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D Further Proofs

D.1 Proof of Proposition 1

I prove Proposition 1 by making use of the following alternative characterization of VM

(which is more similar in form to the definition of PM)

Lemma D.1. Let Z be non-disjoint. Then VM holds iff for each j ∈ {1 . . . J} there is an

ordering ≥j on Zj such that the following holds for all i: for all zj, z
′
j ∈ Zj and z−j ∈ Z−j

such that both (zj, z−j) ∈ Z and (z′j, z−j) ∈ Z, Di(zj, z−j) ≥ Di(z
′
j, z−j) when zj ≥j z

′
j.

Proof. To simplify notation take each ordering ≥j to be the ordering on the natural numbers

≥, without loss of generality. The two versions of VM are:

Assumption VM (vector monotonicity). For z, z′ ∈ Z, if z ≥ z′ component-wise, then

Di(z) ≥ Di(z
′) for all i.

Assumption VM’ (alternative characterization). Di(zj, z−j) ≥ Di(z
′
j, z−j) for all i

when zj ≥ z′j and both (zj, z−j) and (z′j, z−j) ∈ Z

The claim is that VM ⇐⇒ VM ′.

• VM =⇒ VM′ : immediate, since (zj, z−j) ≥ (z′j, z−j) in a vector sense when zj ≥ z′j

• VM′ =⇒ VM : consider z, z′ ∈ Z such that z ≥ z′ in a vector sense, i.e. zj ≥ z′j
for all j ∈ {1 . . . J}. Since Z is non-disjoint, we can use By VM ′ to link z and z′

by a series of single instrument changes (for some ordering of the instrument labels):

Di(z1, z2, . . . zJ) ≥ Di(z
′
i, z2, . . . zJ), Di(z

′
1, z2, . . . zJ) ≥ Di(z

′
i, z
′
2, . . . zJ), and so on, for

all i, and where all the intermediate instrument values are in Z. Then, by transitivity

of ≥ it follows that Di(z) ≥ Di(z
′) for all i.
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Now we use the above lemma to establish Proposition 1. By the law of iterated expectations

and Assumption 1:

P (z) =
∑
g∈G

P (Gi = g|Zi = z) ·E[Di(Zi)|Gi = g, Zi = z] =
∑
g∈G

P (Gi = g) ·Dg(z)

By VM, Dg(z) is component-wise monotonic for any g in the support of Gi. As a con-

vex combination of component-wise monotonic functions, P (z) will also be component-wise

monotonic.

In the other direction, note that by PM if P (zj, z−j) > P (z′j, z−j), then we must have

that Di(zj, z−j) ≥ Di(z
′
j, z−j) rather than Di(zj, z−j) ≤ Di(z

′
j, z−j). Thus component-

wise monotonicity of P (z) with respect to some collection of orderings {≥j}j∈{1...J} implies

Di(zj, z−j) ≥ Di(z
′
j, z−j) for all j, zj ≥j z

′
j, and z−j ∈ Z−j. This verifies VM’ from the

Lemma above.

D.2 Proof of Proposition 2

For this proof, I’ll use the notation DF (·) for the g ∈ Gc for which F = F (g), and DS(·) for

the g ∈ Gs for which S = S(g).

Note that {DF (z) = 1} ⇐⇒
{⋃

S∈F {DS(z) = 1}
}
⇐⇒ not

{⋂
S∈F {DS(z) = 0}

}
for

any fixed z. The condition that DF (z) = 1 can thus be written as

Dg(F )(z) = 1−
∏
S∈F

(1−DS(z)) =
∑
∅⊂F ′⊆F

(−1)|F
′|+1

∏
S∈F

DS(z)

Let z1(z) = {j ∈ {1 . . . J} : zj = 1} represent a vector of instrument values z as the subset of

instrument indices for which the associated instrument takes the value of one. Then, using

that for a simple response group DS(z) = 1(S ⊆ z1(z)):

Dg(F )(z) =
∑

F ′⊆F :F ′ 6=∅

(−1)|F
′|+1
∏
s∈F

DS(z) =
∑

F ′⊆F :F ′ 6=∅

(−1)|F
′|+1 ·Dg((

⋃
S∈F ′ S))(z)

=
∑

F ′⊆F :F ′ 6=∅

(−1)|F
′|+1 · 1

(( ⋃
S∈F ′

S

)
⊆ z(z)

)
=

∑
∅⊂F ′⊆F :

(
⋃

S∈F ′ S)⊆z(z)

(−1)|F
′|+1

=
∑

S′⊆z(z)

∑
∅⊂F ′⊆F :

(
⋃

S∈F ′ S)=S′

(−1)|F
′|+1 =

∑
S′⊆{1...J}

1 (S ′ ⊆ z(z))
∑

∅⊂F ′⊆F :

(
⋃

S∈F ′ S)=S′

(−1)|F
′|+1

=
∑

S′⊆{1...J}

 ∑
∅⊂F ′⊆F :

(
⋃

S∈F ′ S)=S′

(−1)|F
′|+1

DS′(z) =
∑

∅⊂S′⊆{1...J}

 ∑
F ′⊆F :

(
⋃

S∈F ′ S)=S′

(−1)|F
′|+1

DS′(z)

Thus, letting s(F, S ′) :=
{
F ′ ⊆ F :

(⋃
S∈F ′ S

)
= S ′

}
, we have Dg(z) =

∑
g′∈Gs Mgg′ · Dg′(z)

for any g ∈ Gc with Mgg′ :=
∑

F ′∈s(F (g),S(g′))(−1)|F
′|+1.
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D.3 Proof of Proposition 3

The if direction is most straightforward. From Proposition 2 we have that for any z ∈ Z and

g ∈ Gc: Dg(z) =
∑

g′∈Gs Mgg′ ·Dg′(z). Thus, for any such c(g, z):

c(g, z) =
K∑
k=1

∑
g′∈Gs

Mgg′ ·Dg′(uk(z)))−
∑
g′∈Gs

Mgg′ ·Dg′(lk(z)))

=
∑
g′∈Gs

Mgg′ ·

{
K∑
k=1

Dg′(uk(z)))−Dg′(lk(z)))

}
=
∑
g′∈Gs

Mgg′ · c(g′, z)

for any z ∈ Z. To finish verifying Property M, we need only observe that c(a.t., z) =

c(n.t., z) = 0 for all z since Dg(uk(z)) = Dg(lk(z)) for any uk, lk when g ∈ {a.t., n.t.}.
Now we turn to the other implication of the Proposition, that any c satisfying Property

M has a representation like the above. For shorthand, let c−1(z) indicate the family of

S ⊆ {1 . . . J} such that c(g(S), z) = 1. The following Lemma establishes that the family

c−1(z) and its complement are each closed under unions:

Lemma. Let c be a function from G × Z to {0, 1} satisfies Property M. If A ∈ c−1(z) and

B ∈ c−1(z), then A ∪B ∈ c−1(z), and if A /∈ c−1(z) and B /∈ c−1(z), then A ∪B /∈ c−1(z).

Proof. If the sets A and B are nested, then the result follows trivially. Now suppose neither

set contains the other, and consider the Sperner family A tB constructed of the two sets A

and B. By Property M and using Proposition 2:

c(g(A tB), z) =
∑

∅⊂S′⊆{1...J}

 ∑
f⊆{{{A,B}}}:

(
⋃

S∈F ′ S)=S′

(−1)|F
′|+1

 c
( ⋃

S∈F ′
S, z

)
=

∑
∅⊂F ′⊆{{{A,B}}}

c

( ⋃
S∈F ′

S, z

)

= c(g(A), z) + c(g(B), z)− c(g(A ∪B), z)

In the first case, if both A and B are in c−1(z), then we must have c(g(A ∪ B), z) = 1 to

prevent c(g(A t B), z) from evaluating to 2, which contradicts the assumption that c takes

values in {0, 1}. In the second case, when both c(g(A), z) and c(g(B), z) are zero, we must

have c(g(A ∪B), z) = 1 to prevent c(g(A tB), z) from evaluating to -1.

As a consequence of the Lemma, since c−1(z) is a finite set, there exists a member S1(z)

of c−1(z) that satisfies S1(z) =
⋃

S∈c−1(z) S (similarly, there exists a S0(z) =
⋃

S/∈c−1(z) S with

S0(z) /∈ c−1(z)). All members of the family c−1(z) are subsets of S1(z), and all S ⊆ {1 . . . J}
that are not in c−1(z) are subsets of S0(z).
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Let z take some fixed value, and beginning with the set S1 = S1(z), define a sequence of

sets {S1, S2, S3, . . . } as follows:

S2k =
⋃

S′⊆S2k−1:

S′ /∈c−1(z)

S ′ and S2k+1 =
⋃

S′⊆S2k:
S′∈c−1(z)

S ′

where we take
⋃

S′∈∅ S
′ to evaluate to the empty set. This sequence provides a characteriza-

tion of the family c−1(z) as follows. For any ∅ ⊂ S ⊆ {1 . . . J}:

c(g(S), z) = 1(S ∈ c−1(z)) = 1(S ⊆ S1 : S ∈ c−1(z)) = 1(S ⊆ S1)− 1(S ⊆ S1 : S /∈ c−1(z))

= 1(S ⊆ S1)−
(
1(S ⊆ S2)− 1(S ⊆ S2 : S ∈ c−1(z))

)
= 1(S ⊆ S1)− 1(S ⊆ S2) +

(
1(S ⊆ S3)− 1(S ⊆ S3 : S /∈ c−1(z))

)
= . . .

=
N∑

n=1

(−1)n+1 · 1(S ⊆ Sn) + (−1)N ·

1(S ⊆ SN : S ∈ c−1(z)) if N even

1(S ⊆ SN : S /∈ c−1(z)) if N odd

for any natural number N .

Think of the power set of S1 as a “first-order” approximation to the family c−1(z). How-

ever, in most cases this family is too large, as there will be subsets of S1 that are not found

in c−1(z). Define S2 to be the union of all such offending sets. The power set of S2 now

provides a possible “overestimate” of the family of offending sets (since they are all in 2S2)

and hence removing all subsets of S2 as a correction to be applied to 2S1 as an estimate of

c−2(z) will overcompensate: we will have removed some sets which are indeed in c−1(z). We

thus define S3 analogously, whose power set provides an approximation to the error in S2 as

an approximation to the error in S1, and so on.

Does this process of over-correction eventually terminate, so that the final remainder term

is zero? Note that for any n: Sn ⊆ Sn−1. If Sn = Sn−1 6= ∅, then we have a fixed point

S where
⋃

S′⊆S:S′∈c−1(z) S
′ =

⋃
S′⊆S:S′ /∈c−1(z) S

′. But by the Lemma, this would imply that S

is a member both of {S ′ ⊆ S : S ′ ∈ c−1(z)} and of {S ′ ⊆ S : S ′ /∈ c−1(z)}, and therefore

that both c(g(S), z) = 1 and c(g(S), z) = 0, a contradiction. Thus, Sn ⊂ Sn−1, and |Sn| is a

decreasing sequence of non-negative integers that is strictly decreasing so long as |Sn| > 0.

It must thus converge to zero in at most |S1| iterations, so that Sn = ∅ for all n ≥ |S1|.
Without loss, we can terminate the sequence on an even term, since 1(S ⊆ ∅) = 0 for

any S ⊃ ∅. Let 2K denote the smallest even number such that Sn = ∅ for all n > 2K, for a

fixed z. Thus, we have for any ∅ ⊂ S ⊆ {1 . . . J}:

c(g(S), z) =
2K∑
n=1

(−1)n+1 · 1(S ⊆ Sn) =
K∑
k=1

1(S ⊆ S2k−1)− 1(S ⊆ S2k)

where 2K ≤ |S1| ≤ J . Recall that we have left the dependence of each of the sets Sn (as well

as the integer K) on z implicit.
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To obtain the notation of the final result, define for each k and z the point uk(z) ∈ Z to

have a value of one exactly for the elements in S2k−1 for that value of z, and lk(z) ∈ Z to

have a value of one exactly for the elements in S2k for that value of z. We may thus write,

for any g ∈ Gs (corresponding to a ∅ ⊂ S(g) ⊆ {1 . . . J}) and any z ∈ Z:

c(g, z) =

K(z)∑
k=1

Dg(uk(z))−Dg(lk(z)) =
K∑
k=1

Dg(uk(z))−Dg(lk(z))

where we let K be the maximum of K(z) over the finite set Z, and we define uk(z) and lk(z)

to each be a vector of zeros whenever k > K(z). For each z, the relations uk(z) ≥ lk(z) and

lk(z) ≥ uk+1(z) component-wise now follow from Sn ⊆ Sn+1.

Now we may apply Property M to construct c(g, z) for any of the non-simple response

groups as well. Recall that Property M says that c(g, z) =
∑

g′∈Gs Mgg′ · c(g′, z) for all z, and

any g ∈ Gc. Thus:

c(g, z) =
∑
g′∈Gs

Mgg′ ·
K∑
k=1

{Dg′(uk(z))−Dg′(lk(z))}

=
K∑
k=1

{∑
g′∈Gs

Mgg′ ·Dg′(uk(z))

}
−

{∑
g′∈Gs

Mgg′ ·Dg′(lk(z))

}

=
K∑
k=1

Dg(uk(z))−Dg(lk(z))

Finally, note that Dg(uk(z)) = Dg(lk(z)) for any g ∈ {a.t., n.t.} so the above expression

c(g, z) =
∑K

k=1 Dg(uk(z))−Dg(lk(z)) holds for all g ∈ G.

D.4 Proof of Proposition 4

Let Z̃ be the set of possible values for the new set of instruments (Z̃2, . . . Z̃m, Z−1), where

Z−1 is a shorthand for (Z2, . . . , ZJ). Note that fixing the value of Z1 is equivalent to fixing

the values of all of Z̃1 . . . Z̃M . Since P (Z̃mi = 0 & Z̃ni = 1) = 0 for any m > n, we may

without loss take Z̃ to consist only of cases where Z̃1 . . . Z̃M takes the form (0, . . . 0︸ ︷︷ ︸
m−1

, 1, . . . 1︸ ︷︷ ︸
M−m+1

)

for some m. Let Z̃−m denote all of the instruments in Z̃1 . . . Z̃M aside from Z̃m.

If Z is non-disjoint, then the Z̃ given above is also non-disjoint. Then, by Proposition

D.1, we simply need to show that Di(1, z̃−m; z−1) ≥ Di(0, z̃−m; z−1) for any z−1 and z̃−m such

that (0, z̃−m, z−1), (1, z̃−m, z−1) ∈ Z, where the notation Di(a, b; c) is understood as Di(d, c)

where d is the value of Z1 corresponding to Z̃ with value a for Z̃m and b for Z̃−m. For

any z̃−m satisfying (0, z̃−m, z−1) ∈ Z and (1, z̃−m, z−1) ∈ Z, switching Z̃m from zero to ones

corresponds to switching instrument Z1 from value zm−1 to value zm. Since Di(1, z̃−m; z−1)−
Di(0, z̃−m; z−1) = Di(zm, z−1) − Di(zm−1, z−1) ≥ 0 by vector monotonicity on the original

vector (Z1 . . . ZJ), the result follows.
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D.5 Proof of Proposition 5

Introduce the notation that t indicates taking union of two families of sets, e.g. adding a

new set to the family. Let T := {Z̃j
m} j∈{1...J}

m=1...Mj

be the collection defined in Proposition 5.

Consider any S ⊆ T that contains both Zj
m and Zj

m′ for some j and m < m′, and any other

Sperner family F . For any Sperner family F , the families g(F t S) and g(F t (S − {Z̃j
m}))

generate the same selection behavior on all of Z, because Z̃j
m′ = 1 =⇒ Z̃j

m = 1. Therefore,

if we let F be the family of all S ⊂ T that contain either no Z̃j
m for any given j or all Z̃j

mj

up to some mj, this choice of F satisfies Assumption 3b*.

Note that given the assumption that SZ = (Z1×Z2× · · · ×ZJ), the set of values Z that

the original instruments can take must also be rectangular, and F is then isomorphic to Z.

We can construct this isomorphism between a z = (z1, . . . zJ)′ ∈ Z explicitly as follows. Let

us without loss of generality label the values of instrument Zj by the consecutive non-negative

integers 0 . . .Mj. Any j for which there is no Z̃j
m ∈ S for some m is associated with zj = 0,

while for any other j the largest m for which Z̃j
m ∈ S we associate with zj = m.

Now we are ready to show that the above choice of F satisfies Assumption 3a*. Suppose

that it did not, i.e. there existed a non-zero vector ω such that P
(∑

S∈F ωSZSi = 0
)

= 1

with ZSi :=
∏

Zj
m∈S Z̃

j
m. This would imply non-invertibility of E[(1,Γ′i)(1,Γ

′
i)
′], where Γi :=

{ZSi}S∈F ,S 6=∅. Note that Σ := V ar(Γi) has full rank iff ω′E[(Γi − E[Γi])(Γi − E[Γi])]ω =

E[ω′(Γi −E[Γi])(Γi −E[Γi])ω] > 0, i.e. P (ω′(Γi −E[Γi]) = 0) < 1, for any non-zero ω ∈ Rk,

where k = |F| − 1. Similarly Σ∗ has full rank if for any ω0 ∈ R, ω ∈ Rk, P ((ω0, ω)′(1,Γi) =

0) < 1, where (ω0, ω) is not the zero vector in Rk+1. But if for some ω, ω′(Γi − E[Γi]) = 0

w.p.1, then we also have (ω0, ω)′(1,Γi) = 0 w.p.1. by choosing ω0 = −ω′E[Γi]. In the

other direction, note that (ω0, ω)′(1,Γi) = 0 w.p.1. implies that ω′Γi = −ω0 and hence

ω′(Γi − E[Γi]) = −ω0 − ω′E[Γi] = −ω0 − E[ω′Γi] = −ω0 + ω0 = 0. Thus Σ has full rank of

k + 1 if and only if Σ∗ has full rank of k, which occurs if and only if P (ω̃′(1,Γi) = 0) < 1,

where ω̃ is any non-zero vector in R|F|. In the case that F contains the family of all 2J subsets

of the instruments, we’ve now shown that Σ is invertible iff Assumption 3 holds (Lemma 1).

The remainder of this proof considers the general case and shows that if the rank of Σ were

less than |Z|, it would require the support of the original instruments to be non-rectangular,

i.e. |Sorig| < Z (where recall that Z denotes the set of values the original discrete instruments,
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rather than the generated binary instruments, can take). Observe that for any two z, z′ ∈ Z:

1(z = z′) =
∑
m∈Z

1(z = m) · 1(z′ = m)

=
∑
m∈Z

J∏
j=1

1(zj = mj) ·
J∏

j=1

1(z′j = mj)

=
∑
m∈Z


J∏

j=1

{1(zj ≥ mj)− 1(zj ≥ mj + 1)}︸ ︷︷ ︸
Mz,m

 ·


J∏
j=1

{
1(z′j ≥ mj)− 1(z′j ≥ mj + 1)

}
︸ ︷︷ ︸

Mz′,m


(1)

where we define an |Z| × |Z| matrix M with entries given as above. The above equation

shows that M−1 exists and is equal to M′, because (1) can be written as Iz,z′ = [MM′]z,z′ ,

where I is the identity matrix on R|Z|.

Note that we can write the entries of M as:

Mz,m =
J∏

j=1

{1(zj ≥ mj)− 1(zj ≥ mj + 1)} =
∑

S⊆{1...J}

(−1)|S| ·
∏
j∈S

1(zj ≥ mj + 1) ·
∏
j /∈S

1(zj ≥ mj)

=
∑
m′∈Z

D̃z,m′Ãm′,m (2)

where D̃z,m :=
∏J

j=1 1(zj ≥ mj), and

Ãm′,m :=


(−1)|S| if there exists an S ⊆ {1 . . . J} : m′j =

mj + 1 if j ∈ S
mj if j /∈ S

0 otherwise

and note that the set S is unique when Ãm,m′ 6= 0. Thus, M = D̃Ã, and since M, Ã
and D̃ are all square |Z| × |Z| matrices, invertibility of M implies that both Ã and D̃ are

invertible. The special case of this equality in the baseline setup of the main paper, in which

the instruments are binary and SZ = Z = {0, 1}J , is discussed in detail in subsection D.5.1.

For any m ∈ Z, let Zm,i =
∏J

j=1 1(Zji ≥ mj). Let (1,Γ′i)
′
i be a vector of Zm,i across all

m ∈ Z where we separate out the first element corresponding to m = (0, . . . 0)′ (general-

izing the notation of Lemma 1, where the first element was associated with S = ∅). With

probability one: [(1,Γ′i)
′]m = D̃Zi,m =

∑
z∈Z [Zi]z · D̃z,m = [D̃′Zi]m, where Zi is a vector

with entries [Zi]z = 1(Zi = z). Therefore, Σ∗ := E[(1,Γ′i)
′(1,Γ′i)] = D̃′E[ZiZ

′
i]D̃ = D̃′PD̃,

where P is a diagonal |Z| × |Z| matrix with entries Pz,z = P (Zi = z) for each z ∈ Z. Note

that E[ZiZ
′
i] is diagonal because events in which Zi takes on different values z are exclusive:
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E[1(Zi = z)1(Zi = z′)] = 0 for any z 6= z′. Since D̃−1 exists, the rank of Σ∗ = D̃PD̃′ is

equal to the rank of P , which is |Sorig|. I have shown above that if Assumption 3a* did not

hold, then rank(Σ∗) = |SZ | would need to be less than |Z|. We can thus conclude that if

Assumption 3a∗ is violated (for the choice of F described in Proposition 5), |SZ | < |Z| and

we cannot have full rectangular support for the original instruments.

D.5.1 Special case with binary instruments

In the special case of binary instruments, Mj = 1 and the rows of Ã and columns of D̃ can

be indexed by subsets S of {1 . . . J} (corresponding to the values of m for which mj = 1).

Let z(S) be the unique J component binary vector such that z1 = S (where z1 indicates the

set of values for which zj = 1). The entries of Ã are ÃS,z = (−1)|S−z1| · 1(z1 ⊆ S). The

entries of M can then be written, using (2), as:

Mz,z′ =
∑

S:z(S)∈Z

D̃z,SÃS,z′ =
∑

S:z(S)∈Z

(−1)|S−z
′
1| · 1(z′1 ⊆ S) · 1(S ⊆ z1) =

∑
S:z(S)∈Z:
z′1⊆S⊆z1

(−1)|S−z
′
1|

When Z = {0, 1}J so that {S : z(S) ∈ Z and z′1 ⊆ S ⊆ z1} = {S ⊆ {1 . . . J} : z′1 ⊆ S ⊆ z1},
Mz,z′ =

∑
z′1⊆S⊆z1

(−1)|S−z
′
1| = 1(z′1 = z1) = 1(z′ = z), so M becomes the identity matrix

I|Z| on R|Z|, i.e. D̃Ã = I|Z|. Since Ã and D̃ are each |Z|× |Z| square matrices, we have that

D̃−1 exists and is equal to Ã when Z = {0, 1}J .

Proof of Lemma 2 when Assumption 3* replaces Assumption 3

Let PD = D(D′D)−1D′ be an orthogonal projection matrix into the column-space of D, and

PP 1/2D = P 1/2D(D′PD)−1D′P 1/2 an orthogonal projection matrix into the column-space

of P 1/2D. These expressions for the projections follow because D has full column-rank of

|F| under Assumption 3* (see proof of Proposition 6 for a demonstration of this fact), and

therefore P 1/2D does as well since P is invertible.

I will prove the result of the Lemma by first showing that for any vector w ∈ R
|S|,

P 1/2PDw = PP 1/2DP
1/2w, i.e. transforming w by P 1/2 before projecting onto the column-

space of P 1/2D is equivalent to projecting the un-transformed vector w onto the column-

space of D, and then transforming it by P 1/2. This implies that PD = P−1/2PP 1/2DP
1/2.

Pre-multiplying this equation by (D′D)−1D′, we then obtain

(���
���

�
D′D)−1D′D(D′D)−1D′ =

(((
((((

(((
((

(D′D)−1D′���
���

P−1/2P 1/2D(D′PD)−1D′P 1/2P 1/2,

or (D′D)−1D′ = (D′PD)−1D′. The result then follows using that D+ = (D′D)−1D′ because

D has full column-rank.

To see that P 1/2PDw = PP 1/2DP
1/2w for any w ∈ RSZ , note that we can decompose

R
SZ as Range(D)⊕Null(D′), or alternatively as Range(PD)⊕Null(D′P ). As a result, we
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can write any w ∈ R|SZ | as w = w1 + w2 + w3 + w4, where w1 ∈ Range(PD) ∩ Range(D),

w2 ∈ Null(D′P )∩Range(D), w3 ∈ Null(D′P )∩Null(D′), and w4 ∈ Range(PD)∩Null(D′).
Note that x ∈ Range(D) means that x = Dα for some α ∈ R|F|.

Consider first the component w4 ∈ Range(PD) ∩ Null(D′). Since w4 ∈ Range(PD),

w4 = PDα for some α. Meanwhile, since w4 ∈ Null(D′), we have that D′w4 = 0. Together,

this implies that D′PDα = 0, which implies that α = 0 given that (D′PD) is invertible (it

must be given thatD is rank |F|, P is rank |SZ | ≥ |F|, and (D′PD) is |F|×|F|). Therefore we

can conclude that w4 = 0, and our goal becomes only to show that P 1/2PD(w1 +w2 +w3) =

PP 1/2DP
1/2(w1 + w2 + w3).

Consider next the sum of w1 and w2 only. Since w1 + w2 ∈ Range(D) implies that we

can write w1 + w2 = Dα, we have that PP 1/2DP
1/2(w1 + w2) = P 1/2D���

��(D′PD)1��
��D′PDα =

P 1/2Dα = P 1/2(w1 + w2), while P 1/2PD(w1 + w3) = P 1/2(w1 + w2) as well.

Finally, consider w3. That w3 ∈ Null(D′P ) implies that D′Pw3 = 0. Therefore

PP 1/2DP
1/2w3 = P 1/2D(D′PD)1D′Pw3 = 0. Meanwhile, that w3 ∈ Null(D′) implies that

D′w3 = 0. Therefore P 1/2PDw3 = P 1/2D(D′D)−1D′w3 = 0 as well.

Proof of Lemma 4 when Assumption 3* replaces Assumption 3

I begin by showing that while D is not necessarily square when Assumption 3 is relaxed to

Assumption 3a* (and hence we can no longer use that D−1 exists and equals A), it is still

the case that D has full column rank. This implies that A(d)+ = (DM̃(d))
+

= M̃(d)′+D+.

To see that D has full column-rank under Assumption 3*, recall that the row and column

ranks of any matrix are equal. Thus it suffices for this to show that the |SZ | × |F| matrix

D′ has full row rank of |F|. If D′ has |F| linearly independent rows, then it also has |F|
linearly independent columns, and thus a column space that spans all of R|F|. Suppose

instead that the |F| rows of D′ were not linearly independent. Then there would exist a

ω ∈ R
|F|/0 such that

∑
S∈F ωS · D′S,z = 0 for all z ∈ SZ . Note that for any S ∈ F :

ZSi = DS(Zi) = D′S,Zi
=
∑

z∈SZ 1(Zi = z) · D′S,z with probability one. Thus, if such an ω

existed, we would have

∑
S∈F

ωS·ZS,i =
∑
S∈F

ωS

∑
z∈SZ

1(Zi = z)·D′S,z =
∑
z∈SZ

1(Zi = z)

(∑
S∈F

ωS ·D′S,z

)
=
∑
z∈SZ

1(Zi = z)·0

which is equal to zero with probability one, violating Assumption 3a*.

Now, using Eq. (7) and that A(d)+ = M̃(d)′+D+:

θ′A(d)+A(d) =
(−1)d+1

E[c(Gi, Zi)]
λ̃′M̃(d)′A(d)+A(d) =

(−1)d+1

E[c(Gi, Zi)]
λ̃′���

���
�

M̃(d)′M̃(d)′+��
�

D+DM̃(d)′ = θ′

We can cross out M̃(d)′M̃(d)′+ = (M̃(d)+M̃(d))′ = (I|F|)
′ = I|F| by Lemma 3, and the above

result that D has full column-rank and hence D+D = I|F| to cross out D+D.
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Direct proof of Theorem 1*

Note that the function h(·) given in Theorem 1 has the property that E[h(Zi)] = 0, for any

distribution of the instruments. Consider the quantity E[YiDih(Zi)] for a function h having

this property. By the law of iterated expectations, and Assumption 1

E[YiDih(Zi)] =
∑
g∈G

P (Gi = g) ·E[Yi(1)|Gi = g] ·E[Dg(Zi) · h(Zi)] (3)

Similarly

E[Yi(1−Di)h(Zi)] =
∑
g∈G

P (Gi = g) ·E[Yi(0)(1−Di)h(Zi)|Gi = g]

= −
∑
g∈G

P (Gi = g) ·E[Yi(0)|Gi = g] ·E[Dg(Zi) · h(Zi)] (4)

where I have used that Zi ⊥⊥ (Yi(0), Zi) and E[h(Zi)] = 0. Note that in Equations (3) and

(4), the weighing over various groups g is governed by the quantity E[Dg(Zi)h(Zi)]. It can be

seen that never takers and always takers receive no weight, since E[Dn.t(Zi)h(Zi)] = E[0] = 0

and since E[Da.t(Zi)h(Zi)] = E[h(Zi)] = 0.

Similarly, for a causal parameter of the form µd
c = E[Yi(d)|Ci = 1], we can use the law of

iterated expectations and Assumption 1 to write:

µd
c =

∑
g∈G

P (Gi = g|Ci = 1) ·E[Yi(d)|Gi = g, c(g, Zi) = 1]

= P (Ci = 1)−1 ·
∑
g∈G

P (Ci = 1|Gi = g) · P (Gi = g) ·E[Yi(d)|Gi = g]

= P (Ci = 1)−1 ·
∑
g∈G

E[c(g, Zi)] · P (Gi = g) ·E[Yi(d)|Gi = g]

= P (Ci = 1)−1 ·
∑
g∈Gc

{∑
g′∈Gs

Mg,g ·E[c(g(S), Zi)]

}
· P (Gi = g) ·E[Yi(d)|Gi = g] (5)

where the final equality uses Property M. If Assumption 3 holds, recall that Gs is composed

of simple compliance groups g(S) for all non-null subsets S ⊆ {1 . . . J}. More generally, we

can define Gs = {g(S) : S ∈ F , S 6= ∅} where F is any collection of sets S that satisfies

Assumption 3*. When Assumption 3 holds, F is the full powerset 2{1...J} of {1 . . . J}.
By Assumption 3b*, F is sufficiently rich to expand the selection functions Dg(·) for any g

in Gc = G/{a.t., n.t.} over the g′ ∈ Gs corresponding to non-empty simple compliance groups

S ∈ F , i.e. Dg(·) =
∑

S∈F ,S 6=∅Mg,g(S)Dg(S)(·). Thus we can rewrite Equations (3) and (4)

by substituting E[Dg(Zi) · h(Zi)] =
∑

S∈F ,S 6=∅Mg,g(S) · E[Dg(S)(Zi) · h(Zi)], where again the

sum is over the columns of the matrix M that correspond to non-empty S ∈ F . Comparing

to Eq. (5), we can match the coefficients appearing on each P (Gi = g) · E[Yi(d)|Gi = g] in
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µd
c with those that would appear in P (Ci = 1) · E[Yi1(Di = d)h(Zi)], if we can choose h(·)

in such a way that E[Dg(S)(Zi) · h(Zi)] = E[c(g(S), Zi)], for all S ∈ F .

I now show that this is possible given Assumption 3a*. Assumption 3a* implies that Σ−1

exists (see proof of Proposition 5), where Σ = V ar(Γi) and Γi is a vector of Dg(Zi) over all

g ∈ Gs (equivalently, a vector of ZS,i :=
∏

j∈S Zj,i over all S ∈ F , S 6= ∅). In particular, with

the choice h(Zi) = (Γi −E[Γi])
′Σ−1λ for some vector λ ∈ Rk where k = |Gs| = |F| − 1:

(E[h(Zi),Γ1i],E[h(Zi),Γ2i], . . . ,E[h(Zi),Γki])
′ = E[(Γi −E[Γi])h(Zi)]

= E[(Γi −E[Γi])(Γi −E[Γi])
′]Σ−1λ = ΣΣ−1λ = λ (6)

where in the first step I have used that E[h(Zi)] = 0. Note that that λg′ = E[c(g′, Zi)] can be

computed for each g′ ∈ Gs from the observed distribution of Z and knowledge of the function

c. Finally, to see that P (Ci = 1) = E[h(Zi)Di] we can use Assumption 1 and Property M:

E[h(Zi)Di] =
∑
g∈G

P (Gi = g)E[h(Zi)Dg(Zi)] =
∑
g∈Gc

P (Gi = g)E[h(Zi)Dg(Zi)]

=
∑
g∈Gc

P (Gi = g)
∑
g′∈Gs

Mg,g′ ·E[h(Zi)Dg(Zi)]

=
∑
g∈Gc

P (Gi = g)
∑
g′∈Gs

Mg,g′ ·E[c(g(S), Zi)] =
∑
g∈Gc

P (Gi = g) ·E[c(g, Zi)]

=
∑
g∈G

P (Gi = g) ·E[c(g, Zi)] = E[c(Gi, Zi)] = P (Ci = 1)

where in the first step I have used that E[h(Zi)Dg(Zi)] = 0 for g corresponding to always

and never-takers.

E Proof of Theorem 3

E.1 Background on marginal treatment response functions

Introducing the latent indices Uji

To begin, it is necessary to introduce a set of random variables U1i, U2i . . . Uji, which MTW2

use to define the target causal parameters in their analysis of identification. For each

j = 1, . . . J , the latent index Uji describes individual i’s selection behavior with respect

to instrument Zj when this instrument is varied in isolation. The Uji can be distinguished

from the selection groups Gi used to define ∆c: instead Gi characterizes how unit i would

respond to any counterfactual variation in the instruments, including when the values of

multiple instruments are changed simultaneously. For example, with two binary instruments

the ACLATE conditions on all units for whom Di(1, 1) > Di(0, 0).
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MTW2 consider target parameters that condition on the value of Uji for one j at a time,

while the other J − 1 instruments held fixed at their realized values. In particular, they

assume that the target parameter takes the form:

β∗(m) :=
J∑

j=1

1∑
d=0

E

[∫ 1

0

ω∗j (d|u, Zi) ·mj(d|u, z−j) · du
]

(7)

for some set of weights ω∗j (d|u, z), where mj(d|u, z−j) := E[Yi(d)|Uji = u, Z−ji = z−j] is

referred to as a marginal treatment response (MTR) function. Given a fixed ω∗, the param-

eter of interest β∗(m) is expressed as a functional of the collection m of these MTR curves

mj(d|·, z−j) across j, d, z−j. MTW2 describe how the latent indices Uji can be defined by

applying an equivalence result between IAM and latent index models proposed by Vytlacil

(2002), if one begins by Assuming PM holds.

In particular, for each j = 1 . . . J , the variable Uji can be defined in such a way that:

Di(zj, Z−j,i) = 1 (Uji ≤ P(zj, Z−j,i)) (8)

where P(z) := E[Di|Zi = z] is the propensity score function. By (8), Uji characterizes unit

i’s selection behavior with respect to instrument j, given that unit’s realized values Z−j,i of

the remaining instruments. If we define a function Dji(zj) := Di(zj, Z−j,i) describing unit i’s

selection behavior as instrument Zj is varied alone, knowledge of Uji implies knowledge of

Dji(·). The latent index Uji has the property that {Uji ⊥⊥ Zji}|Z−j,i and can also be chosen

to be continuously distributed with Uji|Z−j,i ∼ Unif [0, 1]. With this normalization, when

Z is rectangular and Z−j has the same cardinality for all j, we can think of m as a set of

2× |Z−j| × J functions mj(d|·, z−j) : [0, 1]→ R.

Some care is required in comparing my target parameters to those of MTW2, since an

application of the equivalence result of Vytlacil (2002) separately in each cell of Z−j,i does

not yield a complete mapping between latent indices Uji used by MTW2 and the selection

groups Gi. Put another way, a unit’s underlying selection group Gi is not generally pinned

down from (U1i, . . . , UJi) for each j as well as Zi, while in the other direction, Eq. (8) only

requires each Uji to be within a particular range of values (defined by the propensity score

function given Gi and Zi). I show in the next section however that parameters of the form ∆c

which are point identified can be written in terms of MTR functions in a way that is invariant

over all possible choices of how Uji and Gi are related within a cell of Z−j,i, so long as the

are related in such a way that Eq. (8) is satisfied. Therefore, a complete mapping between

the (U1i, . . . , UJi, Zi) and Gi is not necessary to establish my main equivalence result.1

1A complete model would be a DGP yielding the joint distribution of (Yi(1), Yi(0), Gi, U1i . . . UJi, Zi). A

particularly simple such mapping would be the following. Suppose that each Zj is the integers from 0 to

some Mj (e.g. Mj = 1 with binary instruments). Now let Uji = (1−Wi) · Ũji + Wi · P(Z∗
ji − 1, Z−j,i) where

Ũji := P(Z∗
ji, Z−j,i) with Z∗

ji = inf{z : Di(z, Z−ji) = 1} and P(−1, z−j) := 0. Take any Wi ∼ Unif [0, 1]
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Mobs(S) and Mlc(S) as a system of linear equalities for the MTR curves

MTW2’s notion of mutual consistency observes that because any given individual i is de-

scribed by latent indices Uji for each of the instruments j = 1, 2, . . . J , that individual’s po-

tential outcome Yi(d) shows up in J different MTR curves: m1(d|U1i, Z−1,i), m2(d|U2i, Z−2,i),

and so on to mJ(d|UJi, Z−J,i). This means that a set of MTR functions m could be incoherent

across values j ∈ {1 . . . J} and cells of z−j. To deal with this possibility in their analysis of

identification, MTW2 introduce for each s ∈ S and d ∈ {0, 1} the quantity E[s(Di, Zi)Yi(d)],

which is exactly analogous to βs but replaces unit i’s realized value of the outcome Yi with

a potential outcome Yi(d). Mutual consistency requires the βs to have equal values when

represented in terms of any particular instrument j’s MTR functions (Eq. 22 of MTW2):

E[s(Di, Zi)Yi(d)] = E

[∫ 1

0

{s(1, Zi)1(u ≤ P(Zi)) + s(0, Zi)1(u > P(Zi))} ·mj(d|u, Z−j,i) · du
]
,

(9)

Eq. (9) can be obtained by the law of iterated expectations over Z−j and Uj. Mutual

consistency says that the MTR functions m are such that the RHS of (9) is the same for all

j ∈ {1 . . . J}, i.e.

Mlc(S) = {m : the RHS of (9) doesn’t depend on j,∀s ∈ S}

Mogstad et al. (2018) show that the corresponding IV-like estimand βs can be expressed

similarly in terms of the MTR functions as:

βs = E

[∫ 1

0

{s(1, Zi)1(u ≤ P(Zi))mj(1|u, Z−j,i) + s(0, Zi)1(u > P(Zi))mj(0|u, Z−j,i)} · du
]

(10)

Given this, we can write

Mobs(S) = {m for which (10) holds ,∀s ∈ S}

Comparing (9) and (10), Eq. (9) considers the MTR function for Yi(d) for all u and Zi, while

(10) considers the treatment status implied by a given value of j, Z−j,i and Uji.

Deriving the weights ωj(d|u, z) for ∆c satisfying Property M

Now turn to the setting of Theorem 3 in which Assumptions 1-3 hold with J binary instru-

ments. Consider a ∆c of the form

∆c = E

[
Yi(1)− Yi(0)

∣∣∣∣∣
K⋃
k=1

{i : Di(uk(Zi)) > Di(lk(Zi))}

]
where Wi ⊥⊥ (Gi, Zi, Yi(1), Yi(0)). With this definition we have the standard assumptions for a latent-index

IV model with random assignment conditional on Z−j,i for each j = 1 . . . J : {(Uji, Yi(1), Yi(0)) ⊥⊥ Zji} |Z−j,i,

and decision-model (8): Dji(zj) = 1 (Uji ≤ P(zj , Z−j,i)) with Uji|Z−j,i ∼ Unif [0, 1].
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for some sequence of functions uk and lk such that uk(z) ≥ lk(z) ≥ uk+1(z) component-wise,

for all k and z ∈ Z. Given a parameter of interest, the functions uk and lk are known.

Theorems 1 and 2 combined with Proposition 3 of this paper show that parameters of the

form ∆c are point identified with binary instruments with full support satisfying VM if and

only if they can be written in the above form.

Since Assumption 3 implies that Z is non-disjoint (as defined in Proposition 1), then any

two vectors that are ordered component-wise can be linked by a “chain” of vectors in which

each differs from the next in only one component. For example, lk(z) = (1, 1)′ and uk(z) =

(0, 0) can be linked by the chain (0, 0), (0, 1), (1, 1) (or alternatively by (0, 0), (1, 0), (1, 1)).

The event Di(1, 1) > Di(0, 0) is equivalent to the event that either Di(1, 1) > Di(0, 1) or

that Di(0, 1) > Di(0, 0). Thus, without loss of generality we can suppose that for each z,

uk(z) and lk(z) differ only in that one particular instrument takes a “1” value in uk(z) and a

“zero” value in lk(z). Let jk(z) be the instrument that shifts from zero to one between lk(z)

and uk(z), with K the maximum necessary number of such switches for this representation

to hold over all z.

Since for a given i, we can only have Di(uk(z)) > Di(lk(z)) for one value of k, we can write,

defining the shorthand P (z) = P (Zi = z) and using P (z|Ci = 1) = P (Zi = z)P (c(Gi, z) =

1)/P (Ci = 1) by Assumption 1:

∆c =
∑
z

P (z) ·
K∑
k=1

P (Di(uk(z)) > Di(lk(z)))

P (Ci = 1)
·E [Yi(1)− Yi(0) |Di(uk(z)) > Di(lk(z)) ]

(11)

where P (Ci = 1) =
∑

z P (z)·
∑K

k=1 P (Di(uk(z)) > Di(lk(z))) =
∑K

k=1E [P(uk(Zi))− P(lk(Zi))].

Given that only one instrument is changed within in each (z, k) term above, we can express

∆c in terms of the MTR functions m. By (8), note that an individual with Z−j,i = z−j has a

value of Uji between P(0, z−j) and P(1, z−j) if and only if Di(1, z−j) > Di(0, z−j), and thus

E[Yi(1)− Yi(0)|Di(1, z−j) > Di(0, z−j)] = E[Yi(1)− Yi(0)|P(0, z−j) ≤ Uji < P(1, z−j), Z−j,i = z−j]

=
1

P(1, z−j)− P(0, z−j)

1∑
d=0

(−1)d+1

∫ P(1,z−j)

P(0,z−j)

mj(d|u, z−j) · du

using that Uji|Z−j,i ∼ Unif [0, 1] and Z−j,i ⊥⊥ (Gi, Yi(1), Yi(0)).

Thus, organizing the terms of (11) by which instrument is varied in each term, we have:

∆c =
∑
z

P (z)

P (Ci = 1)
·

J∑
j=1

K∑
k=1

1(j = jk(z)) ·
1∑

d=0

(−1)d+1

∫ P(uk(z))

P(lk(z))

mj(d|u, lk,−j(z)) · du (12)

where lk,−j(z) are the J−1 components of lk(z) corresponding to the other J−1 instruments

aside from jk(z), and I’ve used that uk(z) = (1, lk,−j(z)) and lk(z) = (0, lk,−j(z)). Then,
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comparing with Eq. (7), ∆c = β∗(m) where:2

ωj(d|u, z) = (−1)d+1

K∑
k=1

·1(j = jk(z)) · 1(P(uk(z)) ≥ u ≥ P(lk(z)))∑K
k′=1E [P(uk′(Zi))− P(lk′(Zi))]

(13)

E.2 Proving Theorem 3

Preliminary: “concordance” between MTR curves m and x

The results in this paper characterize identification of parameters of the form ∆c by expressing

them as linear functions of the 2|G| component vector x = (x(0)′,x(1)′)′, with components

xdg = x(d)g := E[Yi(d)|Gi = g], for d ∈ {0, 1} and g ∈ G. To characterize the set MMTW (S̄)

defined in terms of MTR functions m delivered by MTW2’s approach, I will find it useful to

rewrite the set MMTW (S̄) in terms of x instead of m. To do this, I first formalize a notion

in which a particular m and a particular value of x can describe the same DGP, given that

Eq. (8) must hold. This is necessary (absent a complete model in the sense of Footnote 1)

because the response groups Gi are not pinned down by latent indices Uji and vice-versa. I

make this precise through a notion I call “concordance” between a given m and a given x.

Note that for any z ∈ Z, g ∈ G and d, d′ ∈ {0, 1}, Eq. (8) implies that if we sum over xd′g
for groups sharing value d of Dg(z), we can write this in terms of MTR functions m as:∑

g∈G

1(Dg(z) = d) · xd′g = P (Gi ∈ {g : Dg(z) = d}) ·E[Yi(d
′)|Gi ∈ {g : Dg(z) = d}]

=


∫
u≤P(1,z−j)

mj(d
′|u, z−j) · du if d = 1∫

u≥P(0,z−j)
mj(d

′|u, z−j) · du if d = 0
=

∫
u:(−1)d·u≥(−1)d·P(d,z−j)

mj(d
′|u, z−j) · du

(14)

When d = d′, we have the simpler expression:∑
g∈G

1(Dg(z) = d) · xdg =

∫
u:(−1)d·u≤(−1)d·P(d,z−j)

mj(d|u, z−j) · du (15)

For any m and x ∈ R2|G|, call the pair (m,x) concordant if Eq. (15) holds for all j = 1 . . . J ,

d ∈ {0, 1} and z ∈ Z. Let us denote the set of concordant pairs (m,x) as Φ(G,P). This set

depends upon the propensity score function P and the support G of response types.3 Here G
2As a concrete example, consider the ACLATE with two binary instruments. Letting l1(z) =

(0, 0),u1(z) = (1, 0), l2(z) = (1, 0),u2(z) = (1, 1), we have that j1(z) = 1 and j1(z) = 2. Then:

ω1(d|u, z) = (−1)d+1 · 1(P(1, 0) ≥ u ≥ P(0, 0)

P(1, 1)− P(0, 0)
, ω2(d|u, z) = (−1)d+1 · 1(P(1, 1) ≥ u ≥ P(1, 0)

P(1, 1)− P(0, 0)

3Recall that there is only one propensity score function P(·) compatible with a given PDZ and Assumption

1, where PDZ denotes the observable joint distribution of Di and Zi. In general the set Φ(G,P) would also

be a function of the Zj for j = 1 . . . J , but I leave this implicit given that I will maintain Assumption 3.
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denotes these types that occur in the actual DGP, rather than restrictions on the response

types that might be assumed by the researcher (e.g. VM vs. PM).

The notion of concordant pairs proves useful in relating BMTW (S̄) with the set {θ′cx :

AVMx = b}, to establish Theorem 3. Let GVM denote the set of DedJ response groups that

exist under VM with J binary instruments. For any b ∈ R2·2J , let

Mlin(P,b) := {m : (m,x) ∈ Φ(GVM ,P) for an x ∈ R2·DedJ satisfying AVMx = b}

be the set of MTR collections m that are concordant with some x that solves AVMx = b.

The set Mlin(P,b) depends on the propensity score function P and b.

With this background in place, I turn to proving Theorem 3 maintaining Assumptions 1-3.

Step 1: Mobs(S̄) ⊆Mlin(P,b)

This section shows that if m ∈ Mobs(S̄), then m ∈ Mlin(P,b). Consider any m /∈ Mlin(P,b).

Then for all x ∈ R2·DedJ such that (m,x) ∈ Φ(G,P), it must be the case that AVMx 6= b.

Let x∗ be the value of x according to the true DGP. Since AVMx∗ = b given Assumptions 1-2

(i.e. that vector monotonicity in fact holds with valid instruments), this implies that m and

x∗ are not concordant, i.e.
∑

g∈G 1(Dg(z) = d) · x∗dg 6=
∫
u:(−1)d·u≤(−1)d·P(d,z−j)

mj(d|u, z−j) · du
for some d ∈ {0, 1}, z ∈ {0, 1}J and j. This in turn implies that:

bdz 6=
∫
u:(−1)d·u≤(−1)d·P(d,z−j)

mj(d|u, z−j) · du,

since we can write AVMx∗ = b as
∑

g∈G 1(Dg(z) = d) · x∗dg = bdz (for all d ∈ {0, 1}, z ∈
{0, 1}J). Now since βsd,z = P (Zi = z) · bdz and P (Zi = z) 6= 0 for any z ∈ {0, 1}J given

Assumption 3, this requires that:

βsd,z 6= P (Zi = z) ·
∫
u:(−1)d·u≤(−1)d·P(d,z−j)

mj(d|u, z−j) · du

But the RHS above is the expression for βsd,z given by (10). Thus, m must violate (10) for

some sd,z ∈ S̄ and j, and we can therefore conclude that m /∈Mobs(S̄).

Step 2: (m,x) ∈ Φ(G,P) implies β∗(m) = θ′cx under VM

The next piece is to note that for any ∆c satisfying Property M, if (m,x) ∈ Φ(G,P), then

β∗(m) must be equal to θ′cx if VM holds. To show this, observe that when VM holds

P(1, z−j) ≥ P(0, z−j) for any j and z−j ∈ Z−j (given our labeling of the values of Zj), and

1(Dg(1, z−j) > Dg(0, z−j)) = 1(Dg(z) = 1)− 1(Dg(z) = 0)

16



The concordance condition Eq. (15) then implies that

∑
g∈G

1(Dg(1, z−j) > Dg(0, z−j)) · xdg =

∫ P(1,z−j)

P(0,z−j)

mj(d|u, z−j) · du (16)

Now, combining (7) with (13) (which holds for ∆c satisfying Property M), we can use (16)

to write:

β∗(m) =
∑
z

P (Zi = z) ·
J∑

j=1

K∑
k=1

1(j = jk(z)) ·
∑1

d=0(−1)d+1
∫ P(uk(z))

P(lk(z))
mj(d|u, lk,−j(z)) · du∑K

k′=1E [P(uk′(Zi))− P(lk′(Zi))]

=
∑
z

P (Zi = z) ·
K∑
k=1

1(j = jk(z)) ·
∑1

d=0(−1)d+1
∑

g∈G 1(Dg(uk(z)) > Dg(lk(z))) · xdg∑K
k′=1E [P(uk′(Zi))− P(lk′(Zi))]

=
1∑

d=0

(−1)d+1 ·
∑

g∈G
∑

z P (Zi = z)
∑K

k=1 1(Dg(uk(z)) > Dg(lk(z)) · xdg∑K
k′=1E [P(uk′(Zi))− P(lk′(Zi))]

=
1∑

d=0

(−1)d+1 ·

∑
g∈G
∑

z P (Zi = z) · 1
(∑K

k=1 Dg(uk(z)) > Dg(lk(z)
)
· xdg

E

[∑K
k′=1P(uk′(Zi))− P(lk′(Zi))

]
=

1∑
d=0

(−1)d+1 ·

∑
g∈G E

[∑K
k=1Dg(uk(Zi)) > Dg(lk(Zi)

]
· xdg

E[c(Gi, Zi)]

=
1∑

d=0

(−1)d+1 ·
∑
g∈G

E[c(g, Zi)]

P (Ci = 1)
· xdg = θ′cx

Step 3: an outer set for BMTW (S̄) in terms of the vector x

Recall that

BMTW (S) := {β∗(m) : m ∈ (M∩Mobs(S) ∩Mlc(S))}

Consider the following outer set for BMTW (S)

Bouter(S) := {β(m) : m ∈Mobs(S)}

where no additional assumptions about the MTR curves are leveraged viaM, nor is MTW2’s

notion of mutual consistency imposed. Clearly BMTW (S) ⊆ Bouter(S) for any S.

Together, Steps 1 and 2 above show that for any m ∈ Mobs(S̄), β∗(m) = θ′cx where

x ∈ R2·DedJ is a solution to AVMx = b. We then have that

Bouter(S̄) ⊆ {θc′x : AVMx = b} (17)

which establishes Theorem 3, since BMTW (S̄) ⊆ Bouter(S̄).
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Remark on mutual consistency

Note that we did not need to make use of MTW2’s notion of mutual consistency to establish

Theorem 3. The mutual consistency property (9) applied to any sd,z ∈ S̄ says that

E[sd,z(Di, Zi)Yi(d
′)] = P (Zi = z) ·

∫
u:(−1)d·u≥(−1)d·P(d,z−j)

mj(d
′|u, z−j) · du

is the same for all j, for any z ∈ Z, d, d′ ∈ {0, 1}. Equivalently, for any z ∈ Z, d, d′ ∈ {0, 1}:∫
u:(−1)d·u≥(−1)d·P(d,z−j)

mj(d
′|u, z−j) · du =

∫
u:(−1)d·u≥(−1)d·P(d,z−j)

m′j(d
′|u, z−j′) · du (18)

for all j′ 6= j. Recall Eq. (14), which derived an implication of Eq. (8) that relates m and x

but is more general than the relationship used to define concordance (which took the special

case of d = d′). Eq. (14) implies (18) already, since the LHS of (14) does not depend on j in

any way. Thus mutual consistency becomes unnecessary to impose once β∗(m) is expressed

in terms of the vector x rather than in terms of single-instrument MTR curves m.
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