
Len Goff

Microeconometrics GR6414

Notes on conditional expectations and causal regression

Please let me know if you spot any typos, etc.!

Properties of CEFs

Suppose (Xi, Yi) are jointly continuously distributed. Then the conditional density of Y

on X is defined as fy|x(y|x) := fxy(x,y)

fx(x)
. For any fixed value of x for which fx(x) > 0,

this defines a new univariate density function fy|x(y|x) that is positive and integrates to

one. The conditional expectation function (CEF) is simply the expected value of this

conditional density, as a function of x: (note that I use the notation := for definitions)

m(x) := E [Yi|Xi = x] :=

∫
yfy|x(y|x)dy (1)

When X and/or Y have discrete support, things are defined analogously with probability

mass functions and sums instead of integrals. Why do we like CEF’s? They have several

nice properties, which I’ll prove on the board in recitation (also see Chapter 3 of Angrist

& Pischke 2008, henceforth MHE):

1. m(x) is the function of Xi that serves as the best predictor of Yi, in the mean-squared

error sense (MHE 3.1.2):

E [Yi|Xi = x] = argmin
h(Xi)

E
[
(Yi − h(Xi))

2]

Note for the interested: m(Xi) can be thought of as a “projection” of the random

variable Yi onto the space of random variables that are functions of Xi, where the

inner-product between random variables is defined by the expectation of their prod-

uct.

2. We can write Yi = E [Yi|Xi = x] + εi, where E [εi|Xi = x] = 0 (MHE 3.1.1). Hence

E [h(Xi)εi] = 0 for any function h(x).

This final property depends upon the law of iterated expectations (LIE), which is a

fundamental tool in regression analysis and econometrics generally. In our context LIE

states that

E[Yi] := E [E [Yi|Xi]]

What does this expression mean? Note the notation E [Yi|Xi] = m(Xi): this is the

function m(x) (which is not random, rather it is a fixed property of the joint distribution

of X and Y), evaluated at an individual realization of the random variable Xi. Hence

E [Yi|Xi] is a random variable who’s distribution depends on the distribution of Xi. LIE
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states that if we take the expected value of this random variable (i.e. integrate over the

distribution of Xi), then we’ll get back the unconditional expectation of Yi. Woot!

For continuously distributed (Xi, Yi), this can be seen as follows:

E [E [Yi|Xi]] =

∫
E [Yi|Xi = x] fx(x)dx =

∫ {∫
yfy|x(y|x)dy

}
fx(x)dx =

∫
yfy(y)dy = E[Yi]

where to move from the second to the third equality we reverse the order of integration,

note that fy|x(y|x)fx(x) = fxy(x, y), and then evaluate the integral over x.

Linear regression

Suppose X is a k-dimensional vector (typically including a constant) and that the CEF

of Y on X is linear :

m(x) = x′β

for some β ∈ Rk. Then Property 2. from the previous section implies that Yi = X ′iβ+ εi,

where E[Xiεi] = 0 (where 0 here is a k-dimensional vector of zeros). Look familiar? This

is exactly what we expect of the residual in a linear regression. A linear CEF with coeffi-

cient vector β means that we can determine β by performing a linear regression of Y on X.

Even when m(x) is not actually linear in x, we can still always define a parameter β by

β := E[XiX
′
i]
−1
E[XiYi] (2)

so long as E[XiX
′
i] is invertible.1 This β is known as the linear projection coefficient of

Yi onto Xi (this “coefficient” is generally a vector). The linear projection coefficient is

the solution to the OLS minimization problem (see Property 1. below).2 In this sense,

regression is always estimating the linear projection coefficient, and when the CEF is

linear, this is also equal to the slope vector of the CEF. Note that if we define εi = Yi−X ′iβ
with β defined by Equation (2), then Yi = X ′iβ + εi with E[εiXi] = 0. When the CEF is

linear, then we also have that E[εi|Xi] = 0, which is a stronger property.

The linear projection coefficient has two nice properties that show that it might be

expected to do a good job of summarizing the relationship of Y and X, even when the

CEF is not quite linear.

1. X ′iβ with β defined by Equation (2) provides the best linear predictor of Yi, in the

mean-squared error sense (MHE Thm. 3.1.5):

β = argmin
γ

E

[
(Yi −X ′iγ)

2
]

1This is equivalent to there being no perfect (i.e. certain, occurring with probability one) linear dependence between

the components of Xi, since: E[XiX
′
i] invertible ⇐⇒ γ′E[XiX

′
i]γ 6= 0 for all γ ∈ Rk ⇐⇒ E[(X′iγ)2] > 0 for all γ ∈

R
k ⇐⇒ for all γ ∈ Rk, P (X′iγ 6= 0) > 0.
2To see this, note that the first order condition to min

γ
E

[(
Yi −X′iγ

)2]
is 2E[Xi

(
Yi −X′iγ

)
] = 0 and rearrange.

2



and is the best linear approximation to the CEF, in the mean-squared error sense

(MHE Th.m 3.1.6)

β = argmin
γ

E

[
(E[Yi|Xi]−X ′iγ)

2
]

so at least we know that linear regression is doing the “best job” possible among all

linear functions of Xi

2. Regardless of the true functional form of the CEF, β is still related to it. By LIE,

we have that

β = E[XiX
′
i]
−1
E[XiE[Yi|Xi]] = E[XiX

′
i]
−1
E[Xim(Xi)]

which shows that the value of β depends on two things: the true CEF function

m(x), and the marginal distribution of Xi. But it’s not obvious from this matrix

expression exactly what β is telling us about m(x). Yitzakhi (1989) shows that in

the univariate case, β provides a weighted average of the derivative m′(x) of the true

CEF.3 So, even if the true CEF m(x) is not linear, linear regression still tells us a

certain summary of how the CEF depends on x.

This all gets a bit more complicated when there are multiple variables, and more

care is needed to relate the regression coefficient for one variable to the CEF when

the CEF is nonlinear. Angrist & Krueger (1999, eq. 34) consider a condition under

which an analogous property to Yitzhaki’s holds with covariates in the regression.

Linear regression and causation

As much as we might worry about linearity, there’s a deeper question about CEFs: under

what conditions do they tell us about the causal effect of X on y? The simplest condition

that could allow us to use regressions to get at causal effects is the conditional indepen-

dence assumption (CIA), also known as selection on observables or unconfoundedness.

Consider the potential outcomes notation Y0i, Y1i for a binary treatment variable Di.

Then, the CIA states that

(Y0i, Y1i) ⊥ Di|Xi

where Xi is a set of observed covariates (we’ll exclude a constant from Xi in our notation).

Now let’s see how the CIA can fit into a setup in which linear regression reveals causal

3For the fascinated or incredulous: following Yitzakhi (1989), write C(Y,X) = E[Y (X − µx)] = E[m(X)(X −E[X])] =∫
f(x)m(x)(x − E[X])dx, using LIE. Then, integrate by parts where u = f(x)(x − E[X]) and dv = m(x)dx so that

C(Y,X) = v(x)g(x)|∞−∞ −
∫
m′(x)v(x)dx where v(x) =

∫ x
−∞ f(t)(t − E[X]). The first term is zero because both v(∞)

and v(−∞) are equal to zero (for v(∞) we assume Xi has a finite second moment). So,
C(Y,X)
V (X)

=
∫
m′(x)w(x)dx where

w(x) = −v(x)/V (X). To see that w(x) integrates to one, substitute Y = X in which case m′(x) = 1. To see that the weights

are positive, rewrite v(x) = F (x)E[X|X ≤ x]−E[X]F (x) = F (x) (E[X|X ≤ x]−E[X]) and note that E[X|X ≤ x] ≤ E[X]

for all values of x.
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effects. Let’s assume that

(1) Y1i − Y0i = β (homogenous treatment effects)

(2) E[Y0i|Xi] = α +X ′iγ (linearity of Y0 CEF)

(3) E[Y0i|Xi, Di] = E[Y0i|Xi] (CIA)

Note that (3) is implied by the CIA, and that (2) can be written as Y0i = α + ηi where

E[ηi] = X ′iγ. This just states that the CEF of Y0 on X is linear, which justifies using

linear regression to control for Xi. This assumption can be generalized, as can the as-

sumption all units have the same treatment effect. But (1) and (2) simplify the math to

help make the central point about causality and the CIA.

Note that (2) and (3) together imply that E[Y0i|Xi, Di] = α + X ′iγ and then combining

with (1) we have that:

E[Yi|Xi, Di] = α + βDi +X ′iγ

where recall that Yi = YDii = (1 − Di)Y0i + DiY1i. Thus, since νi := Yi − E[Yi|Xi, Di]

is mean independent of Di and Xi, we can estimate β and γ from a linear regression

(though we don’t directly care about γ).

It’s instructive to think about what we’d get if we didn’t have the CIA. Suppose that

instead of (2) and (3) we had E[Y0i|Xi, Di] = x′iγ + ρDi. Then we would have

E[Yi|Xi, Di] = α + (β + ρ)Di +X ′iγ

The term ρ indicates the bias due to a failure of the CIA. If Di is not “as good as ran-

domly assigned” conditional on Xi, then “controlling” for Xi in a regression of Yi on Di

is not sufficient to give the regression a causal interpretation.

To see how all of this generalizes to a treatment variable that may take on many values

(e.g. schooling), see Section 3.2 of MHE.
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Regression anatomy

Recall that in bivariate regression (also known as “simple linear regression”), where we

have a single scalar X and an intercept:

β =
C(Yi, Xi)

V (Xi)

α = E[Yi]− βE[Xi]

where for random variables A and B: C(A,B) denotes their covariance and V (A) the

variance of A.

Note: How do we know this? Recall that α and β minimize the quantity

E [(Yi − α− βXi)
2]. The first-order condition of this problem with respect to α

is:

−2E [(Yi − α− βXi)] = 0 ⇐⇒ α = E[Yi]− βE[Xi]

The first-order condition of with respect to β is:

−2E [(Yi − α− βXi)Xi] = 0 ⇐⇒ βE[X2
i ] = E[XiYi]− αE[Xi]

If we substitute our expression for α in, we get:

β
(
E[X2

i ]− E[Xi]
2
)

= E[XiYi]− E[Xi]E[Yi]

which is the same as saying

β =
C(Yi, Xi)

V (Xi)

.

Now consider a regression of Yi on K different variables X1i, X2i, . . . XKi. We want to

know the coefficients β0, β1, . . . βK that minimize the quantity

E[(Yi − β0 − β1X1i − · · · − βKXKi)
2] (1)

(to simplify the notation we have renamed the constant term α to β0). One approach

to this problem is to write the set of coefficients as a vector and minimize Eq (1) with

respect to this vector, which yields a matrix equation for β. Regression anatomy gives

us another approach, expressing each element βk as a bivariate regression coefficient.
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In particular, the regression anatomy formula states that

β =
C(Yi, X̃ki)

V (X̃ki)

where X̃ki is defined as the residual from a regression of Xki on a constant and all of the

other X ′s (excluding Xki). To see this, write:

Yi = β0 + β1X1i + · · ·+ βKXKi + ei (2)

where we know that for all k = 1 . . . K, the first order condition of minimizing Eq (1)

with respect to βk is that E[eiXki] = 0.

By the same logic, we can write the following regression equation of Xki on a constant

and all of the other X ′s:

Xki = β̃
[k]
0 + β̃

[k]
1 X1i + · · ·+ β̃

[k]
k−1Xk−1,i + · · ·+ β̃

[k]
k+1Xk+1,i + · · ·+ β̃

[k]
K XK,i + X̃ki (3)

We know that for all j = 1 . . . k − 1, k + 1, . . . K, the first order condition with respect

to β̃
[k]
j tells us that E[X̃kiXji] = 0. Note that the first order condition with respect to

β̃
[k]
0 is E[X̃ki] = 0, which means that for any random variable V , C(V, X̃ki) = E[V X̃ki].

Together, we then have that C(X̃ki, Xji) = 0 for any j = 1 . . . k − 1, k + 1, . . . K.

Using Eq (2) and linearity of the covariance operator,

C(Yi, X̃ki) = 0 + β1C(X1i, X̃ki) + · · ·+ βKC(XKi, X̃ki) + C(εi, X̃ki) (4)

where the first term is zero since β0 is not random. We’ve also established that C(Xji, X̃ki) =

0 for any j = 1 . . . k− 1, k + 1, . . . K. Finally, notice that we also have C(εi, X̃ki) = 0 be-

cause from Equation (3) we can write X̃ki as a linear function of the Xki and C(ei, Xki) =

E[eiXki] = 0 for all k = 1 . . . K. Thus, only the Xki term in Eq (4) is nonzero and

C(Yi, X̃ki) = βkC(Xki, X̃ki).

Our last step to arrive at the regression anatomy formula is to show that C(Xki, X̃ki) =

V (X̃ki). To see this, substitute in Eq (3) for Xki, and notice that only the last term is

nonzero.
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For those that are interested: if we collect as vectors all of the regression

coefficients β := (β0, β1 . . . βK)′ and regressors Xi := (1, X1i . . . XKi)
′, recall that

β = E[XiX
′
i]
−1E[XiYi]. How can we show that the regression anatomy formula

holds from this matrix expression? One (messy) way would be to reorganize the

vectors like Xi = (Xki, X−k,i)′ where X−k,i := (1, X1i . . . Xk−1,i, Xk+1,i . . . XKi)
′ and

then use block matrix inversion identities.

A generalization of the regression anatomy formula is the so-called Frisch-Waugh-

Lovell theorem, which gives us an expression for the vector of regression coefficients

corresponding to any subset of the variables X1 to XK .

The OVB formula

Consider two regressions, “short” and “long”:

Yi = α + βXi + ei (short)

Yi = τ + ρXi + A′iγ + εi (long)

where Xi is a scalar and Ai can be a vector (A1i, . . . AKi)
′. Note, neither the short or

long regression is an assumption about the “true model”. Rather, they are simply two

regressions that we can run. The short regression can be thought of as defining an α

and β such that the residual ei = Yi − α − βXi is mean zero and uncorrelated with Xi.

Similarly, the long regression can be thought of as defining τ, ρ, γ such that εi is mean

zero and uncorrelated with Xi and Ai. In practice, we are often interested in cases where

the long regression is likely to have a causal interpretation (see below), but that will not

be important for deriving the omitted variables bias (OVB) formula.

The OVB formula relates ρ to β, i.e. the coefficients on Xi in the long and short

regression, respectively. Start by recalling that β = C(Yi,Xi)
V (Xi)

. We can relate this to ρ by

substituting the long regression equation for Yi into the covariance operator:

β =
ρC(Xi, Xi) + C(A′iγ,Xi) + C(εi, Xi)

V (Xi)
= ρ+

C(γ′Ai, Xi)

V (Xi)

where we’ve used that C(εi, Xi) = 0 and that A′iγ = γ′Ai. Reversing the dot product is

a convenient rearrangement because it sets us up to use the linearity of the covariance

operator to notice that

C(γ′Ai, Xi)

V (Xi)
=
∑

j=1K

γi
C(Aji, Xi)

V (Xi)
= γ′




C(A1i, Xi)/V (Xi)

C(A2i, Xi)/V (Xi)
...

C(AKi, Xi)/V (Xi)




︸ ︷︷ ︸
:=δAx
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where we define the vector δAx to be the vector of coefficients from K different simple

bivariate regressions, in each of which we regress a component of Ai on Xi.

Thus, we have the OVB formula that β = ρ+ γ′δAx.1

At risk of being redundant, we emphasize that the OVB formula is just algebra: it doesn’t

depend upon any model or assumptions about causality. However, the OVB comes up a

lot when people are thinking about endogeneity. In a case where Xi is a treatment variable

and we think that the CIA holds conditional on Ai, then under a few extra assumptions

we can interpret the long regression as a causal regression in the sense described last week

(see notes), where ρ is the treatment effect. With Xi binary, β is a simple difference in

means between treatment and control groups, and the OVB formula tells us the difference

between this “naive” estimate of the treatment effect and the true causal effect.

Saturated and “saturated in groups” regression

Suppose Xi is a random variable that takes on a finite set of possible values x1 . . . xG,

such as Xi ∈ {“super selective”, “fairly selective”, “not selective”} in the private school

example (in this example G = 3). More generally, we can think of Xi as indicating

which “group” an observation is in, where a group might be defined according to several

variables, e.g.

Xi ∈{“male and mother graduated high school”︸ ︷︷ ︸
x1

, “male and mother didn’t graduate high school”︸ ︷︷ ︸
x2

,

“female and mother graduated high school”︸ ︷︷ ︸
x3

, “female and mother did not graduate high school”︸ ︷︷ ︸
x4

}

In this example, G = 4, and the four values of Xi are map one-to-one with the four

possible combinations of two binary variables: one for gender, and one for mother’s high

school completion (we could call these X1i and X2i).

Consider the CEF of a Yi on Xi. Since Xi takes one on of G values, this CEF takes on

at most G different values as well. Let mj := E[Yi|Xi = xj] for each j = 1 . . . G. Further

define dij := 1(Xi = xj) to be an indicator variable that unit i belongs to “group j” (i.e.,

Xi = xj). Then, for any unit i, we can write the CEF evaluated at that unit’s Xi as:

E[Yi|Xi] =
G∑

j=1

mjdij

Note that conditioning on Xi is equivalent to conditioning on the values of all the vari-

ables di1, di2, and so on to diG (why is conditioning on only a subset of these not the

1What if we also had some set of variables Wi that were in both the short and the long regression? In this case we can

use the regression anatomy formula show that the relation between β and ρ would be β = ρ+ γ′δxAxw, where δxAxw is the

vector of coefficients on Xi in a set of regressions of Aji on Xi and Wi, for j = 1 . . .K (verifying this is a good exercise).
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same?). Thus, the CEF of Yi on the set of variables di1 . . . diG is linear in all of the dij.

Cool!

The regression

Yi = β1di1 + · · ·+ βGdiG + εi

is called a saturated model (why is there no constant in this regression?). Since the CEF

of Yi on Xi is linear, the regression coefficients βj are equal to the values of the CEF:

β1 = m1, β2 = m2, . . .βG = mG. While regression always reveals the best linear approx-

imation to the CEF, recall that when the CEF is linear it recovers it exactly.

Definition (from MHE 3.1.4): A saturated model is a regression in which the

explanatory variables are discrete and the model includes a parameter for every

possible combination of values of the explanatory variables.

Now suppose we have our Xi from before as well as a separate variable Di, which we take

to be a binary variable for simplicity. We might call the regression

Yi = ρDi + β1di1 + · · ·+ βGdiG + εi (5)

“saturated in groups”. We have a dummy variable for each of the possible groups, as

well as Di in the regression. But, we have not added interactions between the values

of Di and the groups. While a saturated linear regression will always recover the CEF

exactly, the same is not true when we’re only saturated in groups. That’s because the

conditional expectation of Yi on both variables: E[Yi|Di, Xi], is not guaranteed to be

additively separable between Di and Xi.
2

Nevertheless, the saturated-in-groups regression will prove to be useful, because it ends

up being equivalent to a certain matching estimator (well, the population version of it).

To see this, we’ll apply the regression anatomy formula to get the coefficient ρ from

regression (5):

ρ =
C(Yi, D̃i)

V (D̃i)

where D̃i is the residual from a regression of Di on d1i . . . dGi. Since this regression

is in-fact saturated, we know that it captures the CEF of Di on Xi, and hence D̃i =

Di − E[Di|Xi]. This property is useful because then

ρ =
C(Yi, (Di − E[Di|Xi]))

V (Di − E[Di|Xi])

Warning: this is about to get messy. Let σ2
D(x) denote the conditional variance of Di

on Xi, i.e. σ2
D(x) := E [ (Di − E[Di|Xi])

2|Xi = x]. Noting that D̃i is mean zero and

2If it is additively separable, then E[Yi|Di, Xi] = ρDi + β1di1 + · · ·+ βGdiG.
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applying LIE to the above, we have:

ρ =
E[Yi(Di − E[Di|Xi])]

E[(Di − E[Di|Xi])2]
=
E {E[Yi(Di − E[Di|Xi])|Xi]}

E[σ2
D(Xi)]

Consider the numerator. Applying the LIE over Di:

E[Yi(Di − E[Di|Xi])|Xi] =
∑

d∈{0,1}
P (Di = d|Xi)E[Yi(Di − E[Di|Xi])|Di = d,Xi]

= P (Di = 1|Xi)E[Yi|Di = 1, Xi](1− P (Di = 1|Xi))

− P (Di = 0|Xi)E[Yi|Di = 0, Xi]P (Di = 1|Xi)

To simplify notation, let’s let p(Xi) = P (Di = 1|Xi) = E[Di|Xi]. Note that σ2
D(Xi) =

p(Xi)(1− p(Xi)) = P (Di = 1|Xi)P (Di = 0|Xi). Thus:

E[Yi(Di − E[Di|Xi])|Xi] = σ2
D(Xi) {E[Yi|Di = 1, Xi]− E[Yi|Di = 0, Xi]}

Thus, we’ve shown that

ρ =
E[δ(Xi)σ

2
D(Xi)]

E[σ2
D(Xi)]

(6)

where δ(Xi) := E[Yi|Di = 1, Xi] − E[Yi|Di = 0, Xi]. We can think of δ(x) as a function

that “matches” treated (Di = 1) and control (Di = 0) units with the same value of

Xi = x, and then conducts a simple comparison between the treated and control means

for that x (note: since we haven’t made the CIA, there’s no reason yet to expect a causal

interpretation to arise from the matching).

In fact, Expression (6) shows that ρ is a weighted average of δ(xj) across the G possible

values of Xi, i.e. ρ =
∑G

j=1wjδ(xj) where the weights are wj =
σ2
D(xj)P (Xi=xj)

E[σ2
D(xj)]

. These

weights are positive and sum to one. Thus, if we did make the CIA conditional on Xi,

then ρ is a certain kind of average treatment effect, where the average is weighted ac-

cording to the conditional variance of treatment (and the probability of Xi).

An analog to Equation (6) can be derived for cases where the “treatment variable” is not

binary, but the regression is still saturated in groups (or the CEF of the treatment on

Xi is otherwise linear). For the case of an ordered (but discrete) treatment variable, like

years of schooling, see Eq (34) in Angrist & Krueger 1999. For a continuous treatment,

see then end of Section 3.3.1 in MHE.
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For the interested. So far we’ve contrasted a fully saturated model with a “saturated

in groups” model, where we have a parameter for every value of Xi but make the

regression equation additively separable between Di and the dij. What if we did

include interactions between Di and all of the dummy variables for the possible

values of Xi?

Yi = β1di1 + · · ·+ βGdiG + ρ1Didi1 + · · ·+ ρGDidiG + εi (7)

In this case, with the 2G (non-redundant) parameters we would have a saturated

model, and would exactly recover the CEF of Yi on Di and Xi (why did we drop

the Di term from the saturated-in-groups model?). The coefficients ρj from Eq (7)

a matching interpretation. Except, rather than yielding a weighted average of the

difference in means between matched treatment and control for a specific cell Xi,

we will get each one separately. To see this, notice that regression (7) is equivalent

to running G separate regressions on the subsample Xi = xj, one for each value of

Xi:

Yi = βj + ρjDi + εji (on the Xi = xj subsample)

for j = 1 . . . G. We know that the coefficient on a dummy variable Di a simple

bivariate regression simply gives the difference in means. Since this is all also

conditional on Xi = xj, this means that ρj yields:

E[Yi|Di = 1, Xi = xj]− E[Yi|Di = 0, Xi = xj] = δ(xj)
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Review of 2SLS

Consider a setting where we are interested in estimating the coefficient ρ on Si in the

following equation:

Yi = X ′iα + ρSi + ηi (1)

where Xi are some observed variables assumed to be uncorrelated with ηi. However,

Si is possibly correlated with ηi. Thus, Equation (1) is not a regression (if it were,

the “residual” ηi would also be uncorrelated with Si, by definition). The variable Si is

sometimes referred to as an endogenous variable.

Often, we think of (1) as describing a causal relationship that we’re interested in, but

where estimating the causal effect ρ is complicated by selection bias. Eq (1) doesn’t

necessarily need to be causal though: we might also think of ρ in Eq. (1) as simply

the regression coefficient on Si from a longer regression that we aren’t able to run. For

example, we might have ηi = A′iθ + εi where C(Si, ηi) = C(Si, A
′
iθ) 6= 0, and we don’t

observe Ai. Another example of endogeneity comes from there being measurement error

in Si.

Suppose that we have an vector of instrumental variables Zi that we believe are each

uncorrelated with ηi. We can think of Zi as a vector (Zi1, Zi2, . . . ZiL)′ where each

C(Zij, ηi) = 0. The instruments will help us identify ρ, even without random assign-

ment or the CIA! This comes from two important properties: the so-called exclusion

restriction (that C(Zij, ηi) = 0 for all j), and a relevance condition. To appreciate the

relevance condition, let’s consider a regression of Si on Xi and Zi:

Si = X ′iπ10 + Z ′iπ11 + ξ1i (2)

The relevance condition states that at least one component of π11 is non-zero - essentially

that at least one of the instruments are correlated with Si after controlling for Xi (we’ll

see why this matters below). We’ll refer to Equation (2) as the “first stage”. The name

can often be thought of capturing the idea of a process in which units “select” into a

value of the treatment variable Si, and that this choice is influenced by the instruments

Zi. But this interpretation is not necessary here. Unlike Equation (1), Equation (2) is a

regression: C(Xi, ξ1i) = 0 and C(Zi, ξ1i) = 0 by definition.

The two stage least squares (2SLS) approach begins by estimating Eq (2), which is

easy since it’s a regression. Running this regression allows the analyst to estimate fitted

values of Si from the first-stage. This amounts to subtracting off ξ1i from Si, and yields

1



the “part” of the endogenous variable that can be explained by the instruments, and the

covariates Xi:

Ŝi := X ′iπ10 + Z ′iπ11 (3)

Note: in keeping with our usual notation in this class, Eq. (3) is a “population” version

of the fitted regression values. In practice, the actual estimates will have hats on π10 and

π11 (see the end of these notes).

Now, consider performing a regression of Yi on Xi and Ŝi. Let’s call the coefficient on

Ŝi in this regression ρ2sls. Recall from the regression anatomy formula that if we regress

Yi on Xi and Ŝi, the coefficient on Ŝi will be ρ2sls = C(Yi, Ŝ
∗
i )/V (Ŝ∗i ), where we define Ŝ∗i

to be the residual from a regression of Ŝi on the Xi. What happens if all entries of the

vector π11 were equal to zero? In that case, we wouldn’t be able to regression Yi on both

Xi and Ŝi, since Ŝi would then be perfectly collinear with Xi. This is why we need the

relevance condition that π11 has at least one non-zero component.

Now we show that 2SLS recovers ρ from Eq (1), i.e. ρ2sls = ρ. If we substitute Eq (1)

into our formula for ρ2sls, we get:

ρ2sls =
C(���X ′iα + ρSi +��ηi, Ŝ

∗
i )

V (Ŝ∗i )
= ρ

C(Si, Ŝ
∗
i )

V (Ŝ∗i )
= ρ

The steps we’ve made use of are the following:

• To eliminate the first term in the covariance, we note that since Ŝ∗i is defined as a

residual from a regression that includes Xi, it is uncorrelated with each component

of Xi (and hence the sum X ′iα).

• We can eliminate the η term in the covariance by the assumption that the compo-

nents of Zi and Xi are all are uncorrelated with ηi. Since the residual Ŝ∗i can be

written as Ŝ∗i = Ŝi −X ′iγ for some γ, and Ŝi = X ′iπ10 + Z ′iπ11 by Eq. (3), it follows

that Ŝ∗i is a linear combination of the Xi and the Zi: Ŝ
∗
i = X ′i(π10 − γ) + Z ′iπ11.

Thus, by the linearity of the covariance operator, it is uncorrelated with ηi.

• To achieve the final equality, we notice that the quantity C(Si, Ŝ
∗
i ) = C(X ′iγ + Ŝ∗i︸ ︷︷ ︸

Ŝi

+ξ1i, Ŝ
∗
i )

for some γ (the coefficient in a regression of Ŝi on Xi). Since Ŝ∗i is the residual from a

regression that includes Xi, it is uncorrelated with each component of Xi (and hence

the sum X ′iγ). Also, the ξ1i term is zero since C(ξ1i, Ŝ
∗
i ) = C(ξ1i, Ŝi−X ′iγ) = 0, and

ξ1i is uncorrelated both with Xi and Ŝi. So, C(Si, Ŝ
∗
i ) = V (Ŝ∗i ).

So, we’ve shown mathematically that the 2SLS recovers ρ from Eq (1), despite the problem

that C(Si, ηi) 6= 0! But why does this work, intuitively? Consider the decomposition of

Si offered by the first stage regression (2). Notice that because of the assumption that

Xi and Zi are uncorrelated with ηi, we know that all of the correlation between Si and ηi

must come from the error term ξ1i. What 2SLS does is use the first stage to “purge” ξ1i
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from Si, getting rid of the part of it that is potentially correlated with ηi. The replacement

of Si by Ŝi allows us to treat Eq (1) as a regression, since C(Ŝi, ηi) = 0.

Indirect least squares

There is another approach to using our instruments Zi to identify Zi, that goes by the

name indirect least squares (ILS). The idea behind ILS is to run a third regression, which

is like the first stage but with Yi on the left hand side instead of Si:

Yi = X ′iπ20 + Z ′iπ21 + ξ2i (4)

where C(Xi, ξ2i) = 0 and C(Zi, ξ2i) = 0 by definition.

Aside from being bored, why would we care to run regression (4)? It turns out that

the coefficients on Zi will be proportional to ρ, and that the proportionality can be

determined from the first stage regression. Thus, we “indirectly” determine the value

of ρ by running two regressions, and combining the estimates from each in a certain

way. Equation (4) is referred to as the reduced form. The idea behind this name is that

the instruments Zi only effect Yi through Si. Thus, the coefficient π21 offers observable

evidence of the “structural” (i.e. causal) effect ρ, while not directly measuring it (we’ll

need the to estimate the reduced form as well to do that).

When Zi has L components (Zi1 . . . ZiL)′, we write π21 = (π211 . . . π21L)′, one coefficient

for each component of the vector. The idea behind ILS is the observation that for any

component j ∈ 1 . . . L: π21j = ρπ11j where π11j is the coefficient on Zij in the first stage

regression. Thus, if we perform both the first stage and the reduced form regressions, we

can solve for ρ. In the box below, we show why this works.

Rearranging the ILS expression, we have that ρ =
π21j
π11j

, the ratio of a coefficient from

the reduced form regression to a coefficient from the first stage regression. However,

notice that the RHS of this expression is indexed by j, while the LHS does not. This

means that if π11j 6= 0 for multiple values of j, then we have more than one expression

for the same quantity, ρ!. This property is called overidentification, and it arises because

we have L instrumental variables but only one endogenous variable Si.

In practice, when we estimate ρ in a finite sample, we’d get a different numerical

estimate for each j. This will always occur due to just statistical noise, but it can also

be evidence that one or more of the instruments does not actually satisfy the exclusion

restriction. This is the basis of so-called over-identification testing. Define ρILS,j =
π21j
π11j

for each j. Over-identification testing essentially asks the question of whether the different

values of ρ̂ILS,j across j can be accounted for by simple sampling uncertainty, or if they

are evidence that their population counterparts ρILS,j are different, which would mean

that at least one of our instrumental variables is invalid.

However, when we have just one instrumental variable (L = 1), the ILS procedure

produces just one estimate of ρ. This estimate will be numerically equivalent to the one
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given by the 2SLS procedure. I’ll show an example of this in Stata during recitation.

Why ILS works: Consider the coefficient on the jth component of Zi in Eq (4).

By the regression anatomy formula, this is π21j =
C(Yij ,Z̃ij)

V (Z̃ij)
, where Z̃ij is the residual

from a regression of Zij on Xi and the other components of Zi. Now, let’s substitute

the causal “outcome equation” (1) for Yi into this expression:

π21j =
C(���X ′iα + ρSi +��ηi, Z̃ij)

V (Z̃ij)
= ρ

C(Si, Z̃ij)

V (Z̃ij)
= ρπ11j

where π11j is the jth component of π11.

• To eliminate the first term in the covariance, we use the fact that since Z̃ij

is defined as a residual from a regression that includes Xi, it is uncorrelated

with each component of Xi (and hence the sum X ′iα).

• Similar to with 2SLS, we can eliminate the η term in the covariance by the

assumption that all of the components of Zi and Xi are uncorrelated with ηi.

Since the residual Z̃ij can be written as Z̃ij = Zij − X ′iλ − β1Zi1 − β2Zi2 −
. . . βj−1Zi,j−1 − βj+1Zi,j+1 − . . . βLZiL for some λ and β, it is a linear combi-

nation of the Zi’s, which is also uncorrelated with ηi.

• To achieve the final equality, we notice that the quantity C(Si, Z̃ij)/V (Z̃ij) is

exactly the regression anatomy formula for π22j in the first stage regression (2).

Notice that it’s important that the first-stage and the reduced form regressions

have exactly the same form (linear regressions with the same regressors on the

right side). Otherwise this equality wouldn’t be true.

2SLS as a simple IV

Recall that when there is just one instrument Zi, and no covariates in the regression, the

IV formula has a simple form (Eq. 2 in the slides):

ρ =
C(Yi, Zi)

C(Si, Zi)

Let’s call such a setting a “simple IV” setup. It turns out that we can think of the more

complicated 2SLS as such a simple IV, but where the instrument is a certain function of

the many Zi and Xi.

Recall that by regression anatomy ρ2sls = C(Yi, Ŝ
∗
i )/V (Ŝ∗i ), where Ŝ∗i is the residual

from a regression of Ŝi on the Xi. We also showed in the proof for 2SLS that C(Si, Ŝ
∗
i ) =

V (Ŝ∗i ). Thus, we could write

ρ2sls =
C(Yi, Ŝ

∗
i )

C(Si, Ŝ∗i )
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which is the simple IV formula if our “instrument” is Ŝ∗i . We showed that this Ŝ∗i will be

uncorrelated with ηi, so it satisfies the exclusion restriction. And it will be correlated with

Si so long as at least one component of π11 is nonzero, satisfying the relevance condition.

This way of thinking about 2SLS is useful because it tells us that effectively what 2SLS

does is aggregate all of our instruments Zi1 . . . ZiL into one single instrument. It turns

out that it does so in a nice way (it forms the statistically optimal linear combination of

instruments under a homoskedasticity assumption).

2SLS as averaging simple IV estimates

When we have many instruments, we could have used each one separately to perform a

just-identified IV regression, rather than combining them into one 2SLS estimation with

all of the instruments. Recall that just-identified refers to a setting in which the number

of instruments is equal to the number of endogenous variables. When this number is

equal to one, as it would be with Si and a single Zij, our estimator would be

ρ̂IV,j =
Ĉ(Yi, Zij)

Ĉ(Si, Zij)

where Ĉ indicates the sample covariance. This is what we’ve called a “simple IV” setting

in the last section.

It turns out that the 2SLS estimator ρ̂2sls yields a weighted average of the ρ̂IV,j.

For simplicity, we’ll first consider the case where there are no covariates Xi (and then

generalize for the brave). The 2SLS estimator is

ρ̂2SLS =
Ĉ(Yi, Ŝi)

Ĉ(Si, Ŝi)

where Ŝi = Z ′iπ̂11 =
∑L

j=1 π̂11jZij. Note that we’ve been able to replace Ŝ∗i in the general

formula by Ŝi because there are no covariates Xi.
1

By linearity of the covariance, the denominator in ρ̂2SLS is Ĉ(Si, Ŝi) =
∑L

j=1 π̂11jĈ(Si, Zij).

Similarly, the numerator is

Ĉ(Yi, Ŝi) =
L∑

j=1

π̂11jĈ(Yi, Zij) =
L∑

j=1

π̂11jĈ(Si, Zij)
Ĉ(Yi, Zij)

Ĉ(Si, Zij)

where we’ve multiplied and divided by Ĉ(Si, Zij). Now notice that
Ĉ(Yi,Zij)

Ĉ(Si,Zij)
is exactly

ρ̂IV,j. If we define wj =
π̂11jĈ(Si,Zij)∑L
j=1 π̂11jĈ(Si,Zij)

, then

ρ̂2SLS =
L∑

j=1

wj · ρ̂IV,j

It can be readily verified that these weights sum to one. To guarantee the weights to

be positive, we need the additional assumption that Ĉ(Si, Zij) have the same sign as

1Aside from a constant, which has no effect on the covariance
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Ĉ(Si, Z̃ij) for each j, where Z̃ij is the residual from a regression of Zj on all of the other

instruments (this gives the sign of π̂11j). In a two-instrument case, this says that condi-

tioning on one of the instruments doesn’t change the sign of the relationship between the

other instrument and Si.

With covariates: We can generalize this result to the case with covariates Xi by

making use of matrix notation. Let Y = (Y1 . . . Yn)′ denote a vector of observations

of Y , and similarly for S. Let Zj denote a vector of observations of Zij, and

let Z = [Z1 . . . Zj]
′ indicate a matrix with the Zj as rows. Define a matrix X

analogously for the covariates, including a column of ones. For any matrix A, let

PA = A(A′A)−1A′ be the matrix that projects onto the subspace spanned by the

columns of A, and MA = I − PA be the matrix that projects onto its orthogonal

complement.

In our matrix notation: ρ̂2sls = Y ′MX Ŝ

Ŝ′MX Ŝ
where Ŝ = P[XZ]S. Note that

MXP[XZ]S = MX(Xπ̂10 + Zπ̂11) = MXZπ̂11 =
L∑

j=1

π̂11jMXZj

Thus: ρ̂2sls =
∑L

j=1 π̂11j Ỹ
′Zj

S′MXPZS
, where Ỹ = MXY .

The IV estimator with only Zj as an instrument, but including the covariates Xi,

is:

ρ̂IV,j =
Y ′MXZj
S ′MXZj

=
Ỹ ′Zj

S ′MXZj

Thus:

ρ̂2sls =
L∑

j=1

π̂11j
S ′MXZj
S ′MXPZS︸ ︷︷ ︸

:=wj

ρ̂IV,j

Noticing that S ′MXPZS = S ′MXZπ̂11 =
∑L

j=1 π̂11jS
′MXZj, it follows that the wj

sum to one.
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IV in groups and 2SLS
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Setup: getting to the grouped regression

Consider a model in which

Yi = α + ρSi + ηi (1)

where ρ is the parameter of interest and C(Si, ηi) 6= 0. Suppose we have a binary

instrument Zi that is uncorrelated with ηi. We know from our IV analysis thus far that

we can identify ρ, since it is equal to C(Yi, Zi)/C(Si, Zi). Since Zi is Bernoulli (i.e.

binary), this ratio of covariances can also be written in “Wald” form:

ρ =
E[Yi|Zi = 1]−E[Yi|Zi = 0]

E[Si|Zi = 1]−E[Si|Zi = 0]
(2)

In the military draft example (Angrist 1990), Yi is earnings, Si ∈ {0, 1} is veteran status,

and Zi is eligibility for the draft. In practice, Zi is itself a function of an individual’s

draft lottery number Ri, by the relation Zi = 1(Ri ≤ C), where C was a draft eligibility

“ceiling” that varied by cohort year (e.g. 195 for men born in 1950, 125 for men born

in 1951, etc.). We’ll focus on a single cohort, so we can treat C as constant across all

individuals.

We start by observing that Zi inherits its validity as an instrument from the fact that

the underlying draft lottery number Ri is random, and hence

Ri ⊥ ηi =⇒ C(f(Ri), ηi) = 0

for any function f(·). We think of Ri as random because it corresponds to a random

ordering of birthdays. Another property we can derive from Ri being independent of ηi

is that E[ηi|Ri = r] = 0 for any possible draft number r.1 This suggests that instead of

using draft-eligibility to estimate Eq. (2), we can also identify ρ from the relation

ρ =
E[Yi|Ri = r]−E[Yi|Ri = r′]

E[Si|Ri = r]−E[Si|Ri = r′]
(3)

for any two values r, r′. To see that Equation (3) holds, substitute (1) into the expression

for the numerator: E[Yi|Ri = r]−E[Yi|Ri = r′].

Why bother with Eq (3), when we can just estimate (2)? The powerful thing about Eq.

(3) is that it holds for every pair of values r and r′. Finding a clever way to take advantage

of these multiple estimates for the same thing will improve the statistical efficiency of

1Really independence itself just implies that E[ηi|Ri = r] = E[ηi] for all r, but we can take the unconditional expectation

to be zero by absorbing it into α in Eq. (1).
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our estimator. In practice, that allows us to have more confidence that our finite sample

estimates are close to the population quantity of interest ρ. However, we note that while

Eq. (3) will lead to many estimators for the same quantity ρ under the assumption of

the model in Equation (1), this will generally not be the case for IV with heterogeneous

treatment effects (essentially, a setting where ρi can vary by individual). We’ll talk about

this context in the next lecture.

Suppose that we estimated Equation (3) for every r, r′ pair, leading to J(J − 1) esti-

mators

ρ̂r,r′ =
Ê[Yi|Ri = r]− Ê[Yi|Ri = r′]

Ê[Si|Ri = r]− Ê[Si|Ri = r′]
(4)

where J is the number of values in the support of R (which we take to be discrete as in the

draft example), and Ê is the empirical expectation function 1
N

∑N
j=1. It’s not immediately

obvious how one would combine these various estimators to get a really good single one,

e.g. if one was to add them up what weights should they use?

An alternative is inspired by observing that Equation (1) implies that

E[Yi|Ri = r] = α + ρE[Si|Ri = r] (5)

Thus, if we form empirical estimates of the conditional expectations: ȳr = 1
Nr

∑
i:Ri=r

Yi,

and s̄r = 1
Nr

∑
i:Ri=r

Si where Nr := | {i : Ri = r} |, then we could estimate ρ from a

regression on groups:

ȳr = α + ρs̄r + η̄r (6)

where we have one “observation” for each of the J groups, and η̄r = 1
Nr

∑
i:Ri=r

ηi.
2 Each

group corresponds to a value r of the instrumental variable Ri. Note that in Angrist

1990, a value of Ri in the data really corresponds to five different draft lottery numbers,

which have been aggregated by bins of five consecutive numbers (for privacy reasons).

Thus, the number J of groups in our analysis is only 70, rather than 365. However,

this doesn’t change the structure of our discussion at all: the following holds with this

pre-aggregation just as it would with a unique group for every birthdate.

The grouped regression is 2SLS

In Equation (6), it’s apparent that each of our “observations” (a value of r) will correspond

with a different number Nr of actual observations from our data: the Nr folks who had

birthdays putting them in a single group r. Thus it’s natural that from a statistical

perspective, we should let a value of r for which Nr is high count more in the regression,

then a value of r for corresponding to only a few individuals.

This leads us to so-called generalized least squares (GLS), which is a generalization

of the OLS estimator: ρ̂OLS =
1
J

∑J
r=1 ȳr(s̄r−s̄)

1
J

∑J
r=1 s̄r(s̄r−s̄)

. When observations (in our regression, we

2Regression (6) does have measurement error in the dependent variable because s̄r 6= E[Si|Ri = r] in a finite sample,

but the resulting bias will go away asymptotically, so the estimator will still be consistent.
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have one “observation” for each of the J groups) are independent of one another (as they

are in our case), GLS simply adds a weight wr to each observation:

ρ̂GLS =

∑J
r=1wrȳr(s̄r − s̄w)∑J
r=1wrs̄r(s̄r − s̄w)

where s̄w =
∑J

r=1wrs̄r.

It turns out that GLS is better than OLS (in a statistical sense) whenever there is

heteroskedasticity in the data. In particular, one can show that when the errors η̄r are

uncorrelated across r, GLS with weights wr (often referred to as weighted least squares)

is the best linear unbiased estimator of ρ (in the sense of minimizing the asymptotic

variance of the estimator), when wr ∝ V(η̄r|s̄r) and the weights are normalized to sum

to one. This expression means that we want to make the weights proportional to the

inverse of the variance of the error term in Regression (6) for a given group r. Since η̄r

is simply an average of Nr ηi’s, it’s easy to work out that if the ηi’s all have the same

variance σ2
η, then the weights should be

wr =
Nr/ση∑J
r=1 Nr/ση

= Nr/N

One of the great things about assuming homoskedasticity is that we don’t even need to

know the value of ση to implement GLS, since it simply cancels out in the weights. We

will maintain this assumption that there exists some ση such that V(η̄r|s̄r) = σ2
η for all r.

Note also that with wr = Nr/N :

J∑

r=1

wrȳr =
1

N

J∑

r=1

��Nr
1

��Nr

∑

i:Ri=r

Yi =
1

N

N∑

i=1

Yi = ȳ

Thus:

ρ̂GLS =

∑J
r=1wrȳrs̄r − ȳs̄w∑J
r=1wrs̄r(s̄r − s̄w)

=

∑J
r=1 wrs̄r(ȳr − ȳ)∑J
r=1wrs̄r(s̄r − s̄w)

=

∑J
r=1Nrs̄r(ȳr − ȳ)∑J
r=1 Nrs̄r(s̄r − s̄)

(7)

where in the last step we’ve used that with wr = Nr/N , s̄w = s̄.

The final form of Eq (7) will be convenient for what follows, in which we will see that

ρ̂GLS is equivalent to a 2SLS estimator where we use a group indicator 1(Ri = r) for each

value r of Ri as a separate instrument to estimate ρ. Nifty! To see this, let Ŝi indicate

the population fitted value from a regression of Si on a full set of group indicators, the

first stage:

Ŝi = π10 + π111(Ri = 1) + · · ·+ π1J1(Ri = J)

To indicate the sample estimate, we’ll put a hat on the π’s and a second hat on Ŝr (why

not wear two hats?). This regression is saturated, we know that it will recover the CEF:

π1r = E[Si|Ri = r]. The estimated version
ˆ̂
Si will simply be the sample mean s̄r of Si
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within the group (i.e. value of Ri) to which observation i belongs. We can write this as:
ˆ̂
Si =

∑J
r=1 1(Ri = r)s̄r. Using this:

ρ̂2SLS =
Ĉ(Yi,

ˆ̂
Si)

V̂ (
ˆ̂
Si)

=
J∑

r=1

s̄r
Ĉ(Yi,1(Ri = r))

V̂ (
ˆ̂
Si)

=
1

V̂ (
ˆ̂
Si)

J∑

r=1

s̄r

{
Ê[Yr1(Ri = r))]− Ê[Yi]Ê[1(Ri = r)]

}

=
1

V̂ (
ˆ̂
Si)

J∑

r=1

P̂ (Ri = r)s̄r

(
Ê[Yi|Ri = r)]− Ê[Yi]

)

=
1

NV̂ (
ˆ̂
Si)

J∑

r=1

Nrs̄r (ȳr − ȳ)

where ȳ is the unconditional mean of Yi in the sample. Comparing with Eq (7), we see

that to finish demonstrating that ρ2SLS = ρGLS, we only need to show that

NV̂ (
ˆ̂
Si) =

J∑

r=1

Nrs̄r(s̄r − s̄)

To see this, substitute
ˆ̂
Si =

∑J
r=1 1(Ri = r)s̄r into the empirical variance:

V̂ (
ˆ̂
Si) =

1

N

N∑

i=1

(
J∑

r=1

1(Ri = r)s̄r

)2

−
(

1

N

N∑

i=1

J∑

r=1

1(Ri = r)s̄r

)2

=
1

N

J∑

r=1

N∑

i=1

1(Ri = r)s̄2
r −

(
1

N

J∑

r=1

N∑

i=1

1(Ri = r)s̄r

)2

=
1

N

J∑

r=1

Nrs̄
2
r −

(
1

N

J∑

r=1

Nrs̄r

)2

=
1

N

J∑

r=1

Nrs̄
2
r − s̄2 =

1

N

J∑

r=1

Nrs̄r(s̄r − s̄)
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The LATE theorem

We’ll focus on the case of a single binary treatment and a binary instrument. Recall that

the assumptions of the LATE model are that for all units i (i.e. with probability one):

1. Independence: (Yi(d, z), Di(z)) ⊥ Zi for all d, z

2. Exclusion: Yi(d, z) = Yi(d) for all d, z

3. Monotonicity: Di(1) ≥ Di(0)

where Yi(d, z) indicates the potential outcome where treatment status is d ∈ {0, 1} and
the instrument is equal to z ∈ {0, 1}, while Di(z) indicates a potential treatment: what

the value of treatment for unit i would be when the instrument takes value z ∈ {0, 1}.
Independence is our assumption that the instrument is as good as randomly assigned,

and is thus statistically independent of heterogeneity across individuals’ potential out-

comes and potential treatments. Exclusion states that Yi(d, z) doesn’t depend on z and

is our assumption that Z only effects Y through D. Thus, the potential outcome Yi(d, z)

doesn’t change with z if d is held fixed. We could write Assumptions 1 and 2 together as

(Yi(0), Yi(1), Di(0), Di(1)) ⊥ Zi

Monotonicity states that the causal effect of the instrument on treatment status is to

move all units weakly in the same direction. That is, we can’t have some unit i for whom

Di(0) = 0 and Di(1) = 1, and some other unit j for whom Dj(0) = 1 and Dj(1) = 0. The

direction ≥ of the weak inequality in Assumption 3. is arbitrary, if the instrument taking

a value of one were to move all units out of treatment or not at all (i.e. a ≤ instead of

≥), we could simply redefine the instrument by swapping the labels of z = 0 and z = 1.

Given the normalization that Di(1) ≥ Di(0) for all i (rather than Di(1) ≤ Di(0)),

the monotonicity assumption implies that we can separate all units i into three mutually

exclusive categories:

Name Meaning

“never-takers” Di(0) = 0 & Di(1) = 0

“always-takers” Di(0) = 1 & Di(1) = 1

“compliers” Di(0) = 0 & Di(1) = 1

((((“defiers”
((((

((((
(((

Di(0) = 1 & Di(1) = 0

1



where we’ve crossed out defiers, because by monotonicity we assume they do not exist.

The names given in this table give intuitive meaning to the three groups: never-takers

would not receive treatment regardless of the value of the instrument, always-takers would

receive treatment regardless of the instrument, and compliers take the treatment if and

only if the instrument takes a value of one.

Now consider the IV estimand ρIV :

ρIV =
C(Y, Z)

C(S,Z)
=

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]

(the equality can be shown with some simple algebra).

Consider the term E[Yi|Zi = 1]. Note that Di(1) and Di(0) are each random variables,

so by the law of iterated expectations:

E[Yi|Zi = 1] = pnevertaker · E[Yi|Zi = 1, Di(0) = 0, Di(1) = 0]

+ palwaystaker · E[Yi|Zi = 1, Di(0) = 1, Di(1) = 1]

+ pcomplier · E[Yi|Zi = 1, Di(0) = 0, Di(1) = 1]

where by independence assumption P (Di(0) = 0, Di(1) = 0|Zi = z) doesn’t depend

on z and let pnevertaker be the unconditional probability P (Di(0) = 0, Di(1) = 0) (and

similarly for always-takers and compliers). Now, having conditioned on Zi as well as a

unit’s potential treatments, we know their realized treatment Di = Di(Zi), and hence

which potential outcome we are observing in Yi:

E[Yi|Zi = 1] = pnevertaker · E[Yi(0)|Zi = 1, Di(0) = 0, Di(1) = 0]

+ palwaystaker · E[Yi(1)|Zi = 1, Di(0) = 1, Di(1) = 1]

+ pcomplier · E[Yi(1)|Zi = 1, Di(0) = 0, Di(1) = 1]

Following the same logic for E[Yi|Zi = 0]

E[Yi|Zi = 0] = pnevertaker · E[Yi(0)|Zi = 0, Di(0) = 0, Di(1) = 0]

+ palwaystaker · E[Yi(1)|Zi = 0, Di(0) = 1, Di(1) = 1]

+ pcomplier · E[Yi(0)|Zi = 0, Di(0) = 0, Di(1) = 1]

Now, the great thing about having replaced the Yi’s by the corresponding potential out-

comes is that the potential outcomes themselves (as well as the potential treatments) are

independent of the instrument Zi, so we can drop the conditioning on Zi.
1 Abbreviating

1Consider a term E[Yi(d)|Zi = z,Di(0) = d,Di(1) = d∗] with specific values of d, z and z∗. Really what we’re using is

the joint independence condition (Yi(d), Di(0), Di(1)) ⊥ Zi. Assume for simplicity that Yi(d) has discrete support. Then

E[Yi(d)|Zi = z,Di(0) = d,Di(1) = d∗] =
∑

y

yP (Yi(d) = y|Zi = z,Di(0) = d,Di(1) = d∗) =
∑

y

y
P (Yi(d) = y, Zi = z,Di(0) = d,Di(1) = d∗)

P (Zi = z,Di(0) = d,Di(1) = d∗)

By the independence condition this is equal to

∑

y

y��
��P (Zi = z)P (Yi(d) = y,Di(0) = d,Di(1) = d∗)

���
�

P (Zi = z)P (Di(0) = d,Di(1) = d∗)
=

∑

y

yP (Yi(d) = y|Di(0) = d,Di(1) = d∗) = E[Yi(d)|Di(0) = d,Di(1) = d∗]
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pnevertaker, palwaystaker, and pcomplier as pn, pa and pc respectively, we have that:

E[Yi|Zi = 1] = pn · E[Yi(0)|Di(0) = 0, Di(1) = 0]

+ pa · E[Yi(1)|Di(0) = 1, Di(1) = 1]

+ pc · E[Yi(1)|Di(0) = 0, Di(1) = 1]

and
E[Yi|Zi = 0] = pn · E[Yi(0)|Di(0) = 0, Di(1) = 0]

+ pa · E[Yi(1)|Di(0) = 1, Di(1) = 1]

+ pc · E[Yi(0)|Di(0) = 0, Di(1) = 1]
Thus, in the difference, the always-taker and never-taker terms cancel out, leaving:

E[Yi|Zi = 1]− E[Yi|Zi = 0] = pcomplier (E[Yi(1)|Di(0) = 0, Di(1) = 1]− E[Yi(0)|Di(0) = 0, Di(1) = 1])

= pcomplierE[Yi(1)− Yi(0)|Di(0) = 0, Di(1) = 1]

Often the event Di(0) = 0, Di(1) = 1 is written as Di(1) > Di(0), which is equivalent.

Now consider in the terms in the denominator of ρIV . By similar steps, E[Di|Zi = 1]

ends up just being the probability that a unit is an always-taker or a complier:

E[Di|Zi = 1] = pnevertakerE[Di|Zi = 1, Di(0) = Di(1) = 0]

+ palwaystakerE[Di|Zi = 1, Di(0) = Di(1) = 1]

+ pcomplierE[Di|Zi = 1, Di(1) > Di(0)]

= pnevertaker ∗ 0 + palwaystaker ∗ 1 + pcomplier ∗ 1

= palwaystaker + pcomplier

And by similar steps:

E[Di|Zi = 0] = palwaystaker

Thus E[Di|Zi = 1]− E[Di|Zi = 0] = pcomplier and we have finally the result that

ρIV = E[Yi(1)− Yi(0)|Di(1) > Di(0)]

Latent-index models

To get the LATE theorem, we have made assumptions about potential outcomes/treat-

ments and their distributions, but we haven’t committed to an explicit model of how

these outcomes come about. An alternative/complimentary approach might characterize

the selection process by constructing a “structural” model of who chooses treatment.

For instance, we might think that each unit i is a utility-maximizing agent who’s utility

is

ui =




γ0 + γ1Zi if they receive treatment (i.e. Di = 1)

νi if they don’t (i.e. Di = 0)

Agents will choose treatment when it gives them higher utility, and so they will choose:

Di = 1(γ0 + γ1Zi > νi)

where we’ve assumed that ties go to non-treatment.

3



In this model, heterogeneity among Di comes from agent’s having different values of

the instrument, as well as a different “random utility” νi in the non-treatment state. If

γ1 is positive, the instrument incents individuals towards treatment, since:

Di(0) = 1(γ0 > νi) and Di(1) = 1(γ0 + γ1 > νi)

so the monotonicity condition is immediately satisfied: Di(1) ≥ Di(0). If γ1 were nega-

tive, we’d have monotonicity in the other direction.
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Moving beyond the mean

Average treatment effects are a convenient and intuitive summary of heterogeneous treat-

ment effects. In the potential outcomes notation, we typically define individual i’s treat-

ment effect as ∆i = Y1i − Y0i. Recall for example that the local average treatment effect

LATE = E[∆i|D1i > D0i]

is identified (i.e. can be estimated consistently from the data) when we have an instru-

mental variable satisfying the LATE model assumptions.

Great! Nevertheless, when treatment effects ∆i are highly heterogeneous within the

population of compliers, the average could be misleading. In the extreme case, imagine

that treatment has a huge effect just for some small subgroup of the compliers. Then

we might see a substantially positive LATE, even if treatment has a very small or even

negative effect for most of the compliers. Is there any way to empirically distinguish this

case from one in which all the compliers had the same treatment effect (which would then

be equal to the LATE)?

Estimating the marginal distributions of potential outcomes

It turns out that we have a great tool at our disposal to “move beyond the mean” –

under the standard LATE assumptions of independence, exclusion, and monotonicity,

we can actually determine the effect of treatment on the whole distribution of Y among

compliers. Even greater!

The result is based on two simple tricks: the first is that CDF of a random variable

Y can be written as an expectation: FY (y) = P (Yi ≤ y) = E[1(Yi ≤ y)]. The second is

that if we want to learn about the distribution of one particular potential outcome, say

Y1, we can slip in a Di into this expression:

E[Di1(Yi ≤ y)] = P (Di = 1)E[1(Yi ≤ y)|Di = 1]

= P (Di = 1)P (Y1i ≤ y|Di = 1) = P (Di = 1)FY1|D=1(y)

Thus the LHS, which can be estimated from the data, tells us something about the

conditional distribution of the Y1 potential outcome, up to a proportionality that we can

also estimate.

This intuition underlies a more general result by Abadie (2003), which states that:

1



Lemma 2.1 from Abadie (2003). Let g(y) be any function at assume that we have the

standard LATE assumptions of independence, exclusion and monotonicity (as defined in

the previous set of recitation notes), and that we have a “non-zero first stage”(P (Zi =

1) ∈ (0, 1) and P (D1i > D0i) > 0). Then:

E[g(Y1i)|D1i > D0i] =
E[Dig(Yi)|Zi = 1]− E[Dig(Yi)|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]

and

E[g(Y0i)|D1i > D0i] =
E[(1−Di)g(Yi)|Zi = 1]− E[(1−Di)g(Yi)|Zi = 0]

E[(1−Di)|Zi = 1]− E[(1−Di)|Zi = 0]

The result implies that if we pick some possible value y for Yi, and let g(Yi) = 1[Yi ≤ y],

then by the Lemma it follows that the CDF of Y0 and Y1 conditional on being a complier

are each identified:

FY1|D1>D0(y) =
E[Di1(Yi ≤ y)|Zi = 1]− E[Di1(Yi ≤ y)|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]

and

FY0|D1>D0(y) =
E[(1−Di)1(Yi ≤ y)|Zi = 1]− E[(1−Di)1(Yi ≤ y)|Zi = 0]

E[(1−Di)|Zi = 1]− E[(1−Di)|Zi = 0]

where for clarity, by FYd|D1>D0(y) we mean P (Ydi ≤ y|D1 > D0) for each d ∈ {0, 1}.

Note that this type of result isn’t specific to the IV research design: you might be inter-

ested to know that something analogous can also be done in an RDD setup (see Frandsen

et al. 2012), and under more complicated assumptions in a diff-in-diff design too (Call-

away 2015).

The RHS of the above two equations can be estimated from the data for each value of

y. If we repeat this computation for all values of y, then we know the whole distribution

function of each potential outcome, conditional on being a complier.

In the slides, we saw how this can be used to plot the complier distributions of Y1 and Y0

as densities in the charter school example. We saw in these figures that the charter school

treatment appears to move the whole distribution of test scores to the right, consistent

with the idea that the treatment effect is spread somewhat broadly among the compliers

and not concentrated on just a few of them. If that were the case, we’d expect the Y1

density to look like the Y0 density in most places, but with one “piece” moved to the right.

Interlude: quantile treatment effects:

One thing that having FY1|D1>D0(y) and FY0|D1>D0(y) lets us compute is so-called

quantile treatment effects (QTEs) among the compliers. For notational simplicity,

let’s drop the conditioning on being a complier: Di1 > Di0. The (unconditional)

2



QTE is defined as

QTE(u) = F−1
1 (u)− F−1

0 (u)

where F−1
d is the quantile function associated with potential outcome Yd:

F−1
d (u) = inf{y : P (Yid ≤ y) ≥ u} is the uth quantile of Yd, and u is a specified

quantile level u ∈ (0, 1). For example, if we measured test scores in points in

the charter school example, and we found that QTE(0.5) = 10 (I just made up

this number), then this would mean that the median outcome (test score) among

compliers when they go to a KIPP school is 10 points higher than the median

outcome among compliers when they do not go to a KIPP school. Knowing the

QTE for all levels u is a way to summarize the difference between the two density

curves plotted together in the slides.

Note that the QTEs are causal: they do tell us about the difference between the

distribution of Y1 and Y0 (as opposed to the distributions Y1|Di = 1 and Y1|Di = 0,

which are always identified in an observational study, but might be confounded by

selection/endogeneity). Nevertheless, the QTEs do not tell us directly about the

individual treatment effects ∆i or their distribution, without further assumptions.

The reason is that unlike the expectation function, the quantile function is not

linear–thus: QTEi(u) 6= F−1
∆ (u). There is a notable exception: if we assume that

each students’ rank were the same in both the treated and untreated distributions:

F0(Y0i) = F1(Y1i) for all i, then the u-quantile treatment effect is equal to the

treatment effect for a student with rank u. However, this is a strong assumption

that’s hard to justify in general.

Without additional assumptions such as this rank invariance assumption, the

marginal distributions F1(y) and F0(y) do generally place bounds on the distri-

bution of treatment effects, which are sometimes informative. See for example Fan

and Park (2009).

Proving the lemma from Abadie (2003)

Consider the first equality:

E[g(Y1i)|D1i > D0i] =
E[Dig(Yi)|Zi = 1]− E[Dig(Yi)|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
(1)

Since each term in the numerator is conditioned on a value of Zi, we can rewrite it as:

E[D1ig(YD1ii)|Zi = 1]− E[D0ig(YD0ii))|Zi = 0]

where the notation YD1ii indicates either Y1i or Y0i depending on the value of D1i, and

so on (one way to express it is YD1ii = D1iY1i + (1−D1i)Y0i). Now, using independence

3



between (Y0i, Y1i, D0i, D1i) and Zi, we can drop the conditioning and our expression is

equal to:

E[D1ig(YD1ii)]− E[D0ig(YD0ii)] = E[D1ig(YD1ii)−D0ig(YD0ii)]

Now note that when D1i = D0i, the quantity D1ig(YD1ii) −D0ig(YD0ii) is equal to zero.

Thus, if we apply LIE over the random variable 1(D1i = D0i), we have that:

E[D1ig(YD1ii)−D0ig(YD0ii)] = P (D1i 6= D0i)E[D1ig(YD1ii)−D0ig(YD0ii)|D1i 6= D0i] + 0

= P (D1i > D0i)E[D1ig(YD1ii)−D0ig(YD0ii)|D1i > D0i]

= P (D1i > D0i)E[g(Y1i)− 0|D1i > D0i]

where to move from the first line to the second line we use that by the monotonicity there

are no defiers, so the event D1i 6= D0i is the same as the event D1i > D0i, and to move

to the third line we replace D1i and D0i by their values for compliers.

Now note that as with our original proof of the LATE theorem (see last set of notes),

E[Di|Zi = 1]− E[Di|Zi = 0] = P (D1i > D0i), and thus we’ve shown Eq. (1).

Recall that the second result of the Lemma is that:

E[g(Y0i)|D1i > D0i] =
E[(1−Di)g(Yi)|Zi = 1]− E[(1−Di)g(Yi)|Zi = 0]

E[(1−Di)|Zi = 1]− E[(1−Di)|Zi = 0]
(2)

here the proof proceeds in exactly the same way. By the same steps, we can show that

the numerator equals

P (D1i > D0i)E[(1−D1i)g(YD1ii)− (1−D0i)g(YD0ii)|D1i > D0i]

= −P (D1i > D0i)E[g(Y0i)|D1i > D0i]

and the denominator equals −P (D1i > D0i), so the second result is proved.
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Motivation: fuzzy regression discontinuity with constant effects

In class we introduced the fuzzy regression discontinuity design (RDD), in which compli-

ance with the mechanism Di = 1(Xi ≥ c) is not perfect: there are some units that are

untreated but above the cutoff (Xi ≥ c,Di = 0), and some units that are treated but are

below the cutoff (Xi < c,Di = 1). However, the probability of treatment is assumed to

be discontinuous at the cutoff: limx↓cE[Di|Xi = x] > limx↑cE[Di|Xi = x].

Let’s start by assuming that all units have the same treatment effect, that is: Yi(1) =

Yi(0)+ρ for all units i. This is a restrictive assumption, but it will help us motivate what

it is that we want to estimate in a fuzzy regression discontinuity. It turns out that this

same quantity–given in Eq. (1)–yields an average treatment effect when effects are not

constant (see next section). Let

E[Di|Xi = x] =




g0(x) x < c

g1(x) x ≥ c

where g1(c)− g0(c) = π > 0. Then, since Yi = Yi(0) + ρDi:

E[Yi|Xi = x] =




E[Yi(0)|Xi = x] + ρg0(x) x < c

E[Yi(0)|Xi = x] + ρg1(x) x ≥ c

Thus, assuming that E[Yi(0)|Xi = x] is continuous at x = c, the discontinuity limx↓cE[Yi|Xi =

x]− limx↑cE[Yi|Xi = x] in the CEF of X at the cutoff is equal to πρ, and thus the treat-

ment effect ρ is:

ρ =
limx↓cE[Yi|Xi = x]− limx↑cE[Yi|Xi = x]

limx↓cE[Di|Xi = x]− limx↑cE[Di|Xi = x]
(1)

We can estimate ρ from this equality, since Yi, Xi, and Di are all observed.

A LATE model for the regression discontinuity

What is identified in the fuzzy research design when treatment effects can vary by individ-

ual? We’ll see here that just as with instrumental variables, we can write down a LATE

model in which we have a notion of compliers and fuzzy RDD estimates a treatment effect

among them (in particular, we’ll learn about the treatment effect for compliers close to

the threshold c). In these notes I’ll follow a formalization of the fuzzy RDD that can

1



be found in, for example, the Frandsen, Frölich and Melly paper cited in the last set of

slides.

The key piece of notation that we’ll need is to model the assignment mechanism.

For each individual i, we’ll define a potential treatment for each value of the running

variable: di(x). A unit’s realized treatment assignment will be this function evaluated

at their actual value of the running variable: Di = di(Xi). Just as we discussed for the

sharp design in class, we think of this assignment rule as deterministic: once you know

Xi, you know Di. The only difference is now we are letting the rule vary by individual.1

However, just as with IV, we’ll make a monotonicity assumption about the way di(x)

behaves at the cutoff. Define D+
i = limx↓c di(x) and D−i = limx↑c di(x). Our monotonicity

assumption is that:

Monotonicity: P (D+
i ≥ D−i ) = 1

This assumption says that for no individual i is the limit of their treatment assignment

function from the left equal to one and the limit of their treatment assignment function

from the right equal to zero–these would be “defiers”(recall that di(x) ∈ {0, 1}). Just as

with IV, this implies that we can separate the population into three groups: always-takers,

never-takers, and compliers.

1. Always-takers: D−i = D+
i = 1

2. Never-takers: D−i = D+
i = 0

3. Compliers: D−i = 0, D+
i = 1

The second main assumption we’ll make is that all distributions of potential outcomes and

potential treatments are continuous at the threshold, conditional on compliance group:

Continuity: E[Yi(1)|Xi = x,D+
i = d,D−i = d′], E[Yi(0)|Xi = x,D+

i = d,D−i = d′],

and P (D+
i = d,D−i = d′|Xi = x) are continuous at x = c for all d, d′ ∈ {0, 1}

The continuity assumption captures the idea that everything that is discontinuous at the

cutoff is due to treatment, and in particular reflects the response of compliers to crossing

the threshold. This results in the following result:

Theorem. If continuity and monotonicity hold, and P (D+
i > D−i ) > 0 (i.e. there

are some compliers) along with some regularity conditions, then:

limx↓cE[Yi|Xi = x]− limx↑cE[Yi|Xi = x]

limx↓cE[Di|Xi = x]− limx↑cE[Di|Xi = x]
= E[Yi(1)− Yi(0)|Xi = c,D+

i > D−i ] (2)

This theorem tells us that from the joint distribution of (Yi, Xi, Di), which lets us com-

pute the LHS of this expression, we can identify the average treatment effect among

compliers close to the cutoff.2 This result can be extended to look at things other than
1The function di(x) can be correlated with all sorts of things about the individual–there’s no restriction about that.
2Since Xi is taken to be continuously distributed, being at the cutoff is a measure zero event. So in practice we should

interpret this as compliers that are very close to the cutoff, or more formally, we can identify the limit of the average

treatment effect among compliers within some bandwidth of the cutoff, as that bandwidth goes to zero
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the average treatment effect, e.g. quantile treatment effects (see the Frandsen, Frölich

and Melly paper).

Note also that this theorem nests the sharp RDD as a special case. In the sharp RDD

there are no always-takers or never-takers, and the denominator of Eq (2) is simply

one. In the sharp case, since all units are compliers, we are learning about the average

treatment effect among all units close the cutoff. However, there still may be difficulties

generalizing this result to units that are far from the cutoff (since treatment effects could

be correlated with Xi).

Proof of the result

To clean up notation, for any function f(x) let f(c+) := limx↓c f(x) and f(c−) :=

limx↑c f(x), so D+
i = di(c

+), D−i = di(c
−), etc. Let’s also let pnevertaker|x = P (D+

i =

D−i = 0|Xi = x), pcomplier|x = P (D+
i > D−i |Xi = x) etc.

Consider the term E[Yi|c+] = limx↓cE[Yi|Xi = x] in the numerator of Eq (2). By the law

of iterated expectations:

E[Yi|c+] = pnevertaker|c · E[Yi|Xi = c+, D+
i = D−i = 0]

+ palwaystaker|c · E[Yi|Xi = c+, D+
i = D−i = 1]

+ pcomplier|c · E[Yi|Xi = c+, D+
i > D−i ]

where we’ve used that the probabilities of being in any of the compliance groups pnevertaker|x

etc. are continuous at x = c. However, since we haven’t yet turned the Yi into potential

outcomes, we’ve kept the CEFs expressed as limits (with c+), since Yi itself is not con-

tinuous at the cutoff. But, since we’ve conditioned on D+
i and D−i , we know the realized

treatment in each term, so:

E[Yi|c+] = pnevertaker|c · E[Yi(0)|Xi = c,D+
i = D−i = 0]

+ palwaystaker|c · E[Yi(1)|Xi = c,D+
i = D−i = 1]

+ pcomplier|c · E[Yi(1)|Xi = c,D+
i > D−i ]

where since the potential outcome CEF’s are continuous at c, we can replace c+ with c

after we’ve changed each Yi to the corresponding potential outcome.

Following the same logic for E[Yi|Zi = 0]

E[Yi|c−] = pnevertaker|c · E[Yi(0)|Xi = c,D+
i = D−i = 0]

+ palwaystaker|c · E[Yi(1)|Xi = c,D+
i = D−i = 1]

+ pcomplier|c · E[Yi(0)|Xi = c,D+
i > D−i ]
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Thus, in the numerator of Eq (2): the always-taker and never-taker terms cancel out and:

E[Yi|c+]− E[Yi|c−] = pcomplier|c · E[Yi(1)− Yi(0)|Xi = c,D+
i > D−i ]

The denominator of Eq (2) is exactly pcomplier|c since by continuity

E[Di|c+]− E[Di|c−] =
(
(((((((palwaystaker|c+ + pcomplier|c+

)
−(((((((palwaystaker|c− = pcomplier|c

and the theorem is proved.

Note how similar this proof was for the proof we presented for IV LATE, almost all the

steps were in perfect analogy. Thus we see that in a fuzzy RDD, continuity plays the role

of the independence assumption, and the two values of our binary instrument are replaced

with limits from the right or the left of the cutoff. This formal analogy is so strong that

we can literally use Zi = 1(xi ≥ c) as an instrument for treatment and estimate Eq (2)

by 2SLS, as described in the slides.
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Causal effects under unconfoundedness

Suppose that we’re interested causal effects of a binary treatment Di and we beleive that

an unconfoundedness condition holds: (Y0i, Y1i) ⊥ Di|Xi where Y0i and Y1i are potential

outcomes and Xi are a set of variables we observe. Under this assumption, the average

treatment effect will be

E [Y1i − Y0i] = E [E [Y1i − Y0i|Xi, Di]] (L.I.E)

= E [E [Y1i|Xi, Di]]−E [E [Y0i|Xi, Di]]

= E [E [Y1i|Xi, Di = 1]]−E [E [Y0i|Xi, Di = 0]] (unconfound.)

= E [E [Yi|Xi, Di = 1]]−E [E [Yi|Xi, Di = 0]]

= E [g(1, Xi)− g(0, Xi)]

where the functions g(0, Xi) and g(1, Xi) are defined as g(d,Xi) = E [Yi|Di = d,Xi].

These expectations can in principle be evaluated from our data, which let us learn the

joint distribution of (Yi, Di, Xi). Yay!

Problem is: if Xi is high dimensional, as we might imagine in cases where the uncon-

foundedness assumption is plausible, we may have a hard time actually estimating these

conditional expectations, because of the curse of dimensionality. We may be forced to

make semiparametric or parametric restrictions, which could be wrong.

Note that there is another approach to the average treatment effect we might also

consider using, that is valid under unconfoundedness:

E

[
DiYi
m(Xi)

− (1−Di)Yi
1−m(Xi)

]
= E

[
E [DiYi|Xi]

m(Xi)
− E [(1−Di)Yi|Xi]

1−m(Xi)

]
(L.I.E)

= E

[
E [DiYi|Xi]

m(Xi)
− E [(1−Di)Yi|Xi]

1−m(Xi)

]

= E

[
P (Di = 1|Xi)E [1 · Yi|Xi, Di = 0] + 0

m(Xi)

−0 + P (Di = 0|Xi)E [1 · Yi|Xi, Di = 0]

1−m(Xi)

]

= E

[

��������P (Di = 1|Xi)

m(Xi)
E [Y1i|Xi, Di = 1]−

��������P (Di = 0|Xi)

1−m(Xi)
E [Y0i|Xi, Di = 0]

]

= E [E [Y1i|Xi]]−E [E [Y0i|Xi]] (unconfound.)

= E [Y1i − Y0i]

1



where m(x) = E [Di|Xi = x] is a propensity score function, which can in principle be

computed from the data. The above expression, which is like the population version

of “re-weighting” each observation by the inverse of its propensity score, is merely a

different way of expressing the same quantity as in the first regression-based approach,

and suggests a different route towards estimating it.

However, we have a similar problem here, which is that the CEF m(x) may be hard

to estimate if x is very high dimensional, and we may introduce misspecification bias if

we impose restrictions intended to improve estimation.

The doubly-robust approach

Now consider an alternative estimation approach, based on the following equality:

E [Y1i − Y0i] = E

[
g(1, Xi)− g(0, Xi) +

Di(Yi − g(1, Xi))

m(Xi)
− (1−Di)(Yi − g(0, Xi))

1−m(Xi)

]

(this equation can be verified with L.I.E and the unconfoundedness assumptions, similar

to the steps above for the propensity score re-weighting calculation).1

To implement this approach, we’d need estimators of the g(d, x) functions as well as

the propensity score function m(x), but with them we could estimate E [Y1i − Y0i] by

θ̂ =
1

n

n∑

i=1

{
ĝn(1, Xi)− ĝn(0, Xi) +

Di(Yi − ĝn(1, Xi))

m̂n(Xi)
− (1−Di)(Yi − ĝn(0, Xi))

1− m̂n(Xi)

}

=
1

n

n∑

i=1

{
ĝn(1, Xi) +

Di(Yi − ĝn(1, Xi))

m̂n(Xi)

}
− 1

n

n∑

i=1

{
ĝn(0, Xi) +

(1−Di)(Yi − ĝn(0, Xi))

1− m̂n(Xi)

}

Let δdn(x) be the error in our estimate of the function g(d, x), i.e. g(d, x) = ĝn(d, x)+δdn(x),

and similarly let m(x) = m̂n(x) + ηn(x). Furthermore let εi be the difference between Yi

and it’s conditional expectation on Di and Xi: εi = Yi − g(Di, Xi), and similar for Di:

νi := Di −m(Xi). Call the first term in the above expression θ̂1, which is

θ̂1 =
1

n

n∑

i=1

{
g(1, Xi)− δ1n(Xi) +

(m̂n(Xi) + ηn(Xi) + νi)(�����ĝn(1, Xi) + δ1n(Xi) + εi −�����ĝn(1, Xi))

m̂n(Xi)

}

=
1

n

n∑

i=1

{
g(1, Xi)−����δ1n(Xi) +����δ1n(Xi) + εi +

(ηn(Xi) + νi)(δ
1
n(Xi) + εi)

m̂n(Xi)

}

Since the purely stochastic errors εi and νi are mean zero conditional on Xi, the terms

proportional to them will not contribute to this expression as the sample gets very large.

On the other hand, the functions ĝn(d, x) and m̂n(x) may be subject to specification

error, in which case δdn(x) and ηn(x) may not converge to zero asymptotically. Let δd(x) =

plimδd(x) and η(x) = plimηn(x). Then, under regularity conditions the probability limit

1Note, there is another version of this that is also valid, which starts from the propensity score approach and adds terms

like
Di−m(Xi)

m(Xi)
g(1, Xi) to achieve double-robustness.
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of θ̂1 is

θ̂1
p→ E

[
g(1, Xi) + εi +

(η(Xi) + νi)(δ
1(Xi) + εi)

m(Xi) + η(Xi)

]

= E

[
g(1, Xi) +E [εi|Xi] +

(η(Xi) +E [νi|Xi])(δ
1(Xi) +E [εi|Xi])

m(Xi) + η(Xi)

]

= E

[
g(1, Xi) +

η(Xi)δ
1(Xi)

m(Xi) + η(Xi)

]

Notice that if either ĝn(1, x) or m̂n(x) are consistent estimators for all z (i.e. δ1(x) = 0 or

η(x) = 0 for all x), then the second term will be xero, making θ̂1 consistent for E [g(1, Xi)].

That is, we can misspecify the model for the propensity score, or the CEF of the outcome

variable, just not both. Furthermore, if both models are misspecified, but the asymptotic

bias is small, then our doubly-robust estimator is only off by a factor that’s proportional

to the product of the two errors.

Naturally, all of the above carries through for the second term (the D = 0 term),

yielding the double robustness property for the full treatment effect estimator θ̂.
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