

the effects of multiple explanatory variables on Hi. The results of the preceding sections

show that if E[Ri|Xi = x] = m(x1, x2, . . . xJ , w) is modeled as a fully flexible function

of the regressors and estimated nonparametrically, features of the function m can be

interpreted causally: derivatives of m uncover positive weighted combinations of partial

effects (Section 3) and discrete differences uncover positively-weighted combinations of

treatment effects (Section 4). In general, these weights vary not only with regressor xj

but by value of the entire vector x, making interpretation somewhat tedious.

Although nonparametric approaches allow one to estimate the entire function m(x)

consistently, it is difficult to report and interpret an infinite-dimensional object, and the

curse of dimensionality looms large with several X. One path forward for a continuous

X1 is to estimate and report the average of ∂yE[Ri|X1i = y,X−1,i] over the distributions

of y = X1i and of the other regressors X−1,i. For e.g. a binary regressor X2, one could

instead report the average difference E[Ri|X−2,i, X2i = 1]−E[Ri|X−2,i, X2i = 0] over the

distribution of the other regressors X−2,i. Such averages can be estimated at the
√
n rate

(Ichimura and Todd, 2007), and their ratios can still be interpreted in terms of ratios of

convex averages of causal effects as in Section 5—the averaging is now over x as well. In

Appendix B, I follow this approach using the estimator of Li and Racine (2004) (which

is implemented in the Stata command npregress kernel) to synthetic data with two

explanatory variables. This estimator applies kernel regression techniques to setups in

32When the goal is not causal inference but understanding the joint distribution of Hi and Xi, we have from Corollary 3
that if the sign of ∂xjQH|X(α|x) is the same for all α, this sign will be reflected in ∂xjE[Ri|x]. Analogously, with discrete
variation in Xi, if the conditional distribution of Hi given Xi = x′ stochastically dominates that of Xi = x, then this will
be reflected in the sign of the observable conditional mean difference E[Ri|Xi = x′]−E[Ri|Xi = x].
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which there may both be continuous and discrete regressors.

Notwithstanding the above, in practice researchers often instead estimate parsimonious

specifications of the function m, most frequently applying OLS to linear models of the

form:

Ri = γ1X1i + γ2X2i + · · ·+ γJXJi + λTWi + εi (23)

where the vector of control variables W includes a constant. The remainder of this section

studies the interpretation of the estimands γj in Eq. (23) in light of the results of the

proceeding sections.

6.1 Case 1: linear model is correctly specified

The most straightforward case arises when Eq. (23) is correctly specified in the sense

that the conditional expectation function is in fact linear in the x, i.e.

E[Ri|Xi = x] = γ1x1 + · · ·+ γJxJ + λTw (24)

or equivalently that E[εi|Xi = x] = 0 in (23). It should be emphasized that a linear

model for causal effects: h(x, u) = xTβ + u, does not imply that a linear relationship

holds between Ri and Xi, given non-linearity in the response functions. However, whether

or not E[Ri|Xi = x] exhibits a linear functional form can be examined empirically, given

that Ri and Xi are both observable.

In the context of Eq. (24), consider comparing the regression coefficient γ1 with γ2, if

X1 and X2 are both continuously distributed. Since each γj is then equal to ∂xjE[Ri|Xi =

x], the ratio γ1/γ2 recovers a ratio of two convex averages of causal effects by Eq. (13).

If in addition to Eq. (24), the structural function is linear with h(x, u) = xTβ + u, then

γ1/γ2 = β1/β2.
Now consider comparing the coefficients for a continuously distributed X2 (e.g. in-

come) and a binary X1 (e.g. an indicator for being married). For any values x2, x3 . . . xdx ,
note that:

γ1
γ2

=
E[Ri|X1i = 1, X2i = x2, . . . Xdxi = xdx ]−E[Ri|X1i = 0, X2i = x2, . . . Xdxi = xdx ]

1
2∂x2

E[Ri|X1i = 1, X2i = x2, . . . Xdxi = xdx
] + 1

2∂x2
E[Ri|X1i = 0, X2i = x2, . . . Xdxi = xdx

]

If a linear model again holds both for E[Ri|Xi = x] and for the structural function

h(x, u) = xTβ + u, then under the assumptions of Proposition 5, Eq. (22) with x′ =

(1, x2, . . . ) and x = (0, x2, . . . ) implies that γ1

γ2
estimates β1

β2
up to a scaling factor θ

that lies between 1 and 2. More generally, if linearity holds only for E[Ri|Xi = x] but

not necessarily for h(x, u), and the assumptions of Proposition 5 are still satisfied, then

γ1/γ2 identifies a ratio of two weighted averages of causal effects, again up to a factor

θ ∈ [1, 2], where the weights aggregate to one both the numerator and the denominator.

In the numerator, the averaging is over ∆i = h(x′, Ui) − h(x, Ui) among units with

Xi = x while in the denominator it is over both E[∂x2h(x, Ui)|Hi ∈ τVi , Xi = x] and

E[∂x2h(x′, Ui)|Hi ∈ τVi , Xi = x′], cf. Eq. (12).
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Finally, suppose that we wish to compare regression coefficients for two discrete vari-

ables X1 and X2. For simplicity, suppose that they are both binary. Then, :

γ1

γ2

=
E[Ri|X1i = 1, X2i = x2, . . . Xdxi = xdx ]−E[Ri|X1i = 0, X2i = x2, . . . Xdxi = xdx ]

E[Ri|X1i = x1, X2i = 1, . . . Xdxi = xdx ]−E[Ri|X1i = x1, X2i = 0, . . . Xdxi = xdx ]

for any x = (x1, x2, . . . , xdx). To analyze this case we can apply Proposition 5 twice while

using a continuously distributed third variable X3 as a common comparison. This implies

that under the assumptions of Proposition 5, in the dense response limit γ1/γ2 identifies

a ratio of two weighted averages of causal effects (with respect to x1 in the numerator,

and x2 in the denominator) up to a factor that lies between 1/2 and 2.33

6.2 Case 2: misspecified regression function

When Eq. (23) is misspecified, the estimands of γj in (23) remain well-defined as pop-

ulation linear projection coefficients, but these do not always bear a straightforward

relationship to the features of the conditional expectation function m(x) = E[Ri|Xi = x]

of interest. Nevertheless, some existing results on linear regression are useful to gain some

intuition.

One case in which the estimand of Eq. (23) remains causally interpretable without

assuming linearity of the expectation (24) occurs when we have a single continuously

distributed Xi and no control variables beyond a constant. In this case, Eq. (23) amounts

to simple linear regression: Ri = γ0 +γ1Xi+εi. Yitzhaki (1996) shows that the regression

coefficient γ1 = Cov(R,X)
V ar(X)

can then be written as a weighted average over the local derivative

of E[Ri|Xi = x] even if it is non-linear:

γ1 =

∫
w(x) · d

dx
E[Ri|Xi = x] · dx

where w(x) := 1
V ar(X)

∫ x
−∞ fX(t)(t−E[Xi])dt is a positive function that integrates to unity,

with fX denoting the density of Xi. By Theorem 1, γ1 thus still captures a positively

weighted combination of causal effects ∂xh(x, Ui), where the averaging is now also over

x. If all units in the population have the same sign of ∂xh(x, Ui), then this sign can be

recovered as that of γ1. Angrist and Pischke (2008) extend the above expression to a case

with covariates: if E[X1|Wi] is linear in Wi, then γ1 can be written as E[γ1(Wi)], where

the quantities that define γ1(w) are analogous to the above but condition on Wi = w,

with weights again integrating to unity.34 An analogous expression can also be derived

for a setting with a binary X1 (Angrist, 1998; Angrist and Pischke, 2008) or an ordered

X1 (Angrist and Krueger, 1999). Thus with a single treatment variable X1 of any type, a

33To see this, let γ3 = ∂x3E[Ri|x], and write γ1/γ2 = γ1/γ3 · γ3/γ2. Let β̃1, β̃2, and β̃3 denote the convex combinations
of causal effects associated with γ1, γ2 and γ3 (cf Propositions 1 and 2 after normalizing the weights). By Proposition 5

γ1/γ3
R→ θ1 · β̃1/β̃3 and γ2/γ3

R→ θ2 · β̃2/β̃3, where θ1, θ2 ∈ [1, 2]. Thus, γ1/γ2
R→ θ1/θ2 · β̃1/β̃2. Note that the regression

X3 need not actually be observed.
34The linearity assumption is not restrictive if Wi consists of indicators for an exhaustive set of covariate cells, a so-called

“fully-saturated” regression.
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linear regression equation (23) with fully saturated controls simply re-averages the causal

effects of X1 on Hi derived in this paper over a second set of positive weights.

Unfortunately, the results mentioned above do not carry over to the general setting

with multiple treatment variables X1 . . . XJ and controls estimated by Eq. (23). This

type of regression is common the happiness literature, with OLS coefficients γj and γk

compared quantitatively to assess the relative contributions of two or more factors (see

e.g. Luttmer 2005). Goldsmith-Pinkham et al. (2022) show that regressions like (23)

with controls W can be subject to “contamination bias”, in which the coefficient γ1 on

X1 includes not only effects from X1, but also effects from the other treatments X2 . . . XJ .

In other words, γ1 does not cleanly separate variation in X1 from variation in the other

treatments.

Since Goldsmith-Pinkham et al. (2022) consider a standard setup in which the outcome

variable of interest is directly observed, we can facilitate the connection by phrasing

our examination of regression (23) in terms of the causal effects of Xi on Ri (rather

than on Hi).
35 This interpretation is justified under assumption EXOG, because we can

define potential outcomes R(x) with respect to x ∈ X as Ri(x) = R(H(x, Ui), Vi) with

{Ri(x) ⊥⊥ Xji}|Wi for j = 1 . . . J . Unfortunately, contamination bias is possible even

under fairly optimistic linearity assumptions, for example that E[Ri(x) − Ri(x0)|Wi =

w] = x′β(w) + λ′w for some fixed reference treatment x0 ∈ X , and vectors β(w) and λ,

i.e. conditional-on-W average treatment effects are linear in all treatment variables. If

the per-unit conditional effects β(w) vary with w, then e.g. the estimand γ1 may not

capture a clean average of the β1(w) but instead include a second term that depends on

the β2 . . . βJ . The threat of contamination bias is not in any way specific to the use of

subjective outcome variables, but may be particularly pernicious in this context given the

motivation to compare magnitudes across regressors. Goldsmith-Pinkham et al. (2022)

provide detail on possible solutions.

7 Conclusion

This paper has investigated identification when using subjective responses as an outcome

variable. Such reports typically ask individuals to choose a response from an ordered

set of categories, and how individuals use those categories can be expected to differ by

individual. Nevertheless, researchers may be willing to suppose that individual responses

reflect the value of a well-defined latent variable Hi for each individual i.

This paper has shown that without observing Hi and without assuming possibility of

interpersonal comparisons of H, the conditional distribution of responses given exogenous

covariates X can still be informative about the effects of X on H. While this allows for

testing the sign of causal effects when this sign is common across individuals, different

35Note that given any consistent estimator for the average treatment effect of some covariate contrast x, x′ (differing
only in the first J components) on R, one can interpret this using the methods of the present paper by translating it back
into a statement about conditional means, since E[Ri(x

′)−Ri(x)] = E[Ri|Xi = x′]−E[Ri|Xi = x].
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conditional mean comparisons impose different weighting systems over the causal effects

of individuals in the population. I have provided both simulation evidence and theo-

retical results that suggest the impact of this problem is somewhat limited in practice.

Nevertheless, the results suggest that caution is warranted in comparing the magnitude

of regression coefficients across explanatory variables, even when they are as good as

randomly assigned.
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Appendices

A Relaxing and testing reporting function invariance

This section relaxes the implicit assumption from the main text that reporting behavior

Vi is fixed for each individual and therefore unaffected by variation in Xi. In particular, I

show that Assumption EXOG is compatible with reporting functions depending directly

on observables, in a limited way. I then discusses how even the weakest version of this

assumption still leads to testable implications when homogeneity assumptions are placed

on causal effects.

To formalize the idea of reporting function invariance, introduce counterfactual nota-

tion V x
i to represent the reporting function that would occur for individual i if Xi = x.

In this notation, the actual reporting function for this individual is V Xi
i .36 The following

assumption says that components 1 . . . J of X are excludable from the reporting function,

so that only Wi can enter directly:

36This counterfactual notation is equivalent to instead treating Vi as fixed for an individual and letting Xi enter directly
into the reporting function: Ri = r(Hi, Xi, Vi).
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Assumption EXCLUSION (full reporting function invariance). For all i, V x
i =

V x′
i for any x and x′ that differ only in components 1 . . . J .

Given EXCLUSION, we may let Vi = V Wi
i and proceed with Assumption EXOG as stated

above. However, EXLUSION is stronger than necessary for my main results, and can

be relaxed along similar lines to the “rank similarity” assumption of Chernozhukov and

Hansen (2005):

Assumption INVARIANT (invariant reporting functions in distribution). Con-

ditional on Wi = w, V x ∼ V x′ for any x and x′ that differ only in components 1 . . . J

and for which the remaining components equal w. Also, in addition to the second item of

EXOG we have: {Xji ⊥⊥ V x
i } | Wi = w for all w and x consistent with w.

Given INVARIANT, we can proceed the definition Vi = V Xi
i , and Assumption EXOG

now follows.

A.1 Testing reporting-function invariance in separable models

Given either EXCLUSION or INVARIANT, it is plausible to make Assumption EXOG

under randomization or selection-on-observables type variation in Xi. A violation of

the “exclusion restriction” that Xi does not enter into an individual’s reporting function

ri(·) would threaten the first condition of Assumption EXOG that {Vi ⊥⊥ Xji}|Wi. This

condition has testable implications, when additional structure is assumed on the causal

response function h(x, u).

In particular, consider the weak separability condition Eq. (14) considered in Section

3, that h(x, u) = h(g(x), u) for some function h. Then:

∂x1P (Ri ≤ r|x)

∂x2P (Ri ≤ r|x)
=

∫
dFV |W (v|w) · fH(τv(r)|x, v) ·E [∂x1h(x, Ui)|Hi = τv(r), x, v]∫
dFV |W (v|w) · fH(τv(r)|x, v) ·E [∂x2h(x, Ui)|Hi = τv(r), x, v]

=
∂x1g(x)

∂x2g(x)

(25)

where the first equation generalizes (9) for arbitrary values r and the second equality uses

the weak-separability condition and generalizes (13) to hold for the CDF of responses

rather than the mean. Importantly, the expression
∂x1g(x)

∂x2g(x)
does not depend on r, leading

to a set of overidentification restrictions when there are multiple thresholds (the number

of response categories is 3 or greater).

This restriction can be leveraged to construct a test for {Vi ⊥⊥ Xji}|Wi, with h(x, u) =

h(g(x), u), HONEST, and {Xji ⊥⊥ Ui} | (Wi, Vi) (the second component of EXOG) as

maintained assumptions. Some algebra shows, using Assumption HONEST (see proof of
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Theorem 1), that:

∂

∂xj
P (Ri ≤ r|x) =

∂

∂xj

∫
P (Hi ≤ τv(r)|Xi = x, Vi = v) · dF (v|x)

=

∫ {
∂

∂xj
P (Hi ≤ τv(r)|Xi = x, Vi = v)

}
· dF (v|x)

+

∫
P (Hi ≤ τv(r)|Xi = x, Vi = v) · ∂

∂xj
{dF (v|x)}

(26)

The first term above evaluates to the quantity in Theorem 1 while the second term may

be nonzero if Vi is correlated with Xji.

Instead of Eq. (25) which assumed EXOG, we now have using (26)

∂x1P (Ri ≤ r|x)

∂x2P (Ri ≤ r|x)
=
∂x1g(x) +

∫
P (Hi≤τv(r)|x,v)·{∂x1FV |X(v|x)}∫

fH(τv(r)|x,v)·dFV |X(v|x)

∂x2g(x) +
∫
P (Hi≤τv(r)|x,v)·{∂x2FV |X(v|x)}∫

fH(τv(r)|x,v)·dFV |X(v|x)

(27)

where the second term in both the numerator and the denominator depend on r through

the quantity τv(r), highlighted. Under the maintained assumptions, the only way that
∂x1P (Ri≤r|x)

∂x2P (Ri≤r|x)
can vary by r is through a failure of {Vi ⊥⊥ Xji}|Wi. If we further assume lin-

earity of the structural function g(x) = xTβ, then we obtain additional overidentification

restrictions that we can use with (27). In particular, ∂x1P (Ri ≤ r|x)/∂x2P (Ri ≤ r|x) =

β1/β2 should not depend on x, if {Vi ⊥⊥ Xji}|Wi holds.

Additional indirect tests for reporting function invariance can be found in the litera-

ture. For example, Luttmer (2005) compares life satisfaction to other outcome measures

often associated with well-being, such as depression and open disagreements within the

household. Seeing effects in the same direction, he concludes that his main results are

not likely to driven by individuals changing their “definition” of happiness with Xi.

Eq. (26) can also be used to study the nature of the bias that occurs when the implication

V ⊥⊥ X|W of EXOG fails. Using integration by parts, the second term of (26) can be

rewritten as∫
P (Hi ≤ τv(r)|Xi = x, Vi = v) · ∂

∂xj
{dF (v|x)} (28)

= (−1)dv
∫ {

∂

∂xj
F (v|x)

}
·
{
∂v1,v2,...vdv

P (Hi ≤ τv(r)|Xi = x, Vi = v)
}
· dv1 . . . dvdv

provided that ∂
∂ṽ1

∂
∂ṽ2

. . . ∂
∂ṽM

{
∂
∂xj
F (v|x)

}
vanishes on the boundary of V , for any subset

ṽ1 . . . ṽM of the components of V .

Expression (28) will be positive if, for example, V is a scalar independent of U (con-

ditional on X), higher values of v are represent more “optimistic” reporting functions
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(that is, lower thresholds τv(r)), and Xj is positively correlated with V (so that F (v|x)

decreases as xj is increased).37 As a simple example, suppose heterogeneity in repoorting

functions is scalar and takes the form as an additive shift in all thresholds between indi-

viduals: τv(r) = τ(r)− v. Individuals with high V are more “optimistic reporters”, since

they require lower values of H to report a given response r. If furthermore U ⊥⊥ V |X,

then (28) reduces to:

∂xjP (Ri ≤ r|x) = causal term

−
∫ {

∂

∂xj
F (v|x)

}
· {∂vP (Hi ≤ τ(r)− v|x)} · dv

= causal term−
∫
fH(τ(r)− v|x) ·

{
− ∂

∂xj
F (v|x)

}
· dv

The second term reflects a positively-weighted integral over the term in brackets, which

measures the correlation between xj and “reporting optimism” v. If Xj and V are

positively correlated, then the second term above in ∂xjP (Ri ≤ r|x) will be positive,

meaning that the observable relationship between Xj and R will be biased upwards by a

positive non-causal term. If Vj and X were instead negatively correlated in this example,

the bias would be in the other direction.38

B An illustrative example

Consider a population in which happiness is determined as by three things: i) one’s

income X1i (measured in thousands of dollars); ii) whether they are married X2i ∈ {0, 1};
and iii) an idiosyncratic error term Ui, according to a linear causal relationship:

Hi = β1 ln(X1i) + β2X2i + Ui (29)

In this world money does not buy happiness: in fact, it has a slight negative effect with

β1 = −0.1. However, marriage does come with a substantial benefit to happiness: β2 = 1.

Life satisfaction is measured by a binary question in which Ri = 1 indicates that

individual i responded “yes” and Ri = 0 that they responded “no” to the question: “All

things considered, are you satisfied with your life at present?” Without loss of generality,

37It is in principle possible for this bias term to be negative even if Xj is associated with more optimistic reporting
functions: if U and V are correlated in such a way that conditional on X that those with more optimistic reporting
functions tend to be less happy (this is difficult, but not impossible, to have happen while {Xj ⊥⊥ V }|W ).

38Note that if fH(τ(r) − v|x) and ∂
∂xj

F (v|x) are “uncorrelated” over v in the sense that∫ {
fH(τ(r)− v|x)−

∫
fH(τ(r)− v′|x) · dv′

}
·
{

∂
∂xj

F (v|x)−
∫

∂
∂xj

F (v′|x) · dv′
}
· dv = 0, then the density integrates to

one and the non-causal term above becomes∫
fH(τ(r)− v|x) ·

{
−

∂

∂xj
F (v|x)

}
· dv = −

∂

∂xj
E[Vi|Xi = x]

i.e. the bias from a failure of independence between Xj and reporting optimism V is simply the rate at which the mean of
reporting optimism varies with Xj .
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we know by Lemma 1 that individual reporting functions can be written

Ri = 1(Hi > τVi)

Suppose that Vi takes two values in the population. Optimistic Reporters, indicated by

Vi = 1 have a threshold τ1 = −1, and Pessimistic Reporters, indicated by Vi = 0, have

τ0 = 0. While a Pessimistic Reporter requires Hi to be positive to indicate they are

satisfied with life, Optimistic Reporters only require Hi > −1 to report that they are

satisfied with life.

In line with Assumption EXOG, we will eventually assume that (Ui, Vi) ⊥⊥ (X1i, X2i),

i.e. income and marital status are as good as randomly assigned. However, to investigate

departures from this assumption, I introduce a parameter ρ that governs the correlation

between income and “reporting optimism” Vi. In particular, the probability of being an

Optimistic Reporter as a function of income is: E[Vi|X1i = y] = Φ(ρ · ln(y/50)), where

Φ is the normal CDF function. Thus if ρ > 0 the proportion of Optimistic Reporters is

increasing with income: all among the richest are are, while none among the poorest are

Optimistic Reporters.

I round out the remaining aspects of the DGP as follows:

• The distribution of income is log-normal: ln(X1i/50) ∼ N (0, 1) trimmed to the

range [20, 200], with X1i in thousands of dollars. Trimming incomes below 20 avoids

Hi tending towards infinity as X1 ↓ 0.

• Half of all individuals are married E[X2i] = 0.5, with X2i ⊥⊥ (Ui, Vi, X1i)

• Ui ∼ N (0, 1), and Ui ⊥⊥ (Vi, Xi)

Figure 10 shows kernel density estimates of the resulting distribution of Hi in the popu-

lation, computed from a sample of N = 10, 000. The threshold for Pessimistic Reporters

τ0 = 0 (blue, dashed vertical line) and for Optimistic reporters τ1 = −1 (orange, dash-dot

vertical line) fall close to the center of the distribution.

Figure 10: Distribution of Hi in the illustrative example. Vertical lines indicate the life satisfaction thresholds
τ0 = 0 (blue, dashed) and τ1 = −1 (orange, dash-dot) for Pessimistic and Optimistic Reporters, respectively.
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To illustrate the importance of Assumption EXOG, let us first consider ourselves in

the shoes of an econometrician facing a DGP with ρ = 1. Since Optimistic Reporters

tend to have higher incomes, this introduces a mechanical positive correlation between

income and reported well-being, depicted in the left panel of Figure 11.39 A regression

of R on ln(X1) and X2 picks up this spurious correlation between R and X1 that arises

from reporting heterogeneity: the coefficient on log income reported in Column (1) is

positive, despite β < 0. The ratio of estimates β̂Married/β̂LogIncome evaluates to 4.04,

having opposite sign as the true value of β2/β1 = −10. Column (3) shows that if the

econometrician did have access to direct observations of H, a simple OLS regression

estimates β1 and β2, and hence their ratio, well–in line with Eq. (29).

(1) (2) (3)
R R H

Log Income 0.0765∗∗∗ -0.106∗∗∗

(0.00699) (0.0161)

Income 0.00155∗∗∗

(0.000191)

Married 0.309∗∗∗ 0.310∗∗∗ 1.015∗∗∗

(0.00861) (0.00864) (0.0199)

Constant 0.232∗∗∗ 0.698∗∗∗ 0.0162
(0.0295) (0.00482) (0.0672)

β̂Married/β̂LogIncome 4.04 3.69 -9.55
Estimator OLS Local Linear OLS
N 10000 10000 10000

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Figure 11: ρ = 1 case. Left panel depicts the conditional expectation function E {E[Ri|X1i = y,X2i]} as a
function of y (calculated from the known DGP as described in footnote 39), when ρ = 1. Regression results
(right panel) of Ri on Xi reflect this spurious positive association between income and reported satisfaction,
estimated on a simulated dataset of 10, 000 observations. Column (1) uses OLS of R on log-income and marriage,
while Column (2) nonparametrically estimates the mean marginal effect of income and the mean effect of Marital
(see text for details). Column (3) reports an (infeasible) direct regression of Hi on log-income and marriage,
recovering consistent estimates of the true parameters β1 = −0.1 and β2 = 1.

Column (2) of Figure 11 shows that β̂Married/β̂LogIncome getting the wrong sign in

Column (1) is not due to functional form misspecification in the OLS estimates. A

nonparametric regression of R on income and marital status again captures a positive

ratio, and of similar magnitude. Specifically, Column (2) reports the average derivative

of E[Ri|X1i = y,X2i] with respect to y over the distribution of X1i as the “coefficient”

for income, and estimates the average difference E[Ri|X1i, X2i = 1]− E[Ri|X1i, X2i = 0]

as the “coefficient” for marital status. This is implemented using the kernel estima-

tor of Li and Racine (2004), with bandwidth chosen by cross-validation. Standard er-

rors are calculated using 500 bootstrap replications. I report β̂Married/β̂LogIncome com-
39This correlation can be computed explicitly: by the law of iterated expectations, we have that

E[Ri|X1i = y,X2i = m] = P (Vi = 0|X1i = y) · P (β1ln(y) + β2m+ Ui > τ0) + P (Vi = 1|X1i = y) · P (β1ln(y) + β2m+ Ui > τ1)

= Φ(ρ · ln(y/50)) · Φ(β1ln(y) + β2m− τ1) + (1− Φ(ρ · ln(y/50))) · Φ(β1ln(y) + β2m− τ0)
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puted by averaging the local ratio of effects across the empirical distribution of Xi:
1
N

∑N
i=1

E[Ri|X1i,X2i=1]−E[Ri|X1i,X2i=0]
∂yE[Ri|y,X2i]|y=X1i

.

(1) (2) (3)
R R R

Log Income -0.0386∗∗∗

(0.00726)

Income -0.000522∗∗∗ -0.000520∗∗∗

(0.000103) (0.000102)

Married 0.305∗∗∗ 0.306∗∗∗ 0.306∗∗∗

(0.00879) (0.00892) (0.00879)

Constant 0.688∗∗∗ 0.684∗∗∗ 0.567∗∗∗

(0.0304) (0.00483) (0.0100)

β̂Married/β̂LogIncome -7.91 -12.13 -11.87
Estimator OLS Local Linear OLS
N 10000 10000 10000

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Figure 12: ρ = 0 case. Left panel depicts the conditional expectation function E {E[Ri|X1i = y,X2i]} as a
function of y as a function of y (calculated from the known DGP as described in footnote 39), when ρ = 0.
Now assumption EXOG is satisfied and the observable relationship between R and income reflects sign of the
true negative effect β1. Right panel reports regression results of Ri on Xi on a simulated dataset of 10, 000
observations. Column (1) uses OLS on log income and married, and Column (2) again uses the nonparametric
estimator described in the text for Figure 11. Column (3) compares this against OLS using income rather than
the log of income as a regressor. For Column (3) β̂LogIncome is computed as β̂Income · Ê[1/X1i]).

Figure 12 turns to the case of ρ = 0, in which Assumption EXOG is satisfied and hence

the results of this paper apply. In the left panel, we see that the conditional expectation

of R with respect to income is now decreasing in income, in line with the negative sign

on β1. The OLS regression of reported satisfaction on log income and marriage now

yields β̂Married/β̂LogIncome = −7.91, which has the correct sign but undershoots the true

value of −10. This could be due to wx,x′/wx < 1, in the parlance of Section 5, but also

could arise from misspecification of the functional form of E[R|X1i, X2i]. Column (2)

again implements the local linear regression method described above, returning estimates

β̂Married/β̂LogIncome = −12.13. These estimates are very similar to those obtained by an

OLS regression of R on income (not in logs) as well as marital status. This underscores

the fact that functional form assumptions regarding the effects of X on H to not translate

unchanged into features of the observable correlations between X and R. In this case the

causal relationship is linear in log income, while the observable one is linear in income.

This distinction matters quantitatively in this case for assessing the relative contributions

of income and marriage to well-being.

While the two DGPs reported above consider a binary R for simplicity, Figure 13

reports the ρ = 0 case with an 11-point scale for R. The DGP is unchanged from above

except that now Pessimistic Reporters have linear reporting functions with

τ0(r) = −5 + r
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while Optimistic Reporters have all thresholds shifted down by 1 relative to the Pessimists:

τ1(r) = −6 + r

Figure 13 again compares a linear regression of R on log-income and marital status (1)

to a nonparametric (2) and linear regression (3) of R on income and marital status. In

Column (1), the estimated ratio β̂Married/β̂LogIncome is close in magnitude to −10 while

the estimated ratios in Columns (2) and (3) are somewhat larger. This suggests that

the Column (1) estimate being close to the truth is a coincidence of functional-form

misspecification offsetting wx,x′/wx > 1 in line with Theorem 5. Indeed, comparing

Columns (2) and (3) the CEF of R appears to again be approximately linear in income.

(1) (2) (3)
R R R

Log Income -0.108∗∗∗

(0.0194)

Income -0.00144∗∗∗ -0.00145∗∗∗

(0.000264) (0.000271)

Married 1.021∗∗∗ 1.021∗∗∗ 1.021∗∗∗

(0.0230) (0.0221) (0.0230)

Constant 6.018∗∗∗ 6.094∗∗∗ 5.682∗∗∗

(0.0808) (0.0129) (0.0252)

β̂Married/β̂LogIncome -9.50 -14.35 -14.25
Estimator OLS Local Linear OLS
N 10000 10000 10000

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Figure 13: ρ = 0 case. Left panel depicts a lowess regression of R on income, in the simulated dataset of 10, 000
observations.

C Extensions of the model

C.1 Using instrumental variables for identification

Suppose for that rather than making Assumption EXOG, we instead have a set of instru-

mental variables Zi such that {Zi ⊥⊥ (ηi, Ui, Vi)}|Wi. We assume each Xj for j = 1 . . . J

is continuously distributed, and Zi contains a continuously distributed instrument corre-

sponding tos each Xj, i.e.

X1i = x1(Zi, η1i), X2i = x2(Zi, η2i) . . . XJi = xJ(Zi, ηJi)

Finally, for each j = 1 . . . J , suppose that xj(z, η) is strictly increasing in ηj. Let ηi =

(η1i, η2i, . . . ηJi)
T .
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Assumption INSTRUMENT (conditional independence of instruments).

{Zi ⊥ (ηi, Ui, Vi)} |Wi

Without loss of generality, we may take ηji ∼ U [0, 1] by redefining ηji = FXj |Z,W (Xji|Zi,Wi).

The following result from Imbens and Newey (2009) implies that we can use ηi as a control

variable in Wi, in the sense that

Lemma. Under INSTRUMENT and the IV model above: {Xi ⊥ (Ui, Vi)}|(ηi,Wi)

Thus, if ηi is simply included in the vector Wi to begin with, all of the results of the

paper hold under the weaker assumption of INSTRUMENT rather than EXOG.

Theorem. In the IV model from the last slide, with HONEST and REG (conditional on

η):

∇P (Ri ≤ r|Xi = x, ηi = η) = −
∫
dFV |η(v|η) · fH(τv(r)|x, v, η)

·E [∇xh(x, Ui)|Hi = τv(r), x, v, η]

Thus for R = {0, 1, 2, . . . }

∂
∂x1
P (Ri ≤ r|x)

∂
∂x2
P (Ri ≤ r|x)

=

∫
dFV |η(v|η)

∑
r ·fH(τv(r)|x, v, η) ·E [∂x1h(x, Ui)|Hi = τv(r), x, v, η]∫

dFV |η(v|η)
∑

r ·fH(τv(r)|x, v, η) ·E [∂x2h(x, Ui)|Hi = τv(r), x, v, η]

In the separable linear model, we can again identify β1/β2.

C.2 Subjectively-defined latent variables

In the main body of the paper, I assume that individuals use a reporting function ri(h)

that is an increasing function of the variable h that the researcher is interested in. Given

this, the model can accommodate arbitrary heterogeneity in ri(·) (or equivalently: the

locations of the thresholds that i uses), so long as this variation is independent of ex-

planatory variables.

However in many applications, one might worry that not only are the definitions of the

categories R subjective, but so is the definition of the quantity that individuals are asked

to use in answering the survey question. For example, when answering a life-satisfaction

question some individuals might think about their recent life experiences, while others

may think about their whole life in aggregate. Some might spend a lot of time thinking

about the question, while others might answer quickly and intuitively. Accordingly, let

individual i use variable H̃ i when they answer the survey question, where H̃i := H̃ i
i is i’s

value of this quantity that they define for themself. The key assumption that will allow

us to extend the model to account for this kind of heterogeneity is that H̃ is a weakly

increasing function of H, where H is an objectively-defined variable of ultimate interest

to the researcher.
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I extend the model as follows: observables (Ri, Xi) are now related by

Ri = r̃i(H̃i) = r̃(H̃i, Si) (30)

H̃i = h̃i(Hi) = h̃(Hi, Ti) (31)

Hi = hi(Xi) = h(Xi, Ui) (32)

where both r̃(·, s) and h̃(·, t) are assumed to be weakly increasing and left-continuous. The

new function, h̃i(h), can be defined in terms of counterfactuals: what would i’s value of

their subjectively-defined latent variable H̃ i be if their objectively-defined happiness Hi

were h? Ti can be of arbitrary dimension, allowing individual-specific mappings between

H and H̃.

Now suppose that {Xji ⊥⊥ (Ti, Ui, Vi)}| Wi. If we define Vi = (Si, Ti), then EXOG

holds, and defining r(·, v) = r̃(h̃(·, t), s) HONEST now holds as well, allowing us to

apply the main results of the paper. Note that EXOG is now stronger than it was in

the baseline model: if we want to accomodate heterogeneity in what latent variable H̃

individuals use to answer the question, we must assume that heterogeneity to also be

conditionally independent of Xj. In addition to the existing exclusion restriction that

variation in Xj does not alter reporting functions r̃i, we now have an additional implicit

exclusion restriction that variation in Xj does not affect the subjective definitions Ti that

individuals apply to generate H̃i in terms of Hi.

One nice feature of this extended version of the model is that the researcher may be

more willing to make structural assumptions about the function h(x, u) now that it is

made explicit that H may differ from what individual’s actually have in their mind when

they answer the question. For example, if causal effects on some notion of objective

life satisfaction H are assumed to be homogeneous (so that h(x, u) = g(x) + u), then

marginal rates of substitution can be identified through Eq. (15), despite individuals

using H̃ rather than H to answer the survey question.
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C.3 Multivariate latent variables

In some settings, it may be appealing to assume that subjective responses are driven by

a vector of latent variables rather than a single one.

For example, Barreira et al. (2021) studies the mental health of economics graduate

students in U.S. PhD programs, and include a question in which respondents are asked

to agree or disagree with the statement “I have very good friends at my Economics

Department”. In such a case, respondents might consider both the quantity and quality

of friendships in their definition of “having good friends”. The emphasis that respondents

place on each may also vary by individual.

To model this case, we might replace Eq. (3) with

Ri = r(H1i, H2i, Vi)

where r is weakly increasing in both H1 (number of friends) and H2 (“average” quality of

friendships). We further assume two separate structural functions h1(X,U) and h2(X,U)

describing the effects of the X on quantity and quality of friendships, respectively.

For simplicity, let us first consider a case with a single reporting function r(H1, H2),

and a scalar x. It will be useful to write

d

dxj
P (Ri ≤ r|Xi = x) =

∫ ∫
T (r)

d

dx
fH(h1, h2|x) · dh1dh2 (33)

where T (r) is the set of (h1, h2) such that r(h1, h2) ≤ r. In the above I have assumed

dominated convergence so that one can interchange the integrals and derivative.

In the two-dimensional case, Eq. 4.1 of Hoderlein and Mammen (2008) show that a

quantity like d
dx
fH(h1, h2|x) can be rewritten as:

d

dx
fH(h1, h2|x) = −∇ ◦

(
fH(h1, h2|x) ·E[∂xh1(x, U)|h1, h2, x]

fH(h1, h2|x) ·E[∂xh2(x, U)|h1, h2, x]

)

where for a vector-valued function h(x), we let ∇ ◦ h denote the divergence of h. More

generally, Kasy (2022) shows that for a vector h = (h1, h2, . . . hK)′ of any finite dimension

K:
d

dx
fH(h|x) = −∇ ◦ {fH(h|x) ·E[∂xh(x, U)|h, x]}

where we let h(x, U) be a vector of (h1(x, U),h2(x, U) . . .hK(x, U))′.

In the general case with anyK ≥ 1 and again allowing reporting-function heterogeneity

(satisfying EXOG), and multiple treatment variables, Eq. (33) becomes

d

dxj
P (Ri ≤ r|Xi = x) =

∫
dFV |W (v|w)

∫
Tv(r)

d

dxj
fH(h|x) · dh (34)

where Tv(r) := {h : r(h, v) ≤ r}.
An application of the divergence theorem allows us to rewrite Eq. (33) as an integral
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over the boundary ∂Tv(r) of the set Tv(r):

d

dxj
P (Ri ≤ r|Xi = x) =

∫
dFV |W (v|w)

∫
∂Tv(r)

fH(h|x, v) ·E[∂xjh(x, U)|h, x, v] ◦ nv(`) · d`

where nx,v(`) represents a normal vector perpendicular to ∂Tv(r) at a point indexed by `.

Figure 14 depicts this in the two-dimensional example. In that case, ` is a scalar index

that parameterizes the path along the one-dimensional boundary of Tv(r). Provided that

h2

h1

Tv(r)

∂Tv(r)

nv(`)

Figure 14: Components of n̂(`) are positive, by monotonicity of h(h1, h2, v) w.r.t h1 and h2.

r(h, v) is weakly increasing in each component of h (for all reporting functions v), the

components nv,j(`) of nv(`) will be positive, as illustrated in Figure 14.

In the two-dimensional case for example, we have:

− d

dxj
P (Ri ≤ r|Xi = x) =

∫
dFV |W (v|w)

∫
∂Tv(r)

fH(h|x, v) ·
{
n̂v,1(`) ·E[∂xjh1(x, U)|h, x, v]

+n̂v,2(`) ·E[∂xjh2(x, U)|h, x, v]
}
· d`

Suppose for the moment that hj(x, u) = x′βk + u where βjk represents the effect of

treatment variable Xj on Hk. Then this becomes

d

dxj
P (Ri ≤ r|Xi = x) = −E

[∫
∂TVi (r)

{βj1 · n̂v,1(`) + βj2 · n̂v,2(`)} · d`

∣∣∣∣∣Xi = x

]

where the expectation is over response functions Vi.

Unless the boundary ∂Tv(r) is linear in h, the positive weights n̂v,2(`) will generally

vary with ` across the inner integral. However, the effects of two treatment variables can

still be meaningfully compared. For example, suppose we have two continuous treatment

variables of interest: X1 and X2, and that for any latent variable Hk, the effect of X1 on
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Hk is γ times as large as the effect of X2 on Hk. Then:

d
dx1
P (Ri ≤ r|Xi = x)

d
dx2
P (Ri ≤ r|Xi = x)

=
E

[∫
∂TVi (r)

{β11 · n̂v,1(`) + β12 · n̂v,2(`)} · d`
∣∣∣Xi = x

]
E

[∫
∂TVi (r)

{β21 · n̂v,1(`) + β22 · n̂v,2(`)} · d`
∣∣∣Xi = x

]
=
E

[∫
∂TVi (r)

{γβ21 · n̂v,1(`) + γβ22 · n̂v,2(`)} · d`
∣∣∣Xi = x

]
E

[∫
∂TVi (r)

{β21 · n̂v,1(`) + β22 · n̂v,2(`)} · d`
∣∣∣Xi = x

] = γ

D Idiosyncratic reporting

The main results in the paper assume both parts of Assumption EXOG: {Xji ⊥⊥ Vi} | Wi

and {Xji ⊥⊥ Ui} | (Wi, Vi). These are both natural when there is idiosyncratic variation

in Xi arising from an experiment or natural experiment, and reporting functions Vi are

unaffected by Xi. However, if causal inference is not the researcher’s goal, and the

researcher simply wishes to document features of the joint distribution of Hi and Xi, we

can let the function h simply represent the conditional quantile function of H as in Eq.

Footnote 15 (with the definitions Ui = (θi, Vi)
T and θi := FH|XV (Hi|Xi, Vi)). In this case,

the latter condition of EXOG holds automatically, since θi|(Xi, Vi) ∼ Unif [0, 1], for all

(Xi, Vi). Thus, to learn about the joint distribution of Hi and Xi, we only need to assume

the first part of EXOG: that Xj is conditionally independent of reporting heterogeneity

V (and not that it is independent of U and V jointly). In this case all results from the

body of the paper still hold.

A stronger assumption that may be attractive in these contexts is that reporting

heterogeneity Vi, rather than Xj, varies “idiosyncratically”. I.e., we might assume:

Assumption IDR (idiosyncratic reporting). {Vi ⊥⊥ (Ui, Xji)} | Wi for each j =

1 . . . J .

Assumption IDR may be an attractive alternative to Assumption EXOG introduced

in Section 2.2, though neither assumption nests the other. EXOG aligns more with

cases in which there is “selection-on-observables”: Eq. (7) that {Xj ⊥⊥ (U, V )}|W may

follow naturally in settings in which the researcher has already argued for {Xj ⊥⊥ U}|W .

Furthermore, EXOG allows U and V to be arbitrarily correlated, unlike IDR.

IDR leads to some alternative identification results to the ones in the body of this

paper, for establishing features of the joint distribution of H and X. To this end, we

need not make reference to any structural function h(x, u) for happiness, and can take

IDR as saying simply that {Vi ⊥⊥ (Hi, Xji)} | Wi. Note that this implication and IDR as

stated above are equivalent under the mapping Eq. Footnote 15 that defines h(x, u) as a

conditional quantile function, without any causal interpretation.

The following result replaces the assumption of EXOG in Theorem 1 by IDR:
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Corollary 3. Under HONEST, IDR, and REG:

∇xE[Ri|x] =

∫
dFV |W (v|w) ·

∑
r∈R

fH(τv(r)|x) · ∇x QH|X(α|x)
∣∣
α=FH|X(τv(r)|x)

Proof. The first steps of the proof to Theorem 1 applies {Xji ⊥⊥ Vi} | Wi, HONEST and

REG to obtain

∇xE[Ri|x] =

∫
dFV |W (v|w) ·

∑
r∈R

fH(τv(r)|x, v) · ∇x QH|XV (α|x, v)
∣∣
α=FH|XV (τv(r)|x,v)

Apply {Vi ⊥⊥ (Hi, Xji)} | Wi again to arrive at the result.

Another result that makes the alternative Assumption IDR rather than EXOG, but

allows for discrete variation in X:

Proposition 7. Given HONEST, IDR, and fτV (h) = d
dh
P (h ≤ τVi(r)) exists, then for

any r ∈ R and x, x′ that differ only in the first J components:

P (Ri ≤ r|x′)− P (Ri ≤ r|x) =

∫
h

{
FH|X(h|x′)− FH|X(h|x)

}
· fτV (h)

Proof. See Appendix G.

One consequence of Proposition 7 is that if FH|X=x′ first order stochastically dominates

FH|X=x, i.e. that FH|X(h|x′) ≤ FH|X(h|x) for all h, then under IDR this will be reflected in

FR|X=x′ first order stochastically dominating FR|X=x. That is, the idiosyncratic reporting

function transformations preserve this ranking of conditional distributions, in aggregate.

This generalizes results found in Schröder and Yitzhaki (2017), Bond and Lang (2019) and

Kaiser and Vendrik (2022), which assume a common reporting function across individuals.

Note that the existence of d
dh
P (h ≤ τVi(r)) requires that for any response r and happiness

level h, there individuals in the population with thresholds for r very close to h.

An alternative to Proposition 7 considers the conditional mean rather than the con-

ditional CDF of Ri:

Proposition 8. Given HONEST and IDR, for x, x′ that differ only in the first J com-

ponents:

E[Ri|Xi = x′]−E[Ri|Xi = x] =

∫ 1

0

r̄′x′,x(u) ·
{
QH|X=x′(u)−QH|X=x(u)

}
du

where r̄′x′,x(u) :=
∫
dFV |W (v|w) · r(QH|X=x′ (u),v)−r(QH|X=x(u),v)

QH|X=x′ (u)−QH|X=x(u)
.

Proof. See Appendix G. To prove it quickly in the common reporting function case of Eq.

(??), note that left-continuity of r implies that Qr(H)|X=x′(u) = r(QH|X=x′(u)) (Hosseini,

2010). Then use that E[R|X = x] =
∫ 1

0
QR|X=x(u) · du.
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Note that Proposition 8 provides a generalization of the expression

E[Hi|Xi = x′]−E[Hi|Xi = x] =

∫ 1

0

{
QH|X=x′(u)−QH|X=x(u)

}
du,

which reveals how an (infeasible) comparison of means of Hi between x and x′ aggregates

over conditional quantile differences. It also generalizes Eq. (??) to the case of heteroge-

neous reporting functions.

To finish this section, I connect Proposition 8 to an identification result of Kaiser

and Vendrik (2022) (henceforth KV) for the case of a common reporting function. This

returns discussion to the full model of the paper in which h represents a structural/causal

relationship between H and X, though the results can also be interpreted with h(x, u)

reflecting the quantiles of H|X.

It is clear from the expression in Proposition 8 that if the distribution H|X = x′

stochastically dominates H|X = x, or vice versa, then the direction of this stochas-

tic dominance will be reflected in E[Ri|Xi = x′] − E[Ri|Xi = x]. However, stochastic

dominance between H|X = x′ and H|X = x cannot be verified empirically, since H

is unobserved. KV introduce an identification condition that implies that the signs of

components of β in a linear structural model h(x, u) = xTβ + u are identified. The first

portion of the condition is that R|X = x′ stochastically dominates R|X = x or vice versa,

which can be empirically verified since R is observable.

The second part of the condition, which they call Assumption A2, is that we can

write Hi = f(Ri) + ξ for some increasing function f such that E[ξi|Ri, Xi] = E[ξi|Ri].

As a leading sufficient condition for A2, they consider that E[Hi|Ri = r,Xi = x] =

E[Hi|Ri = r] in which case we may take f(r) to be the unknown function E[Hi|Ri =

r]. This condition holds if happiness among individuals reporting a given category r

is mean independent of observables X. In general this may be hard to motivate on

theoretical grounds, since X can be expected to shift the distribution of H between

adjacent thresholds τ(r+ 1)− τ(r) . KV implement a clever empirical test using data in

which respondents rated life satisfaction both on 100 point and 10-point scales, and are

nevertheless unable to reject A2 for most of the X considered.

The “constant density” approximation introduced in Section 4 represents one case in

which we might expect E[Hi|Ri = r,Xi = x] = E[Hi|Ri = r] to hold, at least for interior

categories r. Recall that this approximation treats fH(h|∆, x, v) as constant for all h

between τv(r) − ∆ and τv(r). Given that the linear model considered by KV implies

homogeneous ∆i, we can drop the conditioning on ∆i in the density. In line with a

common reporting function, let us also drop Vi for the moment. If the density of Hi|Xi is

constant within each interval [τ(r), τ(r + 1)], A2 would be satisfied for interior response

categories r with f(r) defined as E[Hi|Ri = r], since then E[Hi|Ri = r,Xi = x] =∫ τ(r)

τ(r−1)
fH(h|x)dx = τ(r)−τ(r−1)

2
, which depends on r but not on x. Now with reporting
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heterogeneity and EXOG, this becomes E[(τVi(r) − τVi(r − 1))/2], which still does not

depend on x.

Nevertheless, the constant density assumption remains hard to motivate unless treat-

ment effects ∆i are small relative to the scale over which the conditional density of H

has significant curvature. And to integrate to unity, it cannot be constant everywhere on

it’s support, suggesting that KV’s A2 requires separate justification and the highest and

lowest categories.

E What would be identified with a smooth reporting function

It is informative to compare the implications of Theorem 1 to what would be identified

if Hi were itself directly observable in the data. As a benchmark, this section imagines

an intermediate situation in which respondents can select a response from some bounded

continuum in R. This allows us to separate the effect of reporting heterogeneity from

that of information loss due to discretization of the latent variable Hi into categories.

Suppose R is a convex subset of R, for simplicity R = [0, R̄] for some maximum re-

sponse value R̄. Figure 15 depicts two examples of reporting functions on this continuum

of responses. While the example on the left side of Figure 15 is a smooth sigmoid shape

0

R̄

H

R

0

R̄

H

R

Figure 15: Example of two “continuous” reporting functions, with the density of H depicted in gray.

mapping R to the interval [0, R̄], the piecewise-linear reporting function on the right has

kinks at τv(0) and τv(R̄) beyond which the function is flat. Nevertheless, we may define

a derivative function r′(h, v) of any given r(h, v) with respect to h, which by virtue of

HONEST can only fail to exist only at isolated points in H.40 Provided that Hi is con-

tinuously distributed, it therefore does not affect results to treat r′(h, v) as defined for all

h.

With “smooth reporting”, we have the following analog of Theorem 1:

Proposition 9. Assume HONEST, EXOG and REG for at least one j, with R a convex

40This is an application of “Lebesque’s theorem” that monotone functions are differentiable almost everywhere.
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subset of R. Then:

∇xE[Ri|Xi = x] =

∫
dFV |W (v|w)

∫
dh · r′(h, v) · fH(h|x, v) ·E [∇xh(x, Ui)|h, x, v] (35)

provided the “boundary condition”: limh→±∞ fH(h|x, v)E
[

∂
∂xj
h(x, Ui)|Hi = h, x, v

]
= 0,

i.e. average partial effects do not explode for extreme values of Hi, any faster than the

density of Hi falls off in h, for each v and j satisfying REG.

Proof. See Appendix G

The proof of Proposition 9 makes uses of a result of Kasy (2022) that relates derivatives

of the density of an outcome with respect to policy variables, to the rate of change of the

“flow density” quantity introduced in the discussion of Theorem 1.

We can compare this expression to what would be recovered by the infeasible regression

of Hi on Xi, i.e:

∇xE[Hi|Xi = x] =

∫
dFV |W (v|w)

∫
dh · 1 · fH(h|x, v) ·E [∇xh(x, Ui)|Hi = h, x, v] (36a)

And with integer categories R, using Theorem 1:

∇xE[Ri|Xi = x] =

∫
dFV |W (v|w)

∑
r

fH(τv(r)|x, v) ·E [∇xh(x, Ui)|Hi = τv(r), x, v]

(36b)

These three expressions differ only in what multiplies fH(h|x, v) · E [∇xh(x, Ui)|h, x, v]

for various values of h. Relative to (36a), (35) introduces the derivative r′(h, v) of the

reporting function. Intuitively, r′(h, v) corresponds to how closely spaced the thresholds

are near a given value of h. If this spacing varies across the support of h, causal effects will

be up-weighted for the h where r′(h, v) is largest, relative to the h where the derivative

is smaller. Comparing (36b) to (35) shows that using subjective responses with discrete

categories further involves information loss due to the discretization: the integral over all

h is replaced by a sum over the thresholds τv(r).
41

In practice, survey questions do not typically allow individuals to give any real number

(within a range) in response to subjective questions. However, results based on Propo-

sition 9 provide a more tractable setting to derive analytical results. If R is sufficiently

rich, then this will provide a useful approximation to the actual properties of that setting

(e.g. Benjamin et al., 2014 elicits life-satisfaction data with 100 categories). In Appendix

G.7, I give a formal definition of this “dense response limit” corresponding to an integer

41In the case of linear reporting functions with a continuous response space, Proposition 9 generalizes a result of Greene
(2005) for marginal effects in the double-censored Tobit model. The Tobit model takes a linear structural model h(x, u) =
xT β + u. Greene shows that if the error term u has any continuous distribution, a marginal effect is equal to the true
structural effect times the probability that an observation is not censored at either endpoint. (35) reduces to ∂x1E[Ri|x] =

β1 ·
∫
dFV |W (v|w) · R̄

µ(v)−`(v)
· P (0 < Ri < R̄|x, v) using that r′(h, v) = R

µ(v)−`(v)
· 1(`(v) < h < µ(v)). The traditional

Tobit model further treats Vi as degenerate with µ− ` = R, so the above recover’s Greene’s result that ∂x1E[Ri|Xi = x] =
β1 · P (0 < Ri < R|Xi = x).
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response space R =
{

0, 1, . . . , R̄
}

, which proves useful in the foregoing analysis. Appeal

to this limit is indicated by the symbol
R→ in the results of Section 5.
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F Additional tables and figures

∆ # r’s 1 10 11 1000

-0.5 -1.77878 1.019952 1.006977 0.997881 1.018028
-0.1 -0.36785 1.016885 0.998345 0.996135 1.000664
0.1 0.367972 1.008979 1.004651 0.997364 1.001079
0.25 0.912569 1.012629 1.010883 1.009681 1.004132
0.5 1.779339 1.009398 1.020753 1.035096 1.017904
1 3.230443 1.136782 1.086727 1.036715 1.061607
5 5.013323 0.493566 0.579100 0.526786 0.544236

1/NB 2.369596 1.828073 1.841236 1.873973

Table 1: wx,x′/
1
2
(wx + wx′) as a function of ∆ and the number |V| ∈ {1, 10, 11, 1000} of reporting functions.

All cells take R̄ = 11 response categories, and the column labeled #r′s reports the average number of these 11
thresholds crossed by the value of ∆ corresponding to that row, averaged over the distribution of Hi|Xi = x.
Hi|Xi = x is standard normal, and in all cases thresholds are sampled as depicted in Figure 5.

Figure 16: The distribution of 1 + δ∆,x,Vi across Vi is depicted across alternative values of ∆i, with Hi|Xi = x
an equal mixture of N (−2, 1) and N (2, 1), R̄ = 100, and 1000 reporting functions with thresholds sampled as
depicted in Figure 7.

∆ # r’s 1 10 11 1000

-0.5 -0.65973 0.987486 1.008402 1.002409 1.002822
-0.1 -0.13228 0.998206 0.997224 1.000729 1.000005
0.1 0.132622 0.998407 1.000369 0.998732 1.000106
0.25 0.330621 0.999557 1.000884 1.001690 1.000275
0.5 0.660180 0.998541 1.001786 1.003425 1.003705
1 1.296189 1.000055 1.006245 1.020919 1.009504
5 4.851162 1.408659 1.182369 1.230598 1.225963

1/NB 1.785322 1.425248 1.507230 1.483049

Table 2: wx,x′/
1
2
(wx + wx′) as a function of ∆ and the number |V| ∈ {1, 10, 11, 1000} of reporting functions.

All cells take R̄ = 11 response categories, and the column labeled #r′s reports the average number of these 11
thresholds crossed by the value of ∆ corresponding to that row, averaged over the distribution of Hi|Xi = x.
Hi|Xi = x is an equal mixture of N (−1/2, 1) and N (1/2, 1), and in all cases thresholds are sampled as depicted
in Figure 7.
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Figure 17: The distribution of 1 + δ∆,x,Vi across Vi is depicted across alternative values of ∆i, with Hi|Xi = x
uniform on [0, 1], R̄ = 100, and 1000 reporting functions with thresholds sampled as depicted in Figure 7.

∆ # r’s 1 10 11 1000

-0.5 -5.0 1.333333 1.351351 1.301775 1.332001
-0.1 -1.0 0.999999 1.005025 1.0 1.005277
0.1 0.999075 0.999999 1.005025 1.004566 1.004095
0.25 2.412154 1.003553 1.015483 1.036788 1.031220
0.5 4.131344 1.063924 1.021872 1.078504 1.101178
1 4.976521 1.074331 1.067193 0.989457 0.995304
5 4.979371 0.195783 0.198180 0.212324 0.199174

1/NB 1.219642 1.400211 1.309034 1.357831

Table 3: wx,x′/
1
2
(wx + wx′) as a function of ∆ and the number |V| ∈ {1, 10, 11, 1000} of reporting functions.

All cells take R̄ = 11 response categories, and the column labelled #r′s reports the average number of these 11
thresholds crossed by the value of ∆ corresponding to that row, averaged over the distribution of Hi|Xi = x.
Hi|Xi = x is uniform [0, 1], and in all cases thresholds are sampled as depicted in Figure 8.

Figure 18: The distribution of 1 + δ∆,x,Vi across Vi is depicted across alternative values of ∆i, with Hi|Xi = x
a standard log-normal, R̄ = 100, and 1000 reporting functions with thresholds sampled as depicted in Figure 7.
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∆ # r’s 1 10 11 1000

-0.5 -1.70479 0.875985 0.850173 0.919761 0.891200
-0.1 -0.39632 0.938366 0.951939 0.949562 0.954190
0.1 0.412033 1.073444 1.045219 1.062470 1.052181
0.25 1.033962 1.120209 1.077792 1.136499 1.118010
0.5 1.980888 1.311599 1.181132 1.178890 1.185238
1 3.438382 1.122504 1.187908 1.187129 1.196697
5 4.659613 0.190009 0.427811 0.435993 0.439618

1/NB 1.799321 1.459198 1.573983 1.445131

Table 4: wx,x′/
1
2
(wx + wx′) as a function of ∆ and the number |V| ∈ {1, 10, 11, 1000} of reporting functions.

All cells take R̄ = 11 response categories, and the column labeled #r′s reports the average number of these 11
thresholds crossed by the value of ∆ corresponding to that row, averaged over the distribution of Hi|Xi = x.
Hi|Xi = x is standard log-normal, and in all cases thresholds are sampled as depicted in Figure 9.

∆ R̄=2 R̄=5 R̄=11 R̄=100

-0.5 0.697930 0.730712 0.746278 0.755180
-0.1 0.914523 0.921389 0.924831 0.929371
0.1 1.092894 1.085627 1.079682 1.072299
0.25 1.242410 1.222273 1.206747 1.194887
0.5 1.461151 1.413333 1.394014 1.366348
1 1.729324 1.596417 1.559468 1.534750
5 0.630123 0.627392 0.608452 0.583946

1/NB 2.333187 0.562761 -235.774 -1.75283

Figure 19: Hi|Xi = x is standard lognormal, and 1000 reporting functions are drawn from `(v) ∼ U [.01, 1.5],
µ(v) ∼ U [0.5, 3]. Thus, the highest threshold µ for some individuals is lower than the lowest threshold ` is for
other individuals. The left panel depicts the supports of `(v) (green) and µ(v) (yellow) with the density of Hi.
The right panel reports values of wx,x′/

1
2
(wx +wx′) as a function of ∆ and the number of response categories R̄.

∆ R̄=2 R̄=5 R̄=11 R̄=100

-0.5 0.608198 0.830388 0.862295 0.908220
-0.1 0.904246 0.924110 0.952734 0.984422
0.1 1.103991 1.083320 1.054811 1.022938
0.25 1.275106 1.205307 1.116844 1.061898
0.5 1.594517 1.299465 1.193268 1.132321
1 1.955425 1.359822 1.262187 1.213427
5 0.529326 0.462219 0.454500 0.458494

1/NB 1.341849 1.341849 1.341849 1.341849

Figure 20: Hi|Xi = x is standard log-normal, and all individuals have the same linear reporting function with
µ(v) = 0.1 and `(v) = 0.2. Table reports values of wx,x′/

1
2
(wx + wx′) as a function of ∆ and the number of

response categories R̄.

G Proofs

G.1 Proof of Proposition 1

Fix any v. First we show that if (5) holds for all r then Assumption HONEST holds.

Indeed, suppose that for some h′ > h we had r(h′, v) < r(h, v). Substituting r = r(h′, v)
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∆ R̄=2 R̄=5 R̄=11 R̄=100

-0.5 0.888923 0.878441 0.873254 0.874889
-0.1 0.963337 0.981338 0.976410 0.979380
0.1 1.030927 1.026978 1.029188 1.026451
0.25 1.047773 1.071765 1.082974 1.074864
0.5 1.126755 1.175856 1.166967 1.167957
1 1.364791 1.335619 1.334358 1.325175
5 0.756363 0.773198 0.776693 0.767673

1/NB 1.341849 1.341849 1.341849 1.341849

Figure 21: The distribution of 1+δ∆,x,Vi across 1000 reporting functions (left), and values of wx,x′/
1
2
(wx+wx′) as

a function of ∆ and the number of response categories R̄ (right), for Hi|Xi = x following a log normal distribution
with all thresholds sampled individually from a uniform distribution on [0.1, 3]. Thus, thresholds are not equally
spaced within individual reporting functions.

∆ R̄=2 R̄=5 R̄=11 R̄=100

-0.5 0.981985 0.976757 0.980952 0.986851
-0.1 0.985272 0.990361 0.994975 0.993520
0.1 0.996470 1.006833 1.007525 1.007262
0.25 1.011348 1.028414 1.029626 1.017586
0.5 1.043327 1.044149 1.030733 1.043710
1 1.062959 1.096241 1.084608 1.075300
5 0.606502 0.594470 0.585655 0.588043

1/NB 1.341849 1.341849 1.341849 1.341849

Figure 22: The distribution of 1+δ∆,x,Vi across 1000 reporting functions (left), and values of wx,x′/
1
2
(wx+wx′) as

a function of ∆ and the number of response categories R̄ (right), for Hi|Xi = x following a log normal distribution
with all thresholds sampled individually from a normal distribution with mean 2 and variance 1. Thus, thresholds
are not equally spaced within individual reporting functions.

into (5), we would then have that r(h, v) > r(h′, v) =⇒ h > τv(r(h
′, v)) and hence that

h′ > τv(r(h
′, v)) since h′ > h. But h′ > τv(r(h

′, v)) violates the definition of τv, since then

h′ > sup{h ∈ H : r(h, v) ≤ r(h′, v)} ≥ h′.

Left-continuity of r holds by considering any increasing sequence of h converging to

τv(r), i.e. I show that limh↑τv(r) r(h, v) = r(τv(r), v). First, note that limh↑τv(r) r(h, v) >

r(τv(r), v) would violate weak monotonicity of r. Suppose instead that limh↑τv(r) r(h, v) =

r∗ where r∗ < r(τv(r), v). This limit exists by the increasing property of r. It must

then be the case that τv(r
∗) = τv(r). To see this, consider the two alternatives. For

τv(r
∗) < τv(r), there would need to exist an h∗ such that r(h∗, v) > r∗ but h∗ < τv(r).

This would violate limh↑τv(r) r(h, v) = r∗ given that r is increasing. Suppose instead

that τv(r
∗) > τv(r). Then there would need to exist an h∗ such that r(h∗, v) > r but

h∗ < τv(r). But h∗ < τv(r) implies that r(h∗, v) ≤ r given that r is increasing. Now,

given that τv(r
∗) = τv(r), r

∗ < r(τv(r), v) would violate (5) for h = τv(r
∗), because

r(h, v) > r =⇒ h > τv(r).
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Now we will show that if Assumption HONEST holds then (5) is satisfied for all v, r.

First, note that τv(r) is weakly increasing in r, and thus r(h, v) ≤ r =⇒ τv(r(h, v)) ≤
τv(r) =⇒ h ≤ τv(r) since by the definition of τv(r): h ≤ τv(r(h, v)) for any h. Thus

we can establish the =⇒ direction of (5), without even invoking Assumption HONEST.

In the other direction, assume that for some r and h, h ≤ τv(r) but r(h, v) > r. By

the increasing property of HONEST: h ≤ τv(r) =⇒ r(h, v) ≤ r(τv(r), v). Thus r <

r(h, v) ≤ r(τv(r), v) and thus r(τv(r), v) > r, so r(·, v) must have a left discontinuity at

τv(r).

G.2 Proof of Theorem 1

By the law of iterated expectations, Lemma 1, and then {Xji ⊥⊥ Vi} |Wi:

P (Ri ≤ r|Xi = x) =

∫
dFUV |X(u, v|x) · 1(r(h(x, u), v) ≤ r)

=

∫
dFUV |X(u, v|x) · 1(h(x, u) ≤ τv(r))

=

∫
dFV |X(v|x)

∫
dFU |XV (u|x, v) · 1(h(x, u) ≤ τv(r))

=

∫
dFV |W (v|w) ·E [1(h(x, Ui) ≤ τv(r))|Xi = x, Vi = v]

=

∫
dFV |W (v|w) · P (Hi ≤ τv(r)|Xi = x, Vi = v)

By totally differentiating QH|XV (FH|XV (h|x, v)|x, v) = h with respect to xj:

∂

∂xj
P (Hi ≤ h|Xi = x, Vi = v) = −fH(h|x, v)

∂

∂xj
QH|XV (α|x, v)

∣∣∣∣
α=FH|XV (h|x,v)

By dominated convergence (using Assumption REG) we can move the derivative inside

the expectation, and thus:

∂

∂xj
P (Ri ≤ r|x) = −

∫
dFV |W (v|w) · fH(τv(r)|x, v) · ∂

∂xj
QH|XV (α|x, v)

∣∣
α=FH|XV (τv(r)|x,v)]

Using that {Xji ⊥⊥ Ui}|(Vi,Wi), the theorem of Hoderlein and Mammen (2007) implies

that

QH|XV (α|x, v)
∣∣
α=FH|XV (τv(r)|x,v)]

= E

[
∂

∂xj
h(x, Ui)|Hi = τv(r), x, v

]
Therefore:

∂

∂xj
P (Ri ≤ r|x) = −

∫
dFV |W (v|w) · fH(τv(r)|x, v) ·E

[
∂

∂xj
h(x, Ui)|Hi = τv(r), x, v

]
In the case where V is degenerate, a similar proof to the above is used in Chernozhukov

et al., 2019 to study derivatives of conditional choice probabilities in multinomial choice

models (under somewhat different regularity conditions).
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One can also establish the final result of Theorem 1 by applying Theorem 2 and letting

x′ → x (see Footnote 27).

G.3 Proof of Proposition 1

Consider a binary covariate Ai ∈ {0, 1}

d
dxj
E[Ai ·Ri|Xi = x]

d
dxj
E[Ri|Xi = x]

=

d
dxj
P (Ai = 1|Xi = x) ·E[Ri|Xi = x,Ai = 1]

d
dxj
E[Ri|Xi = x]

For any x and x′:

E[Ai · 1(Ri ≤ r)|Xi = x′]−E[Ai · 1(Ri ≤ r)|Xi = x]

E[1(Ri ≤ r)|Xi = x′]−E[1(Ri ≤ r)|Xi = x]

=

∫
dFV |W (v|w) · E[Ai · 1(Hi ≤ τv(r))|Xi = x′]−E[Ai · 1(Hi ≤ τv(r))|Xi = x]

E[1(Ri ≤ r)|Xi = x′]−E[1(Ri ≤ r)|Xi = x]

=
1

denom

∫
dFV |W (v|w) ·E[Ai · 1(Hi ≤ τv(r))|Xi = x′]−E[Ai · 1(Hi ≤ τv(r))|Xi = x]

=
1

denom

∫
dFV |W (v|w) ·E[Ai · 1(h(x, Ui) ≤ τv(r))|w]−E[Ai · 1(h(x′, Ui) ≤ τv(r))|w]

=
1

denom

∫
dFV |W (v|w) ·E[Ai · 1(h(x, Ui) ≤ τv(r) < h(x′, Ui))|w]−E[Ai · 1(h(x′, Ui) ≤ τv(r) < h(x, Ui))|w]

where denom = E[1(Ri ≤ r)|Xi = x′]−E[1(Ri ≤ r)|Xi = x]. If all units have the same

sign of treatment effect (assume positive WLOG) then:

E[Ai · 1(Ri ≤ r)|Xi = x′]−E[Ai · 1(Ri ≤ r)|Xi = x]

P (Ri ≤ r|Xi = x′)− P (Ri ≤ r|Xi = x)

=

∫
dFV |W (v|w) ·E[Ai · 1(h(x, Ui) ≤ τv(r) < h(x′, Ui))|w]∫
dFV |W (v|w) ·E[1(h(x, Ui) ≤ τv(r) < h(x′, Ui))|w]

=
E[Ai · 1(h(x, Ui) ≤ τVi(r) < h(x′, Ui))|Wi = w]

P (h(x, Ui) ≤ τVi(r) < h(x′, Ui)|Wi = w)

=
P (h(x, Ui) ≤ τVi(r) < h(x′, Ui)|Wi = w) ·E[Ai|h(x, Ui) ≤ τVi(r) < h(x′, Ui),Wi = w]

P (h(x, Ui) ≤ τVi(r) < h(x′, Ui)|Wi = w)

= E[Ai|h(x, Ui) ≤ τVi(r) < h(x′, Ui),Wi = w]

Letting x′ differ from x only in component j and taking the limit as x′ → x where
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x′j = xj + δ:

∂xjE[Ai · 1(Ri ≤ r)|Xi = x]

∂xjP (Ri ≤ r|Xi = x)
= lim

δ↓0

E[Ai · 1(Ri ≤ r)|Xi = x′]−E[Ai · 1(Ri ≤ r)|Xi = x]

δ

· lim
δ↓0

δ

P (Ri ≤ r|Xi = x′)− P (Ri ≤ r|Xi = x)

= lim
δ↓0

E[Ai · 1(Ri ≤ r)|Xi = x′]−E[Ai · 1(Ri ≤ r)|Xi = x]

P (Ri ≤ r|Xi = x′)− P (Ri ≤ r|Xi = x)

= lim
δ↓0
E[Ai|h(x, Ui) ≤ τVi(r) < h(x′, Ui),Wi = w]

= E[Ai|h(x, Ui) = τVi(r),Wi = w]

G.4 Proof of Proposition 2

Given IDR and (12), we have

∂x1E[Ri|Xi = x] = E [wx(Vi)|Hi ∈ τVi , Xi = x] ·E [∂x1h(x, Ui)|Hi ∈ τVi , Xi = x]

So the RHS of (13) becomes: E [∂x1h(x, Ui)|Hi ∈ τVi , x] /E [∂x2h(x, Ui)|Hi ∈ τVi , x]. Now,

using Cov
(
∂x1h(x,Ui)

∂x2h(x,Ui)
, ∂x2h(x, Ui)

∣∣∣Hi ∈ τVi , x
)
≤ 0,

E [∂x1h(x, Ui)|Hi ∈ τVi , x] ≤ E
[
∂x1h(x, Ui)

∂x2h(x, Ui)

∣∣∣∣Hi ∈ τVi , x
]
·E [∂x2h(x, Ui)|Hi ∈ τVi , x]

and analogously if ≤ is replaced with ≥.

G.5 Proof of Proposition 3

To fix the scale normalization, suppose that g(x∗) = 1 for some x∗ ∈ X . Then, note that

by the fundamental theorem of calculus, we may write

log g(x) =

∫ x

x∗
∇ log g(x) ◦ dv =

J∑
j=1

∫ xj

x∗j

∂xj log g(x1, . . . xj−1, t, 0, . . . , 0)dt

where ◦ denotes a dot product and dv traces any continuous path in X from x∗ to x, for

example the one given after the second equality that integrates over each xj in turn.

If all components of X are continuous and there are no controls, then note that for

any x ∈ X we can identify ∂xjg(x)/∂xkg(x) = ∂xjE[Ri|x]/∂xkE[Ri|x] for any j, k ∈ 1 . . . J

by Eq. (15).

By assumption that g(x) is homogeneous of degree one, we have that g(λx) = λg(x).

“Euler’s theorem” of homogeneous functions then implies that

g(x) =
J∑
j=1

∂xjg(x) · xj

(this result can be obtained by differentiating g(λx) = λg(x) with respect to λ and
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evaluating at λ = 1). Thus:

(∂xk log g(x))−1 =
g(x)

∂xkg(x)
= 1 +

∑
j 6=k

∂xjg(x)

∂xkg(x)
· xj

Thus we arrive at a constructive expression for g(x) in terms of observables

g(x) = e

∫ xj
x∗
j

(
1+
∑
j 6=k

∂xjE[Ri|(x1,...xj−1,t,0,...,0)]

∂xk
E[Ri|(x1,...xj−1,t,0,...,0)]

·xj
)−1

dt
(37)

G.6 Proof of Theorem 2

I begin with a heuristic overview: the detailed proof is below. The logic of the result is

as follows: for a given individual having Vi = v, Ri will be less than or equal to r when

Xi = x′, but not when Xi = x, if ∆i < 0 and h(x, Ui) ∈ (τv(r), τv(r) + |∆i|]. This event

increases the value of P (Ri ≤ r|x′) − P (Ri ≤ r|x). On the other hand, Ri will be less

than or equal to r when Xi = x but not when Xi = x′ when ∆i > 0 and h(x, Ui) ∈
(τv(r)−∆i, τv(r)]. This event instead decreases the value of P (Ri ≤ r|x′)−P (Ri ≤ r|x).

The RHS of Theorem 2 can be written as

E

{∫ τv(r)

τv(r)−∆i

dy · fH(y|∆i, Xi = x, Vi = v)

∣∣∣∣∣Xi = x

}
,

which averages over both positive and negative ∆i, covering both cases.

Now let us prove the result. By the law of iterated expectations, Lemma 1, and then
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EXOG

P (Ri ≤ r|Xi = x′)− P (Ri ≤ r|Xi = x)

=

∫
dFUV |X(u, v|x′) · 1(r(h(x′, u), v) ≤ r)−

∫
dFUV |X(u, v|x) · 1(r(h(x, u), v) ≤ r)

=

∫
dFUV |X(u, v|x′) · 1(h(x′, u) ≤ τv(r))−

∫
dFUV |X(u, v|x) · 1(h(x, u) ≤ τv(r))

=

∫
dFV |W (v|w) · {P (h(x′, Ui) ≤ τv(r)|Xi = x′, Vi = v)− P (h(x, Ui) ≤ τv(r)|Xi = x, Vi = v)}

=

∫
dFV |W (v|w) · {P (h(x′, Ui) ≤ τv(r)|Xi = x, Vi = v)− P (h(x, Ui) ≤ τv(r)|Xi = x, Vi = v)}

=

∫
dFV |W (v|w) · {P (h(x′, Ui) ≤ τv(r) but not h(x, Ui) ≤ τv(r)|Xi = x, Vi = v)

−P (h(x, Ui) ≤ τv(r) but not h(x′, Ui) ≤ τv(r)|Xi = x, Vi = v)}

=

∫
dFV |W (v|w) · {P (h(x′, Ui) ≤ τv(r) < h(x, Ui)|x, v)− P (h(x, Ui) ≤ τv(r) < h(x′, Ui)|x, v)}

=

∫
dFV |W (v|w) · {P (h(x, Ui) ∈ (τv(r), τv(r)−∆i]|x, v)− P (h(x, Ui) ∈ (τv(r)−∆i, τv(r)]|x, v)}

=

∫
dFV |W (v|w) · {P (Hi ∈ (τv(r), τv(r)−∆i]|x, v)− P (Hi ∈ (τv(r)−∆i, τv(r)]|x, v)}

= −
∫
dFV |W (v|w) ·

∫
d∆

∫ τv(r)

τv(r)−∆

dy · fH(∆, y|Xi = x, Vi = v)

= −
∫
dFV |W (v|w) ·

∫
d∆ · fH(∆|x, v)

∫ τv(r)

τv(r)−∆

dy · fH(h|∆, x, v)

= −
∫
dFV |W (v|w) ·

∫
d∆ · f̄(∆, τv(r), x, v) · fH(∆|x, v) ·∆

using the definition f̄(∆, y, x, v) := 1
∆

∫ y
y−∆

fH(h|∆, x, v)dh.

G.7 The dense response limit: definition

Consider a fixed range [0, R̄] of responses for some integer R̄, and a sequence of response

spaces Rn = {0, 1/n, 2/n, . . . , nR̄/n}. For a fixed value of reporting heterogeneity v,

consider a sequence of reporting functions rn(·, v) indexed by n.42 Let τv,n(·) be a function

from Rn to R representing the thresholds corresponding to each function rn(·, v) in the

sequence.

Definition (dense response limit). Fix a v ∈ V. Consider a sequence of reporting

functions rn(·, v) for n → ∞. We say that the sequence converges to response function

r(·, v) in the dense response limit, denoted as rn(·, v)
R→ r(·, v), if:

lim
n→∞

τv,n(rn) = τv(r)

42Note that R1 is the set of integers from 1 to R̄. However we need not see n = 1 as the “first” n in our sequence; we may
instead begin the sequence with fractional n, for each divisor of R̄. For example if R̄ is even then R0.5 = {0, 2, 4, . . . R̄}.
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for any sequence of rn ∈ Rn such that limn→∞ rn = r for some r ∈ [0, R̄]. For any

functional of all response functions θ({rn(·, v)}v∈V), let θ(rn)
R→ Θ denote that Θ evaluates

the functional θ at the limiting family of response functions: Θ = θ(r).

Intuitively, if the actual response scale is the integers 0 to R̄, the dense response limit

instead approximates reports as taking on any real number in [0, R̄].

G.8 Proof of Proposition 4

With the substitution h = τv(r), dr = r′(h, v) · dh:

∑
r

∫ τv(r)

τv(r)−∆

dy·fH(y|∆i = ∆, Xi = x, Vi = v)
R→ R̄ ·

∫
dr

∫ τv(r)

τv(r)−∆

dy · fH(y|∆i = ∆, Xi = x, Vi = v)

= R̄ ·
∫
dh · r′(h, v)

∫ h

h−∆

dy · fH(y|∆i = ∆, Xi = x, Vi = v)

= R̄ ·
∫
dy

∫ y+∆

y

dh · r′(h, v) · fH(y|∆i = ∆, Xi = x, Vi = v)

= R̄ ·
∫
dy ·∆ · r̄′(y,∆, v) · fH(y|∆i = ∆, Xi = x, Vi = v)

= ∆ · R̄ ·E[r̄′(Hi,∆, v)|∆i = ∆, Xi = x, Vi = v]

where r̄′(y,∆, v) := 1
∆

∫ y+∆

y
r′(h, v)dh. Thus:

E[Ri|Xi = x′]−E[Ri|Xi = x]

=R̄ ·
∫
dFV |W (v|w) ·

∫
d∆ · fH(∆|x, v) ·∆ ·E[r̄′(Hi,∆, v)|∆i = ∆, Xi = x, Vi = v]

=R̄ ·
∫
dFV |W (v|w) ·

∫
d∆ · fH(∆|x, v) ·E[∆ · r̄′(Hi,∆, v)|∆i = ∆, Xi = x, Vi = v]

= R̄ ·
∫
dFV |W (v|w) ·E [E[∆i · r̄′(Hi,∆i, Vi)|∆i = ∆, Xi = x, Vi = v]|Xi = x, Vi = v]

= R̄ ·
∫
dFV |W (v|w) ·E[∆i · r̄′(Hi,∆i, Vi)|Xi = x, Vi = v]

= R̄ ·E[∆i · r̄′(Hi,∆i, Vi)|Xi = x]

Now given the assumption that ∆i and r̄′(Hi,∆i, Vi) are uncorrelated conditional on

Xi = x. Then

E[Ri|Xi = x′]−E[Ri|Xi = x] = R̄ ·E[∆i|Xi = x] ·E[r̄′(Hi,∆i, Vi)|Xi = x]
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G.9 Proof of Proposition 5

Starting with Proposition 4, observe that r̄′(y,∆, v) := 1
∆

∫ y+∆

y
r′(h, v)dh is equal to

r′(v) ·



y−(`(v)−∆)
|∆| · 1(y ∈ [`(v)−∆, `(v)]) + 1(y ∈ [`(v), µ(v)−∆])

+µ(v)−y
∆
· 1(y ∈ [µ(v)−∆, µ(v)]) if ∆ > 0

y−`(v)
∆
· 1(y ∈ [`(v), `(v) + |∆|]) + 1(y ∈ [`(v) + |∆|, µ(v)])

+µ(v)+|∆|−y
|∆| · 1(y ∈ [µ(v), µ(v) + |∆|]) if ∆ < 0

where r′(v) = |R|
`(v)−µ(v)

. To ease notation, let us for the moment make the conditioning

implicit and let f(y) denote fH(y|∆i = ∆, Xi = x, Vi = v) and F (y) the corresponding

conditional CDF. Let us keep v also implicit in both ` and µ. If we let θ denote the

quantity 1
r′(v)

∫
dy · r̄′(y,∆, v) for a fixed ∆, then:

θ =



[F (`)− F (`−∆)]E
[
Hi−(`−∆)

∆

∣∣∣Hi ∈ [`−∆, `]
]

+ F (µ−∆)

−F (`) + [F (µ)− F (µ−∆)]E
[
µ−Hi

∆

∣∣Hi ∈ [µ−∆, µ]
]

if ∆ > 0

[F (`+ |∆|)− F (`)]E
[
Hi−`
|∆|

∣∣∣Hi ∈ [`, `+ |∆|]
]

+ F (µ)

−F (`+ |∆|) + [F (µ+ |∆|)− F (µ)]E
[
µ+∆−Hi
|∆|

∣∣∣Hi ∈ [µ, µ+ |∆|]
]

if ∆ < 0

(38)

To get a lower bound on θ, we use the assumption that f(y) is increasing on the interval

[`− |∆|, `+ |∆|], as well as decreasing on the interval [µ− |∆|, µ+ |∆|]:

θ ≥

1
2
[F (`)− F (`−∆)] + F (µ−∆)− F (`) + 1

2
[F (µ)− F (µ−∆)] if ∆ > 0

1
2
[F (`+ |∆|)− F (`)] + F (µ)− F (`+ |∆|) + 1

2
[F (µ+ |∆|)− F (µ)] if ∆ < 0

=

1
2
[F (µ−∆)− F (`−∆)] + 1

2
[F (µ)− F (`)] if ∆ > 0

1
2
[F (µ+ |∆|)− F (`+ |∆|)] + 1

2
[F (µ)− F (`)] if ∆ < 0

=
1

2
[F (µ−∆)− F (`−∆)] +

1

2
[F (µ)− F (`)]

=
1

2
[F (µ(v)|∆, x′, v)− F (`(v)|∆, x′, v)] +

1

2
[F (µ(v)|∆, x, v)− F (`(v)|∆, x, v)]

A lower bound on the weight wx,x′ on causal effects in E[Ri|Xi = x′]−E[Ri|Xi = x] can

thus given by averaging over Vi (c.f. Proposition 4):

wx,x′ ≥
∫
dFV |W (v|w) ·

∫
d∆ · fH(∆|x, v) ·

{
1

2
[F (µ(v)|∆, x′, v)− F (`(v)|∆, x′, v)]

+
1

2
[F (µ(v)|∆, x, v)− F (`(v)|∆, x, v)]

}
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Note that this exactly the same as the average between the weights wx and wx′ corre-

sponding to using continuous variation at Xi = x and Xi = x′, respectively. For example

(c.f. Eq. 35):

wx =

∫
dFV |W (v|w) ·

∫
d∆ · fH(∆|x, v) · [F (µ(v)|∆, x, v)− F (`(v)|∆, x, v)]

This leads to the lower bound of wx,x′/(
1
2
wx + 1

2
wx′) ≥ 1 in Proposition 4.

Now, to obtain an upper bound, notice that an upper bound on θ occurs if we imagine

putting all of the mass in each of the interval conditional expectations in (38) to the right

in the intervals that depend on `, and at the left end for the intervals that depend on µ.

Then:

θ ≤

���F (`)− F (`−∆) +������
F (µ−∆)−���F (`) + F (µ)−������

F (µ−∆) if ∆ > 0

������F (`+ |∆|)− F (`) +���F (µ)−������F (`+ |∆|) + F (µ+ |∆|)−���F (µ) if ∆ < 0

=

F (µ)− F (`−∆) if ∆ > 0

= F (µ+ |∆|)− F (`) if ∆ < 0
=

F (µ(v)|∆, x, v)− F (`(v)|∆, x′, v) if ∆ > 0

F (µ(v)|∆, x′, v)− F (`(v)|∆, x, v) if ∆ < 0

where I’ve used that F (y|∆, x′, v) = F (y −∆|∆, x, v) in the last step. An upper bound

for θ that applies to both cases can be obtained by adding them together:

θ ≤ F (µ(v)|∆, x, v)− F (`(v)|∆, x, v) + F (µ(v)|∆, x′, v)− F (`(v)|∆, x′, v) (39)

where I’ve used that F (µ) ≥ F (` − ∆) and F (µ + |∆|) ≥ F (`) are implied by the

assumption that f(y) is increasing on the interval [`− |∆|, ` + |∆|], while decreasing on

the interval [µ− |∆|, µ+ |∆|], which implies that µ− |∆| ≥ `+ |∆|.
Thus, an upper bound on the weight wx,x′ on causal effects in E[Ri|Xi = x′] −

E[Ri|Xi = x] is:

wx,x′ ≥
∫
dFV |W (v|w) ·

∫
d∆ · fH(∆|x, v) · {F (µ(v)|∆, x′, v)− F (`(v)|∆, x′, v)

+F (µ(v)|∆, x, v)− F (`(v)|∆, x, v)}

leading to the upper bound of wx,x′/(
1
2
wx + 1

2
wx′) ≤ 2 in Proposition 4.

Now consider the final condition in Proposition 4. That wx,x′/wx ≥ 1/2 follows from

the above since F (µ(v)|∆, x′, v)−F (`(v)|∆, x′, v) ≥ 0 for all ∆, x, v. For the upper bound
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we have

wx
wx,x′

≥
E

{
NB(Vi,x)
µ(Vi)−`(Vi)

∣∣∣Xi = x
}

E

[
1

µ(Vi)−`(Vi)

∣∣∣Xi = x
]

=
E

[
1

µ(Vi)−`(Vi)

∣∣∣Xi = x
]
·NB(x)− Cov

[
1

µ(Vi)−`(Vi) , NB(Vi, x)
∣∣∣Xi = x

]
E

{
1

µ(Vi)−`(Vi)

∣∣∣Xi = x
}

≥ NB(x)−

√√√√√√V ar
[

1
µ(Vi)−`(Vi)

∣∣∣Xi = x
]

E

{
1

µ(Vi)−`(Vi)

∣∣∣Xi = x
}2 · V ar [NB(Vi, x)|Xi = x]

≥ NB(x)− V ar [NB(Vi, x)|Xi = x]

≥ NB(x)−NB(x) · (1−NB(x)) = NB(x)2

where NB(x) = P (0 < Ri < R̄) = P (`(Vi) ≤ Hi ≤ |Xi = x) = E[NB(Vi, x)|Xi = x]

is the observable probability of not bunching given Vi = v. The third inequality uses

the assumption that
V ar

[
1

µ(Vi)−`(Vi)

∣∣∣Xi=x]
E

{
1

µ(Vi)−`(Vi)

∣∣∣Xi=x}2 ≤ V ar [NB(Vi, x)|Xi = x] and the final one that

V ar [NB(Vi, x)|Xi = x] ≤ NB(x) · (1−NB(x)) since NB(v, x) ∈ [0, 1] for all v.

G.10 Proof of Proposition 7

Using integration by parts and IDR:

P (Ri ≤ r|Xi = x) =

∫
h

P (r(h, Vi) ≤ r|Hi = h,Xi = x) · dFH|X(h|x)

=

∫
h

P (r(h, Vi) ≤ r) · dFH|X(h|x)

= FH|X(h|x)P (r(h, Vi) ≤ r)
∣∣
h
−
∫
h

FH|X(h|x) · d
dh
P (r(h, Vi) ≤ r)dh

This implies that

P (Ri ≤ r|x′)− P (Ri ≤ r|x) = −
∫
h

{
FH|X(h|x′)− FH|X(h|x)

}
· d
dh
P (r(h, Vi) ≤ r)

= −
∫
h

{
FH|X(h|x′)− FH|X(h|x)

}
· d
dh
P (h ≤ τVi(r))

=

∫
h

{
FH|X(h|x′)− FH|X(h|x)

}
· fτV (h)

since the first term does not depend on x.

G.11 Proof of Proposition 8

The following sequence of steps uses the law of iterations, then IDR, then E[Ai|Xi =

x] =
∫ 1

0
QA|X=x(u) · du for any random variable A, and finally that Qr(H,v)|X=x′(u) =
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r(QH|X=x′(u), v) since r(·, v) is weakly increasing and left-continuous for all v (Hosseini,

2010):

E[Ri|x′]−E[Ri|x] =

∫
dFV |W (v|w) ·E[r(Hi, v)|Xi = x′, Vi = v]−E[r(Hi, v)|Xi = x, Vi = v]

=

∫
dFV |W (v|w) · {E[r(Hi, v)|Xi = x′]−E[r(Hi, v)|Xi = x]}

=

∫
dFV |W (v|w) ·

∫ 1

0

{
Qr(H,v)|X=x′(u)−Qr(H,v)|X=x(u)

}
du

=

∫
dFV |W (v|w) ·

∫ 1

0

{
r(QH|X=x′(u), v)− r(QH|X=x(u), v)

}
du

=

∫ 1

0

[∫
dFV |W (v|w)

{
r(QH|X=x′(u), v)− r(QH|X=x(u), v)

}]
du

=

∫ 1

0

r̄′x′,x(u) ·
{
QH|X=x′(u)−QH|X=x(u)

}
du

where the interchange of integrals is warranted provided that each of E[Ri|x′] and E[R|x]

are finite, because∫
dFV |W (v|w) ·

∫ 1

0

∣∣r(QH|X=x′(u), v)− r(QH|X=x(u), v)
∣∣ du

≤
∫
dFV |W (v|w) ·

∫ 1

0

∣∣r(QH|X=x′(u), v)|+ |r(QH|X=x(u), v)
∣∣ du

= E[|Ri||x′]−E[|Ri||x] <∞

G.12 Proof of Proposition 9

By the law of iterated expectations:

E[Ri|Xi = x] =

∫
dFV |W (v|w) ·

∫
dh · r(h, v) · fH(h|x, v)

where fH(h|x, v) is the density of Hi conditional on Xi = x, Vi = v. Thus, using REG to

move the derivative inside the integral:

∂

∂xj
E[Ri|Xi = x] =

∫
dFV |W (v|w) ·

∫
dh · r(h, v) · ∂

∂xj
fH(h|x, v)

Theorem 1 of Kasy (2022) (for a one-dimensional outcome) implies that ∂
∂xj
fH(h|x, v) =

− ∂
∂h

{
fH(h|x, v) ·E

[
∂
∂xj
h(x, Ui)|Hi = h, x, v

]}
. Thus

∂

∂xj
E[Ri|Xi = x] = −

∫
dFV |W (v|w)

∫
dh · r(h, v) · ∂

∂h

{
fH(h|x, v) ·E

[
∂

∂xj
h(x, Ui)|Hi = h, x, v

]}
Now use integration by parts, applying the assumed boundary condition eliminates the
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first term and

∂

∂xj
E[Ri|Xi = x] = 0 +

∫
dFV |W (v|w)

∫
dh · r′(h, v) · fh(h|x, v) ·E

[
∂

∂xj
h(x, Ui)|Hi = h, x, v

]
establishing the result.
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