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Abstract

This paper studies the use of responses on ordered scales as an outcome in

causal inference, accounting for variation between individuals in the interpre-

tation of the response categories. When treatment variables are statistically

independent of both potential outcomes and individuals’ interpretations, the

conditional mean function of response category number given the treatments

identifies the signs of particular convex averages of causal effects. For exam-

ple, nonparametric regressions with continuous treatments capture mean effects

among individuals on the margin between successive response categories. While

magnitudes for one continuous treatment variable are alone not quantitatively

meaningful, comparisons between two such treatment variables are.
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Jean-William Laliberté, Simon Lee, Erzo Luttmer, Guy Mayraz, Max Norton, Bernard Salanié, Adam Rosen, Kevin Song,
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1 Introduction

Many survey questions ask respondents to choose from a set of two or more ordered

categories that lack clear definitions, leaving the interpretation of those categories to the

respondent. Examples include self-reported health status (SRHS), product or service

ratings, job satisfaction, and questions gauging satisfaction with life overall. Individuals’

responses are then often used as an outcome variable in research, frequently as a proxy

for some underlying latent variable of interest (e.g. true health in the case of SRHS).1

A key question for this practice is how “reporting functions”—the way that individuals

map that latent variable into one of the available response categories—impact conclusions

drawn from the data. Bond and Lang (2019) influentially show that even if individuals

share a common reporting function (but it is not ex-ante known to the researcher), av-

erages of the latent variable cannot be meaningfully compared between groups using

their responses, absent strong restrictions on the latent variable’s unobserved distribu-

tion. More fundamentally, if the response categories lack objective definitions, reporting

functions might vary between individuals, potentially confounding any attempt to study

relationships between explanatory variables and the latent variable.

This paper shows that the observed categorical responses can nevertheless be infor-

mative about causal relationships in which this latent variable is the outcome, despite

the dual threats of reporting functions being both (i) unknown to the researcher and (ii)

heterogeneous across respondents. I decompose differences in the observed distribution

of responses between covariate values into causal effects of those covariates on the latent

variable. To do so, I strengthen the familiar selection-on-observables assumption that one

or more explanatory variables are statistically independent of potential outcomes, adding

to it that those explanatory variables are also independent of heterogeneity in reporting

functions.

Concretely, I consider a general model of ordered response taking the form:

Ri = ri(Hi) = r(Hi, Vi)

Hi = hi(Xi) = h(Xi, Ui) (1)

where Hi ∈ RK reflects a set of unobserved latent variables, and Ri an observed response

mapped to a real number in some set R. For example, R = {0, 1} for a binary yes/no

question, or R = {0, 1, 2, 3, 4} for a question with five ordered response categories. I

focus in the main text on the case of a scalar latent variable, later generalizing to K > 1.

The function hi(x) in (1) denotes the potential outcomes of the latent variable for

individual i, indicating the value ofH that would occur if a vector of observed explanatory

variables X took each counterfactual value x. The function ri(h) represents individual i’s

1A broad class of this type of survey questions use so-called Likert scales: e.g. allowing responses such as “strongly
agree”, “agree” . . . “strongly disagree” to indicate agreement with a given statement, or to categorize quantities such as
frequencies (“often”, “sometimes”, . . . “almost never”). Hamermesh (2004) discusses the use of such outcomes in economics.
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reporting function, which I assume to be weakly increasing in h for each i. The random

vectors Ui and Vi parameterize heterogeneity across individuals in potential outcomes and

reporting functions, respectively. The main statistical assumption of the model is that

Xi ⊥⊥ (Ui, Vi), which I relax to conditional independence given control variables. The

researcher’s objective is to learn how hi(x) varies with x, observing only Ri and Xi.

One of my key results is that if X1i and X2i reflect two continuously distributed

components of the vector Xi, and R is associated with a set of integers, then

E[∂x2E[Ri|Xi]]

E[∂x1E[Ri|Xi]]
=

β̃2

β̃1

(2)

where β̃j reflects a convex weighted average across individuals of the causal effect of a

small change in the jth component ofX onH. In particular, β̃j averages the causal partial

derivative ∂xj
h(Xi, Ui) over individuals i who are on the margin between two response

categories in R.2 If the conditional expectation E[Ri|Xi] happens to be linear, then the

average derivative quantity E[∂xj
E[Ri|Xi]] on the LHS of (2) is simply the coefficient on

Xj in a linear regression of R on X. In this case, Eq. (2) affords a causal interpretation

to the ratio of OLS regression coefficients for two continuous treatments.

Despite a growing trend in papers that leverage natural experiments with subjective

outcome data,3 empiricists have lacked formal results such as Eq. (2) to interpret precisely

what is estimated by regressions in which subjectively-defined ordinal responses R are

used as the dependent variable. This paper helps to fill the gap by showing that when the

selection-on-observables research design is extended to include reporting-function hetero-

geneity, derivatives of the conditional expectation function of integer category numbers

on X reveal positive aggregations of the local causal effects of X on H.4 The weights in

this aggregation have an intuitive form but are importantly not under the researcher’s

control. This illuminates the underidentification of unweighted means of causal effects,

which correspond to the parameter analyzed by Bond and Lang (2019), when effects are

heterogeneous. My results show that mean regression can nonetheless remain a useful

tool for analyzing more general weighted averages of effects, without assuming cardinality

or interpersonal comparability of H.

Throughout the paper, I discuss results through an application to survey questions

that ask respondents about their overall satisfaction with life, and for ease of exposition

refer to the latent variable H as “happiness”.5 For example, the popular Cantril Ladder

question asks individuals to describe their satisfaction with life on an eleven point scale

2∂xjh(Xi, Ui) denotes ∂xjh(x, Ui) with xj the jth component of x, evaluated at x = Xi (and similarly for ∂xjE[Ri|Xi])
3Some prominent examples include Card et al. (2012), Benjamin et al. (2014), Lindqvist et al. (2020), Perez-Truglia

(2020), and Dwyer and Dunn (2022).
4I also show that when the researcher is interested in establishing correlations rather than causation, the same estimands

capture changes to the conditional quantile function of the underlying latent variable, without causal assumptions.
5This simplified language ignores e.g. distinctions between hedonic, affective and evaluative notions of well-being

(Deaton, 2018; Helliwell and Barrington-Leigh, 2010).
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from 0 to 10.6 Questions like this about general well-being motivate treating the latent

variable H as an outcome of normative interest, drawing on the notion of cardinal utility

as a measure of welfare (Fleming, 1952; Harsanyi, 1955). With this interpretation, the

marginal rates of substitution between treatment variables are a key input for welfare

analysis, suggesting trade-offs that would be welfare improving for individuals. However,

my results are also applicable to other outcomes elicited on ordered scales, e.g. general

or mental health status, job satisfaction, product or service ratings, and other settings in

which ordered response models might be employed with individual-specific heterogeneity

in the thresholds between response categories.

I apply my formal results to revisit the influential study of Luttmer (2005), who con-

siders the effects of household income as well as the incomes of one’s neighbors on satisfac-

tion with life. Using a selection-on-observables strategy and linear regression adjustment,

Luttmer (2005) finds a positive coefficient on a household’s own income along with a neg-

ative coefficient on mean income among their neighbors, suggesting that relative income

comparisons are important for subjective well-being. My nonparametric identification

results corroborate this interpretation under the maintained exogeneity assumptions, but

without assuming cardinality or interpersonal comparability of individuals’ responses to

the well-being question. Regressions of 1(Ri ≤ r) on X for each r further suggest that

differences in regression coefficients across the response distribution are driven by the

unknown distribution of the underlying latent variable in this application, underscoring

the theoretical observation that coefficients must be compared between variables to be

quantitatively meaningful. I cannot reject equality across r of the marginal rates of sub-

stitution between own and neighbor income among respondents who are on the margin

of choosing category r, and I estimate these “marginal” respondents overall to be similar

to inframarginal respondents in terms of gender and education.

The identification results for continuous treatments that enable us to interpret the

application above can be seen as limiting cases of a more general result that applies to

discrete treatments as well. When a treatment variable of interest is discrete, I find

however that comparisons of magnitude become more complicated. First, I show that

when one compares the mean of R between two fixed values x and x′ of the vector X:

E[Ri|Xi = x′]−E[Ri|Xi = x] = E
[
f̄x,x′(∆i, Vi) ·∆i

]
, (3)

where ∆i = h(x′, Ui) − h(x, Ui) is the treatment effect of changing X from x to x′ on

outcome H for individual i. The “weight” f̄x,x′(∆i, Vi) is unknown but positive for all

i, and Eq. (3) thus implies that if the sign of the treatment effect ∆i is the same for

all individuals, then the sign of E[Ri|Xi = x′] − E[Ri|Xi = x] will be the same as that

of the causal effect. This recovers a causal analog to the key point made by Bond and

6A prominent version of the Cantril ladder question asks: Please imagine a ladder with steps numbered from zero at the
bottom to ten at the top. Suppose we say that the top of the ladder represents the best possible life for you and the bottom
of the ladder represents the worst possible life for you. If the top step is 10 and the bottom step is 0, on which step of the
ladder do you feel you personally stand at the present time? (Gallup, 2021).
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Lang (2019), who argue that the conditional distributions Ri|Xi = x′ and Ri|Xi = x are

generally uninformative about the sign of E[Hi|Xi = x′]−E[Hi|Xi = x]. Even when the

treatment variables are randomly assigned, the sign of the unweighted average treatment

effect E[∆i] is not identified without strong assumptions.

Furthermore, the magnitude of the overall weight E
[
f̄x,x′(∆i, Vi)

]
appearing in Eq. (3)

can in general depend on the values x and x′ being compared, and quantitative compar-

isons of regression coefficients can therefore be misleading if one or more of the treatment

variables being considered is discrete and treatment effects are not small.7 I describe how

one can obtain bounds on the ratio of the total weight that the conditional expectation

function applies to causal effects when comparing continuous to discrete variation in X.

These analytic results suggest that when there are many response categories and individ-

ual reporting functions are approximately linear, discrete contrasts will tend to overstate

causal effects relative to regression derivatives, by a factor that is upper bounded by

two. I assess this implication through simulations and only find evidence of appreciable

distortion when treatment effects are made implausibly large in the DGP.

I draw from my analysis three implications of my results for regression analysis using

subjective ordinal outcomes. First, the focus on finding natural experiments popular in

modern applied work yields a previously unrecognized benefit for subjective outcomes:

reporting functions may also become uncorrelated with treatment variables of interest X,

allowing researchers to draw conclusions about the signs of certain population averages of

causal effects, without assuming interpersonal comparability of responses at the individ-

ual level, or taking Ri to be cardinally meaningful. Second, researchers can move beyond

interpretations of the sign of effects and consider magnitudes only when multiple valid

treatment variables are available. Third, these comparisons of magnitude are most infor-

mative when the two variables being compared are continuous rather than discrete. An

implication is that identification in experimental work with subjective outcome variables

would benefit from randomizing the doses of multiple treatments, in small increments.

2 Identification in a simplified model

To build intuition for the main results, let us begin with a simplified model in which

all individuals share a reporting function, as assumed by previous work. I move to the

general model in Section 3. The researcher observes (Ri, Xi), where Ri is an ordered

response which we represent as an integer Ri = 0, 1, . . . R̄ for some R̄, and Xi is one or

more observed covariates.

The researcher would like to interpret R as a proxy for some underlying continuous

variable H, i.e. Ri = r(Hi), where the function r(·) maps intervals of the real line into

the R̄ + 1 discrete categories. Concretely, r(h) = r for a given r ∈ {0, 1, . . . R̄} when h

lies between τ(r−1) and τ(r), where we let τ(−1) = −∞ and τ(R̄) = ∞. The remaining

7The function f̄ is defined in Sec. 6, and no longer depends upon ∆ as x′ → x and the difference becomes a derivative.
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thresholds τ(r) are unknown to the researcher.

2.1 The signs of generic mean comparisons are not identified

Consider a quantity of interest taking the form

θ := E[Hi|Xi = x′]−E[Hi|Xi = x]

for some fixed covariate values x and x′. As an example, θ might represent the mean

difference in “happiness” H among individuals i in two countries, x and x′.

Bond and Lang (2019) influentially show that even the sign of θ is generally not

identified from the distribution of (Ri, Xi). This implies in particular that the sign of θ

does not need to match that of the mean difference in observed responses E[Ri|Xi = x′]−
E[Ri|Xi = x], a phenomenon often referred to as a sign “reversal” (Schröder and Yitzhaki,

2017). Bond and Lang (2019) argue that regressions of Ri on Xi are therefore generally

uninformative about how the mean of Hi varies across subgroups of the population.

A special case that is highlighted by both Bond and Lang (2019) and Schröder and

Yitzhaki (2017) is when the conditional distribution of H in the X = x′ group stochas-

tically dominates that of the X = x group (or vice versa).8 In this case, the fact that

θ is then positive will be revealed from the observable implication that E[Ri|Xi = x′] ≥
E[Ri|Xi = x]. That is, one can conclude in this case that there is no sign reversal, de-

spite not knowing the reporting function (i.e. the thresholds τ). However, since stochastic

dominance of H between the groups cannot be verified empirically, neither Schröder and

Yitzhaki (2017) nor Bond and Lang (2019) considers this to be an important special

case for applied work. Indeed, when x and x′ represent groups of individuals that differ

from one another along many dimensions, there is generally no reason to expect either

conditional distribution of H to stochastically dominate the other.

Though not assumed for my formal results, it is worth noting that stochastic dom-

inance becomes a more natural condition in the context of studying the causal effects

of X on H (this point is discussed further in Appendix A). Suppose that Xi represents

one or more treatment variables that are randomly assigned. Let hi(x) denote potential

outcomes with respect to counterfactual values x of X. Then by randomization, the

distribution of Hi given Xi = x is equal to the unconditional distribution of hi(x), and

similarly the distribution of Hi given Xi = x′ is equal to the unconditional distribution

of hi(x
′). The possibility of sign reversals now arises solely from heterogeneity in the sign

of the treatment effect between x and x′.

For example, if one is willing to assume that the effect of switching Xi from x to x′

has the same sign for all individuals, the sign of that effect is identified by E[Ri|Xi =

x′] − E[Ri|Xi = x]. However the magnitude of E[Ri|Xi = x′] − E[Ri|Xi = x] is not

directly informative about the average effect quantitatively, beyond establishing its sign.

8The distribution H|X = x′ stochastically dominates H|X = x when P (Hi ≤ h|Xi = x′) ≤ P (Hi ≤ h|Xi = x) for all h.
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2.2 Intuition for identification results: ratios of effects in a linear model

With continuous X, we can establish a much stronger result. Suppose that Xi represents

a vector of two continuous variables X1 and X2 that are statistically independent of

potential outcomes. Assuming that treatment effects are entirely homogeneous across

individuals i, we can identify not only the signs of the effects of X1 and X2 on H, but

also the relative magnitudes of the two variables’ effects.

Suppose the linear causal model hi(x) = xTβ+Ui holds, where Ui captures individual

heterogeneity in potential outcomes. This corresponds to a setting in which the causal

effect βj of changing a single component xj of the vector x by one unit is homogenous

across units i, and is also the same across values of x. In this model, heterogeneity

between individuals occurs through the additively separable scalar Ui. This model will

serve merely to establish intuition before the more general analysis in which both causal

effects and reporting functions are allowed to vary arbitrarily between individuals.

The natural parameters of interest in the linear model are the components βj of β.

Since we have made no assumptions that fix the scale of the random variable H, it will

not be possible to identify βj beyond an overall scale normalization. Therefore, we will

instead aim to capture ratios of the parameters, e.g. β2/β1. The ratio β2/β1 captures the

marginal rate of substitution of X1 for X2, if H is interpreted as a measure of utility.

Using the identity that Ri =
∑R̄−1

r=0 1(r < Ri), it follows that the conditional mean is

E[Ri|Xi = x] = R̄−
R̄−1∑
r=0

P (Ri ≤ r|Xi = x).

Therefore, the regression derivative of Ri with respect to a small change in xj is:

∂xj
E[Ri|Xi = x] = −

R̄−1∑
r=0

∂xj
P (Ri ≤ r|Xi = x) = −

R̄−1∑
r=0

∂xj
P (Hi ≤ τ(r)|Xi = x)

= −
R̄−1∑
r=0

∂xj
P (Ui ≤ τ(r)− xTβ|Xi = x) = −

R̄−1∑
r=0

∂xj
P (Ui ≤ τ(r)− xTβ)

= −βj ·
{

R̄−1∑
r=0

fU(τ(r)− xTβ)

}
(4)

where I have assumed that U is continuously distributed, and used that Ui ⊥⊥ Xi by

assumption. Notice that the sum in brackets does not depend on j in any way. Thus,

provided that the regression derivative in the denominator is non-zero, we have that

∂x2E[Ri|Xi = x]

∂x1E[Ri|Xi = x]
=

β2 · {
∑R̄−1

r=0 fU(τ(r)− xTβ)}
β1 · {

∑R̄−1
r=0 fU(τ(r)− xTβ)}

=
β2

β1

In the special case of binary response (R̄ = 1) and with Ui ∼ N (0, σ2), note that Eq. (4)

recovers the formula for marginal effects in the probit model: ∂xj
P (Ri = 1|Xi = x) =

7



σ−1ϕ(xTβ/σ) · βj, where ϕ is the standard normal probability density function. While

the scale of β cannot be identified in the probit model without fixing the value of σ, it

cancels out when considering ratios of marginal effects, allowing β2/β1 to be identified.

Averaging back over the distribution of Xi, one can estimate β2/β1 nonparametrically,

while making use of data at all values of Xi:

E [∂x2E[Ri|Xi]]

E [∂x1E[Ri|Xi]]
=

β2

β1

(5)

One of the main results of this paper is to show that Eq. (5) is not particular to a model

with homogeneous and linear treatment effects, or to there being a common reporting

function. Indeed, an analog of Eq. (5) holds as Eq. (13), where the coefficients βj are

replaced with convex weighted averages of the effect of a small change in xj on H, among

individuals who are marginal between any two response categories.9

3 A general model of ordered response

Let us continue to suppose that there is a meaningful latent value Hi which the researcher

is ultimately interested in as an outcome. In the body of this paper I take Hi to be a

(continuous) scalar, but Appendix C.3 extends results to the vector case.

3.1 Model setup

The researcher observes responses Ri generated as:

Ri = ri(Hi) = r(Hi, Vi) (6)

Hi = hi(Xi) = h(Xi, Ui) (7)

where ri(h) is in individual-specific function mapping happiness h to the space of possible

responses R, and Xi are observed covariates. Unless otherwise specified, I continue to

let R = {0, 1, . . . R̄} represent an ordered set of integers starting from zero or one, in

line with common empirical practice. Results generalize if alternative numeric values are

associated with the elements of R, for example as described following Corollary 1.

The above model indexes heterogeneity in ri(·) by a heterogeneity parameter Vi ∈ V ⊆
R

dV . Since no constraints are placed on dV , this is without loss of generality and the

model is compatible with each individual having their own reporting function ri(h).

For each individual there is a function hi(·) mapping values of a vector of J explana-

tory variables X into a value of H via (7), where heterogeneity in the function hi(·) is

represented by parameter Ui ∈ U ⊆ R
dU . The primary interpretation of the function

hi(x) is that it denotes potential outcomes for individual i as a function of counterfactual

9In the case of a common reporting function and Ui that enters additively, i.e. hi(x) = g(x) + Ui, the simple argument
establishing Eq. (4) already generalizes with ∂xj g(x) replacing βj . Treating the case with nonseparable Ui is more involved.
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values of x, in some set of possible treatments X ⊆ R
J .10 Since the dimension dU is again

left unrestricted and Ui may enter the function h nonseparably, the above model places

no restriction on heterogeneity in potential outcomes or causal effects across individuals.

Note that (6)-(7) embed an exclusion restriction: X does not directly enter the equa-

tion for R, and only affects reports R through H. This is key for drawing inferences about

the relationship between H and X from the observable joint distribution of R and X. In

an earlier version of this paper (Goff, 2025), I show how the model can be generalized

slightly to allow reporting behavior to depend directly on observables in a restricted way.

3.2 Identifying assumptions

The main assumptions I impose on the model are that reporting functions ri(·) are weakly
increasing in Hi, and that there exists variation in X that is conditionally independent

of the latent individual heterogeneity Ui and Vi. I formalize these assumptions as follows.

Assumption MONO (weakly increasing reporting functions). r(h, v) is weakly

increasing and left-continuous in h for all v ∈ V

Assumption EXOG (conditionally exogenous components of X). For some set

of observed variables Wi, we have i) {Xi ⊥⊥ Vi} | Wi; and ii) {Xi ⊥⊥ Ui} | (Wi, Vi)

Appendix B shows how the general model with assumptions MONO and EXOG nests

ordered response models from the literature, and how it relates to nonseparable outcome

models from the instrumental variables literature.

The first part of Assumption MONO rules out cases in which individuals would report

a lower value of R if H were increased. The additional assumption of left-continuity

amounts to a simple normalization, since any weakly increasing function of bounded

variation is continuous except at isolated points within its support.11

Lemma 1 shows that Assumption MONO is equivalent to the familiar notion of a set

of “thresholds” τv(r) that separate the ordered categories in R. Generalizing the model

of Section 2 to allow reporting function heterogeneity, the thresholds now depend on v:

Lemma 1. MONO holds iff for all v ∈ V , r ∈ R and h ∈ H:

r(h, v) ≤ r ⇐⇒ h ≤ τv(r) (8)

where τv(r) = sup{h ∈ H : r(h, v) ≤ r} or τv(r) := ∞ if the supremum does not exist.

All proofs are given in Appendix G. Lemma 1 implies that with R = {0, 1, . . . R̄}, any
10An alternative interpretation of h(x, u) is always also available and requires no causal assumptions, which is that h

represents the conditional quantile function of Hi given Xi, with Ui ∈ [0, 1] a scalar indicating i’s rank in a distribution
of their peers. This representation is helpful when causal effects are not the target, and the researcher is instead only
interested in uncovering statistical features of the joint distribution between Hi and Xi. Details are given in Goff (2025).

11Hence a reporting function that is, say, right continuous rather than left continuous could be made left continuous by
modifying the function on a set of Lebesque measure zero.
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given reporting function r(h, v) can be written as:

r(h, v) =



0 if h ≤ τv(0)

1 if τv(0) < h ≤ τv(1)

2 if τv(1) < h ≤ τv(2)
...

R̄ if h > τv(R̄− 1),

(9)

however Lemma 1 does not require R to be a set of consecutive integers.

The standard treatment of ordered response in which the researcher assumes a common

set of thresholds represents the special case in which Vi is a degenerate random variable,

corresponding to a single reporting function for all individuals.

τv(0) τv(1)
0

1

2

v = v1

H

R

τv(0) τv(1)
0

1

2

v = v2

H

R

Figure 1: Examples of two different reporting functions, in a case with three categories: R = {0, 1, 2}. The
reporting function depicted in the right panel is more “optimistic” than the one in the left panel, as the threshold
value of H for R = 1 and R = 2 are both lower than for the reporting function on the left (see Lemma 1).

It is worth emphasizing that Assumption MONO is compatible with individuals hav-

ing direct preferences over the response categories r. For example, consider a utility

maximization model in which r(h, v) = argmaxr∈R u(r, h, v), with utility u depending

not only on happiness h, but also directly on the response category r. Let us further

assume that the utility function takes the form u(r, h, v) = ϕv(r)− αv · |h∗
v(r)− h| where

individuals of type v obtain utility ϕv(r) from giving a response of r, but also value giving

an answer close to a value h∗
v(r) they perceive to correspond to response r. If the scale

of ϕ is large enough relative to αv , individuals’ responses may be totally unaffected by

changes in h (e.g. respondents that always choose 5 on a scale from 0 to 10). Provided

that h∗
v(r) is strictly increasing in r (i.e. higher categories are subjectively associated

with higher values of happiness) and αv > 0, then u satisfies the property of increasing

differences (cf. Milgrom and Shannon 1994) in (r, h), which in turn implies MONO.12

We now turn to the second identifying assumption, EXOG. A sufficient condition

for EXOG is that there is (conditional) random variation in X, in the sense of being

12MONO is fully compatible with there being some individuals with preferences that only depend on r, giving the same
response regardless of their Hi. Such individuals will not contribute to mean differences in R given X, under EXOG.
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statistically independent of the latent heterogeneity (Ui, Vi) between individuals:

{Xi ⊥⊥ (Ui, Vi)} | Wi (10)

Here Wi ∈ W ⊆ R
dW represents some vector of additional observed variables to be used

as control variables in the analysis. The Wi can be thought of as components of Ui that

are observed, and potentially correlated with the treatment variables of interest Xi. This

allows the Wi to have a direct effect on happiness, though the Wi need not necessarily be

“manipulable” in the typical causal sense (e.g. race). The Wi can also represent variables

that affect both Xi and reporting function heterogeneity Vi. In settings with stratified

experimental randomization, Wi isolates the strata.

Eq. (10) is technically stronger than the results require, but provides a natural founda-

tion for EXOG and is simple to motivate. Even if an outcome Hi is directly observed, an

assumption like {X ⊥⊥ U}|W is frequently appealed to for the identification of causal ef-

fects, where some kind of experiment or natural experiment provides exogenous variation

in X. Eq. (10) then simply requires this natural experiment to render X (conditionally)

independent also of V . Note that under EXOG, U and V may be arbitrarily correlated

with one another (e.g. if happier individuals have more optimistic reporting functions).

In Appendix C.1, I relax EXOG to consider identification using instrumental variables.

3.3 Parameters of interest and preview of identification results

The function h(x, u) is our main object of interest: how it varies holding u fixed yields

the causal effect of a change in x on H. For example, h(x′, Ui)−h(x, Ui) is the “treatment

effect” for unit i of moving between two counterfactual values x and x′ of the vector X.

For most of the main results, I consider small changes in one or more components

of x that are continuously distributed. The function ∂xj
h(x, Ui) for a given individual i

characterizes the effect of a small change in the jth component of X on H when X = x,

which I refer to as the marginal effect of xj on H when X = x. An average βj :=

E[∂xj
h(Xi, Ui)] across all individuals i provides a population summary of this marginal

effect. More generally, such averages can employ weights ρi that depend on the individual-

level observables (Xi,Wi) and unobserved heterogeneity parameters (Ui, Vi). For example,

for a given function ρ(u, v, x, w) ≥ 0, we might consider a weighted average of the form:

β̃j = E[ρi · ∂xj
h(Xi, Ui)] (11)

where ρi := ρ(Ui, Vi, Xi,Wi) is positive with probability one and satisfies E[ρi] = 1. I

also use the notation β̃j for parameters that represent limits of β̃j for a sequence of such

weighting functions ρ(·).13 Section 4 shows that the sign of a parameter taking the form

β̃j is identified under Assumptions MONO and EXOG, along with regularity conditions.

13For example, the average derivative E[∂xjh(x, Ui)|h(x, Ui) = h] that conditions on a single value h for hi(x) represents

the limit of β̃j for the function ρ(Ui, Vi) =
1(h(x,Ui)∈[h,h+ϵ])
E[1(h(x,Ui)∈[h,h+ϵ])]

, as ϵ → 0. See also discussion after proof of Lemma 2.
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Importantly, the weights ρi are not under the control of the researcher, but they are

convex. As discussed above, sign and magnitude of a parameter taking the form β̃2/β̃1 is

identified with two such X, where the same weighting ρ appears in both the numerator

and the denominator.

Parameter Identified? Support restrictions Sufficient conditions for identification

sgn(β̃1) Yes One continuous X

β̃2/β̃1 Yes Two continuous X
β2/β1 No Two continuous X Uniformly distributed reporting functions

M̃RS No Two continuous X Locally uncorrelated MRS or quasilinearity
E[MRSi(x)] No Two continuous X Weakly separability

sgn(∆̃) Yes
sgn(∆) No Stochastic dominance/common-sign of ∆i

∆̃/β̃1 No One continuous X Partial identification considered in section 6.2

Table 1: Summary of identification results in the general model (Sections 4 and 6).

If we interpret H as a measure of “utility”, then hi(·) = hi(·, Ui) can be thought of as

i’s utility function, and Hi = hi(Xi) as their realized utility (evaluated at i’s actual Xi).

Under this interpretation the ratio of two derivatives of hi(x) represents a local marginal

rate of substitution of X1 for X2 when X = x, for individual i,14 e.g.

MRSi(x) :=
∂x2h(x, Ui)

∂x1h(x, Ui)

Weighted averages across individuals take the form M̃RS := E [ρi ·MRSi(Xi)] for ρi

defined as following Eq. (11), or a limit of M̃RS for a sequence of such functions.

Section 4.5 finds that such parameters are generally not identified under MONO and

EXOG alone, if Ui is not a scalar. However, I give sufficient conditions to identify either

MRS and M̃RS that involve functional assumptions on h.

Finally, this paper considers weighted averages of discrete treatment effects between

two fixed values of X, i.e. ∆i := h(x′, Ui)−h(x, Ui) for some x, x′ ∈ X . Weighted averages

of treatment effects take the form:

∆̃ := E [ρ(Ui,Wi, Xi,Wi) ·∆i]

with ρi := ρ(Ui, Vi, Xi,Wi) as above, or the limit of ∆̃ for a sequence of such functions ρ.

The overall average treatment effect ∆ = E[∆i] (for a fixed x, x′) is the causal analog of

the parameter considered by Bond and Lang (2019). In Section 6 I show that while the

sign of ∆ is generally unidentified without the strong assumption of stochastic dominance

between H|X = x and H|X = x′, the sign of a parameter taking the form ∆̃ is. Again,

the weights ρ are convex but not under the control of the researcher.

Table 1 summarizes the main identification results of this paper regarding the param-

eters introduced in this section. The column labelled “Identified?” indicates whether
14Note that this interpretation only requires hi(·) to represent utility in an ordinal sense: MRSi(x) yields the slope of

the indifference curve for i that passes through the point x.
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the parameter is point identified under the basic model (EXOG, MONO and regularity

conditions). If the answer is No, then the rightmost column of Table 1 indicates addi-

tional restrictions that are sufficient to obtain identification. In the case of M̃RS, these

additional restrictions are fairly mild. For unweighted parameters such as E[MRSi(x)]

and ∆i, the restrictions are more substantive.

4 Identification from continuous variation in X

Given the model outlined in the last section, let us consider what can be identified by

looking at responses given continuous variation in X. Denote by fH(h|x, v, w) the density
of Hi at h, conditional on Xi = x, Vi = v and Wi = w. In this section, I suppose that at

least one component of X is continuously distributed, and assume the following:

Assumption REGj (regularity conditions for Xj). The following hold for given j: i)

Xji is continuously distributed; ii) fH|XVW (h|x, v, w) exists; iii) ∂xj
QH|XVW (α|h, v, w) ≤

M < ∞ for all α ∈ [0, 1], h ∈ H, where QH|XVW is the conditional quantile function

of H given X, V,W ; iv) for each x,w and h, fH,∂xjh(x,U)|XVW (h, h′|x, v, w) exists and is

upper bounded by some c(h′) where
∫
c(h′)|h′|dh′ < ∞, for all v ∈ V.

Assumption REGj reflects fairly standard regularity conditions, as described in Hoderlein

and Mammen (2007). The only substantive modification added above is that I take the

conditions to hold conditional on each reporting function type Vi = v.

4.1 Derivatives of the response distribution in terms of causal responses

Let P (Ri ≤ r|x,w) := P (Ri ≤ r|Xi = x,Wi = w) denote the observed distribution of

responses Ri given values x of treatments Xi and w of the control variables Wi. For

brevity, I will often use this type of shorthand in long expressions.

The following Lemma is central to my analysis of identification with a continuous X:

Lemma 2. Assume MONO and EXOG, and REGj for some j ∈ {1, . . . , J}. Then:

∂xj
P (Ri ≤ r|x,w) = −E

{
fH(τVi

(r)|x, Vi, w) ·E
[
∂xj

h(x, Ui)|Hi = τVi
(r), x, Vi, w

]∣∣Wi = w
}

Lemma 2 shows that the derivative of P (Ri ≤ r|Xi = x,Wi = w) with respect to

changes in xj provides a positively-weighted linear combination across individuals of the

causal response in H to a small change in Xj, i.e. “marginal effects” as defined in

Section 3.3.15 In particular, Lemma 2 shows that ∂xj
P (Ri ≤ r|x,w) can be interpreted in

terms of average causal effects among individuals i who are themselves marginal between

15The inner expectation in Lemma 2 (square brackets [ ]) is over heterogeneity in causal effects Ui, while the outer
expectation (curly brackets { }) is over heterogeneity Vi in reporting functions. Expanding the outer expectation, we have:

∂xjP (Ri ≤ r|x,w) = −
∫

dFV |W (v|w) · fH(τv(r)|x, v, w) ·E
[
∂xjh(x, Ui)|Hi = τv(r), x, v, w

]
(12)

The weights dFV |W (v|w) · fH(τv(r)|x, v, w) that multiply the conditional expectation do not necessarily integrate to one—

indeed all that we can say about E[fH(τVi
(r)|x, Vi, w)|Wi = w] =

∫
dFV |W (v|w) · fH(τv(r)|x, v, w) is that it is positive.
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response categories: that is Hi = τVi
(r) and a small increase in Hi would push them from

category r to category r + 1.16 These local derivatives at a given x,w are identified by a

nonparametric regression of 1(Ri ≤ r) on Xi and Wi, respectively.

Building on this result, we can show that if one averages these local regression deriva-

tives across the observable distribution of Xi,Wi, one obtains an average causal effect

that remains “local” to individuals on the margin between response categories, but is no

longer specific to individuals having a particular value of Xi and Wi:

Theorem 1. Under the assumptions of Lemma 2:

E[∂xj
P (Ri ≤ r|Xi,Wi)] = −fH−τV (r)(0) ·E

[
∂xj

h(Xi, Ui)|Hi = τVi
(r)
]

The density fH−τV (r)(0) is not identified by the data, but it does not depend on j. This

unidentified density thus cancels out in ratios, so
E[∂x2P (Ri≤r|Xi,Wi)]

E[∂x1P (Ri≤r|Xi,Wi)]
=

E[∂x2h(Xi,Ui)|Hi=τVi (r)]
E[∂x1h(Xi,Ui)|Hi=τVi (r)]

.

4.2 Derivatives of the conditional expectation function

Beyond the case of binary survey questions, researchers do not typically estimate regres-

sions of the response CDF evaluated at a fixed category r, as considered by Lemma 2.

However, the result allows us to study the more common practice of modeling the con-

ditional mean of Ri given Xi. Let τv := {τv(r)}r∈R denote the set of all thresholds for

individuals with reporting function v.

Using the identity Ri =
∑R̄−1

r=0 1(r < Ri) as in Section 2, we have the following corollary

to Theorem 1 that considers the conditional mean function, and generalizes Eq. (5):

Corollary 1. If MONO and EXOG hold, and REGj holds for j = 1, 2 then:

E[∂x2E[Ri|Xi,Wi]]

E[∂x1E[Ri|Xi,Wi]]
=

β̃2

β̃1

(13)

where β̃j = E[∂x2h(Xi, Ui)|Hi ∈ τVi
] :=

∑R̄−1
r=0 ωr · E[∂xj

h(Xi, Ui)|Hi = τVi
(r)], and ωr :=

fH−τV (r)(0)∑R̄−1
r′=0

fH−τV (r′)(0)
are positive weights that sum to one.

In Corollary 1, response thresholds r that are more “populated” in the sense that fH−τV (r)(0)

is larger, receive higher weight, in such a way that β̃j = E[∂xj
h(Xi, Ui)|Hi ∈ τVi

]. In the

case with no control variables Wi, we then obtain Eq. (2) stated in the introduction.

If instead of a set of consecutive integers representing category numbers, the researcher

associates alternative numerical values rj with the ordered responses R, where r0 <

r1 < · · · < rR, then we have Ri = r0 +
∑R−1

j=0 (rj+1 − rj) · 1(rj < Ri). The above

results thus generalize with fH(τv(rj)|x, v, w) upweighted by the positive factor (rj+1 −
rj). This implies that different labeling schemes could be used in estimation to achieve

different weightings over local causal effects, though the maximum information would

16I thus use the term “marginal” in two distinct senses: i) a marginal effect as a derivative of h(x, u); and ii) a marginal
respondent who is at the threshold (i.e. “on the margin”) between two response categories given their reporting function.
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come from studying each threshold individually. When considering mean regression,

using integer category labels is natural in that it weighs each threshold in proportion

to its occupancy, delivering the simple and interpretable conditioning event Hi ∈ τVi
in

Corollary 5. Numbering the categoriesR by consecutive integers is in this sense “special”,

among all other possibly non-linear numbering schemes {rj} that one might consider.

If the conditional mean function E[Ri|Xi = x,Wi = w] happens to be linear in x and

w, then the quantity E[∂xj
E[Ri|Xi,Wi]] on the LHS of Eq. (13) and (15) is simply the

coefficient γj from the OLS regression

Ri = γ1X1i + γ2X2i + · · ·+ γJXJi + λTWi + ϵi (14)

where the vector of control variables W includes a constant. While specification 14

is common in empirical practice, Goff (2025) discusses the implications when this func-

tional form is misspecified, i.e. when E[Ri|Xi,Wi] is not actually linear but the researcher

proceeds in estimating (14) anyways. However, this issue is not specific to the use of sub-

jective ordinal outcome variables, as it concerns a conditional mean function that relates

observed variables only. Capturing the functional form of E[Ri|Xi,Wi] is a concern gen-

erally when selection-on-observables identification arguments are implemented via linear

regression. In the empirical application, I compare OLS results with a flexible estimator.

4.3 Intuition for Lemma 2

The proof of Lemma 2 relates the derivative of the conditional CDF of R to a mixture

of (infeasible) quantile regressions that condition on response type Vi, and then makes

use of a connection between quantile regressions and local average structural derivatives

(Hoderlein and Mammen, 2007; Sasaki, 2015).

By Eq. (12), the “weight” in the observable ∂xj
P (Ri ≤ r|x,w) placed on an individual

with happiness close to τv(r) is positive and proportional to dFV |W (v|w)·fH(τv(r)|x, v, w).
Figure 2 provides intuition for this particular weighting.

Suppose for simplicity there are no controls w. By the law of iterated expectations,

we can write ∂xj
P (Ri ≤ r|Xi = x) as a weighted average of ∂xj

P (Ri ≤ r|Xi = x, Vi = v)

across the various reporting functions v in the population. For a given v, ∂xj
P (Ri ≤

r|Xi = x, Vi = v) captures the “flow” of individuals over the threshold τv(r) due to a

small change in xj, in one direction or the other. Some of these individuals could have

negative effects: ∂xj
h(x, Ui) < 0, denoted by arrows to the left in Figure 2. Others could

have positive effects ∂xj
h(x, Ui) > 0, indicated by rightward arrows in Figure 2. The

net effect captured by ∂xj
P (Ri ≤ r|Xi = x, Vi = v) depends on the average derivative

E
[
∂xj

h(x, Ui)|Hi = τv(r), x, v
]
local to the threshold. Since the derivative ∂xj

considers

an infinitesimal change inX, any such “flow” over the threshold requires a positive density

there: fH(τv(r)|x, v) > 0.17

17The quantity fH(h|x, v) · E
[
∂xjh(x, Ui)|Hi = h, x, v

]
at a given h is sometimes referred to as a “flow density”, and

appears in Kasy, 2022, Goff (2022) and in the physics of fluids, where it arises from the conservation of mass.
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Figure 2: Intuition for Lemma 2 in a setting with R = {0, 1, 2}: the derivative of P (Ri ≤ r|Xi = x) with respect
to xj captures the “flow” of individuals over threshold τv(r) due to a small change in xj . Left: ∂xjP (Ri ≤ 1|Xi =
x) captures flows over τv(0). Center: ∂xjP (Ri ≤ 2|Xi = x) captures flows over τv(1). Right: the derivative of
E[Ri ≤ r|Xi = x] with respect to xj captures the “flow” of individuals over either threshold τv(0) or τv(1) due
to a small change in xj . The gray shaded curve in the background depicts the density of Hi.

I refer to individuals with Hi = τVi
(r) for some r as “marginal”, or “indifferent”

between response categories. Lemma 2 shows that local derivatives of the distribution of

Ri conditional onXi andRi only average causal effects among these marginal respondents.

These marginal respondents averaged over in the RHS of Lemma 2 cannot be individually

identified, since neither Hi nor τVi
(r) are observed for a given i. However, I show in

Appendix D.3 that if the sign of causal effects is assumed to be common across individuals,

average characteristics of the marginal respondents can be identified (Section 5 provides

an implementation).

4.4 Maximum reporting function heterogeneity would in fact be helpful

Ex-ante, it would seem that allowing for heterogeneity in reporting functions r(·, Vi) across

individuals should make inferences about causal effects on Hi only harder, as compared

with assuming a common mapping as in typical ordered response models. After all,

heterogeneity in Vi precludes interpersonal comparisons of Hi between two individuals on

the basis of their observed Ri (as illustrated in Figure 1). It is perhaps counter-intuitive,
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then, that reporting function heterogeneity can in fact be helpful in drawing inferences

about overall population averages of causal effects on Hi, when causal effects are also

heterogeneous.

To see this, consider first the extreme case in which there is no reporting function

heterogeneity, i.e. τVi
(r) is degenerate for each r. By Lemma 2, the observable derivative

∂xj
P (Ri ≤ r|Xi = x) (omitting controls W , for simplicity) identifies an average causal

effect among a very specific sub-population: those with h(x, Ui) = τ(r). The causal

response among this specific group might be far from representative of the population

mean of ∂xj
h(x, Ui), and may depend heavily on τ(r). As a concrete example, suppose

that h(x, u) = x1 + ex2+u, and that X1i ⊥⊥ X2i with E[X1i] = 0, E[eX2i ] = E[eUi ] = 1.

Then E[∂x2h(Xi, Ui)] = E[∂x1h(Xi, Ui)] = 1; the average marginal effect of either X1 or

X2 on H is equal to unity. Furthermore, E[∂x2h(Xi, Ui)/∂x1h(Xi, Ui)] = 1; the average

marginal rate of substitution is also unity.18. Let observable responses be binary with

Ri = 1(Hi ≥ τ). Then E
[
∂x2P (Ri=1|Xi)

∂x1P (Ri=1|Xi)

]
= τ .19 This may be puzzling, given that the

value of τ is a property of the reporting function, and not of the causal response function

h. However, the reporting function (captured by the value of τ) determines for whom

causal effects are revealed by observed responses. The above example is engineered so

that causal effects for the marginal sub-population happen to depend entirely on τ .

In the other extreme, “maximum” heterogeneity in reporting functions would occur

if the response thresholds τVi
(r) for a given r were distributed uniformly across the

real line (or a subset of it that contains all values of Hi in the population), rather

than having a degenerate distribution at a single point. Corollary 2 below shows that

if reporting function heterogeneity is furthermore independent of potential outcomes,

then in this extreme ∂xj
P (Ri ≤ r|Xi = x) in fact identifies the overall unconditional

causal effect E[∂xj
h(x, Ui)|Xi = x] at a given x—rather than the average simply among

individuals whose Ui and Vi make them marginal for response category r—up to a

scale factor that does not depend on j. The ratio of unconditional effects β2/β1 =

E[∂x2h(Xi, Ui)]/E[∂x1h(Xi, Ui)] is then identified (and would be even in the pathological

example described above).

Corollary 2. Suppose that in addition to the assumptions of Lemma 2, i) Ui ⊥⊥ Vi|Wi, Xi

and ii) τVi
(r)|Wi is uniformly distributed on [ℓr, µr] with supp{h(x, Ui)} ⊆ [µr, ℓr]. Then

E[∂xj
P (Ri ≤ r|Xi,Wi)] = E

[
∂xj

h(Xi, Ui)
]
·
∑
r

1

µr − ℓr

and thus E[∂x2E[Ri|Xi,Wi]]/E[∂x1E[Ri|Xi,Wi]] = E [∂x2h(Xi, Ui)] /E [∂x1h(Xi, Ui)].
20

Intuitively, Corollary 2 exploits that for each combination of Ui, Xi,Wi, there are individ-

uals who are marginal between categories r and r+1, and that these marginal individuals
18To see this: ∂x2h(x, u) = 1 and ∂x2h(x, u) = ex2+u = h(x, u)−x1, where E[eX2i+Ui ] = E[eX2i ] ·E[eUi ] = 1 by EXOG.
19By Lemma 2:

∂x2
P (Ri=1|Xi=x)

∂x1
P (Ri=1|Xi=x)

=
E[h(Xi,Ui)−X1i|h(Xi,Ui)=τ,Xi=x]

1
= τ − x1, then use that E[X1i] = 0.

20Corollary 2 can be generalized to allow τVi
(r) to be correlated with Wi provided that it remains uniformly distributed

conditional on Wi, with E [∂x2h(Xi, Ui)] /E [∂x1h(Xi, Ui)] still identified if uWi,r − ℓWi,r is independent of Ui.
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have the same distribution of ∂xj
h(x, Ui) among all of those with that Xi,Wi. This is

guaranteed by independence of Vi and Ui, and uniformity of τVi
(r), conditional on Xi,Wi.

Since it is plausible to expect considerable heterogeneity in reporting functions, Corol-

lary 2 is suggestive that the causal effects identified by observable responses may be

somewhat representative of effects for the population at large. However, the conditions

required for Corollary 2 to hold exactly are restrictive and cannot be verified empirically.

In practice, it can be useful to gather suggestive evidence about the representativeness

of the marginal respondents in terms of observable characteristics. Proposition 3 in Ap-

pendix D.3 shows that mean characteristics among marginal respondents can be identified

from the data, under additional assumptions. I implement this in the empirical study of

Section 5.

4.5 Marginal rates of substitution

Corollary 1 to Theorem 1 shows that a ratio of average regression derivatives identifies the

ratio of a conditional average causal effect of X2 on H to the same conditional average of

the effect of X1 on H. Luttmer (2005) and Di Tella et al. (2001) represent two prominent

empirical studies in which the relative magnitude of regression coefficients (with subjec-

tive well-being as the dependent variable) is interpreted as yielding the implicit trade-off

between two goods. I now investigate this interpretation under general heterogeneity in

causal effects and reporting functions.

In general, a ratio of averages is not the same as an average of ratios, and thus Eq.

(13) does not immediately yield an average marginal rate of substitution parameter M̃RS

of the form introduced in Section 3.3. A sufficient condition however is that MRSi(Xi)

be uncorrelated with ∂x1h(Xi, Ui), among marginal respondents.

Example 1 (MRS uncorrelated with the base effect). Suppose that

Cov (MRSi(Xi), ∂x1h(Xi, Ui)|Hi ∈ τVi
) = 0.

Then
E[∂x2E[Ri|Xi,Wi]]

E[∂x1E[Ri|Xi,Wi]]
= E [MRSi(Xi)|Hi ∈ τVi

] , (15)

capturing the average marginal rate of substitution between X1 and X2, among respondents

who are marginal at any threshold, i.e. Hi = τVi
(r) for some r. This covariance condition

says that heterogeneity in MRSi(Xi) across individuals is uncorrelated with heterogeneity

in the magnitude of the marginal effect of X1 alone.

In Appendix D.2, Proposition 2 shows how a similar result to Eq. (15) holds using

the estimand
∂x2E[Ri|Xi=x,Wi=w]

∂x1E[Ri|Xi=x,Wi=w]
which fixes a value of x. In this case note that variation

in MRSi(x) conditional on Hi and Xi comes from Ui alone. Thus if Ui is degenerate

conditional on Xi and the value of Hi (e.g. if h is invertible in a scalar u), then the

needed covariance condition holds automatically.
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Proposition 2 of Appendix D.2 also shows how one can obtain a one-sided bound on

the RHS of (15) by relaxing this to assume a known sign of the correlation between

MRSi(Xi) and ∂x1h(Xi, Ui).

The argument made in Example 1 above is fundamentally a statistical one, in the

general case where Ui is multi-dimensional. An alternative approach is to impose some

structure on the function h(x, u) that is sufficient to interpret
∂x2E[Ri|Xi=x,Wi=w]

∂x1E[Ri|Xi=x,Wi=w]
as a

marginal rate of substitution, and the ratio of averages of such derivatives as an average

of such marginal rates of substitution. I give two examples. The first is a weakly separable

structural function:

Example 2 (weakly separable special case). We say that the potential outcomes

function h(x, u) is weakly separable between x and u when

h(x, u) = h(g(x), u), (16)

i.e. some function g : X → R aggregates over the treatments X into a scalar g(x),

which is then combined through h with heterogeneity u in a way that may or may not be

additively separable.21 When (16) holds, Lemma 2 yields

∂x2E[Ri|x,w]
∂x1E[Ri|x,w]

=
∂x2g(x)

∂x1g(x)
=

∂gh(g(x), Ui) · ∂x2g(x)

∂gh(g(x), Ui) · ∂x1g(x)
=

∂x2h(x, Ui)

∂x1h(x, Ui)
= MRSi(x) (17)

i.e. ∂x2E[Ri|x,w]/∂x1E[Ri|x,w] recovers MRSi(x) (which is common among to all i),

provided that it is not infinite. Eq. (17) simplifies greatly because the derivatives of

g(x) do not depend on v, and is derived in Section D.2.22 From (17) we have that

E[MRSi(Xi)] = E

[
∂x2E[Ri|Xi,Wi]

∂x1E[Ri|Xi,Wi]

]
.

One particular variety of a weakly separable model is a model with an additive scalar error

term h(g, u) = g + u. This is equivalent to imposing that the causal effect of changing

between any treatment values x and x′ is the same for all individuals. If furthermore

g(x) = xTβ, then we obtain the linear model of Section 2. To my knowledge, this

common-effects structure has not explicitly been relaxed in existing work.

Another special case is when H represents utility and preferences are quasilinear:

Example 3 (quasilinear special case). Suppose that h represents preferences and

for each individual, these preferences are quasi-linear in X1 such that h(x, u) = x1 +

h(x2, . . . xJ , u). Quasi-linear utility is widely used in economics to simplify welfare anal-

ysis (see e.g. Feng and Lee 2025).23 When the elements of X are priced, quasilinearity

21Weakly separable models for ordered response in which u is a scalar have been studied by Matzkin (1994). Appendix
D.1 discusses how the above result, which does not require u to be a scalar, relates to that body of work.

22From (17), a testable implication of the weakly separable model is that ∂x2E[Ri|x,w]/∂x1E[Ri|x,w] does not depend
on the value of the controls w. Another implication is that ∂x2P (Ri ≤ r|x,w)/∂x1P (Ri ≤ r|x,w) does not depend on r.

23Although quasi-linearity is a property of preferences and not a particular utility representation of them, h(x, u) =
x1 + h(x2, . . . xJ , u) yields a cardinalization of ordinal preferences in which a unit increase in x1 has the same effect on
mean utility regardless of which individual it accrues to. Under this normalization, E[h(x, Ui)] for example represents a
utilitarian social welfare function whose value is unaffected by transfers of x1 between individuals.
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in X1 can also deliver demand functions for the remaining goods that do not depend on

income (see e.g. Nocke and Schutz 2017).

In this case the condition Cov (MRSi(Xi), ∂x1h(Xi, Ui)|Hi ∈ τVi
) = 0 is satisfied triv-

ially, because ∂1h(x, Ui) = 1 with probability one. Thus we have that
E[∂x2E[Ri|Xi,Wi]]

E[∂x1E[Ri|Xi,Wi]]
=

E [MRSi(Xi)|Hi ∈ τVi
]. Further

∂x2E[Ri|Xi=x,Wi=w]

∂x1E[Ri|Xi=x,Wi=w]
= E [MRSi(x)|Hi ∈ τVi

, Xi = x,Wi = w],

which can be derived as a special case of Proposition 2 given in Appendix D.2.

5 Empirical illustration

In a prominent paper, Luttmer (2005) studies the effects of absolute and relative in-

come on life satisfaction, investigating whether individuals draw on social comparisons

in assessing their personal well-being. To do so, Luttmer (2005) merges data from the

1987 and 1992 waves of the U.S. National Survey of Families and Households (NSFH)—

which contains a question on self-reported satisfaction with life along with self-reported

socioeconomic data—to information on the local average earnings for a given household

constructed from the Current Population Study and the 1990 Census.

Let i denote the primary respondent of an individual household in the NSFH. We

consider two treatment variables Xi = (X1i, X2i), where X1i denotes the log of household

income for i’s household (self-reported in the NSFH) and X2i denotes average predicted

log earnings in the Public Use Microdata Area (PUMA) in which i lives. The construc-

tion of this variable is described in detail in Luttmer (2005). Ri denotes i’s response

to the question “taking things all together, how would you say things are these days?”,

reported on a one to seven Likert-type scale in which a response of one indicates “very

unhappy” and seven “very happy”.24 Finally, Wi represents a vector of control vari-

ables that includes home size/type/value, employment, education, gender, marriage, race

religion, state fixed effects and PUMA characteristics.

I follow Luttmer (2005) and focus on households in which the main respondent was

married in both waves of the NSFH. Details on my sample construction are provided

in Appendix F. While I let i denote the main respondent for a household, the primary

regression specification of Luttmer (2005) averages values of Ri and Wi between the

main respondent and their spouse, finding very similar results. I focus on the individual-

level specification for two reasons: i) the main respondent and their spouse may have

different reporting functions, and the interpretation of a “marginal” respondent developed

in Section 4 is more informative with a single reporting function; and ii) I do not focus

solely on linear models, where averaging across observations within a household does not

affect the functional form of the regression.

24The intermediate values 2-6 do not have associated descriptions in the survey (e.g. “somewhat happy”), and are labeled
by integers only.
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5.1 Basic result interpreted through the lens of Lemma 2

The main results of Luttmer, 2005 exploit a selection-on-observables strategy, estimating

an OLS regression of Ri on Xi and Wi, i.e. Eq (14):

Ri = γ1X1i + γ2X2i + λTWi + ϵi (18)

and ascribing a causal interpretation to the coefficients γ1 and γ2. Luttmer uses fixed

effects regressions as well as data on movers between PUMAs to argue that selection due

to neighborhood choice is not a major concern in this context. Luttmer further argues

that individuals’ definitions of “very happy” or “very unhappy” are not affected by X, by

replicating the qualitative results with other outcome variables that are expected to be

less prone to this threat. I refer the reader to sections IV.B and IV.C of Luttmer (2005)

for details. These arguments motivate Assumption EXOG in this context.

Luttmer finds that an increase in household earnings increases subjective well-being

γ1 > 0, while an increase in the earnings of one’s neighbors decreases subjective well-

being γ2 < 0. This provides evidence that well-being is influenced not only by one’s

absolute income, but also one’s relative income compared with the reference group of

one’s neighbors.25 In OLS estimates of (18), the positive coefficient on own income has

about half the magnitude as the negative coefficient on PUMA (neighbors’) income.26

That is, if one’s PUMA were to go up by 1%, one’s own income would need to go up by

about 2% to leave the respondents’ well-being unaffected.

(1) (2) (3)
Luttmer (2005) Table 1 OLS DML

Own income 0.111∗∗∗ 0.0877∗∗∗ 0.0910∗∗∗

(0.0240) (0.0232) (0.0167)
PUMA income -0.248∗∗ -0.229∗∗ -0.192∗∗

(0.0830) (0.0840) (0.0665)
Ratio PUMA/own -2.234 -2.614 -2.110
se(ratio) . (1.160) (0.904)
Controls X X X
Clustering by PUMA X X X
Sample size 8023 7939 7939

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 2: Replication of Luttmer (2005)’s results for the main respondent, and alternative de-biased machine
learning estimator. For this column, the first two rows report average local derivatives, and “Ratio” measures the
ratio of average derivatives. See Appendix Table 3 for estimates without controls (OLS and kernel regression).

I confirm this finding qualitatively in Column (1) of Table 2. Column (2) reports

the numerical results published in Table 1 of Luttmer (2005) (main respondent column),

in which γ̂2/γ̂1 = −2.23. In Column (2) I implement regression (18) on the publicly

available NSFH data merged with the PUMA income variable from Luttmer (2005) (see

25This finding has since been replicated using experimental variation in beliefs about relative income (Rooij et al., 2024).
26Luttmer (2005) also reports estimates that instrument for own-income to overcome potential measurement error. I

focus on magnitudes from the benchmark OLS regression (18).
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Appendix F). I obtain similar results in both sign and magnitude, with γ̂1 = 0.0877 and

γ̂2 = −0.229 for a ratio of γ̂2/γ̂1 = −2.614.27 If E[Ri|Xi,Wi] is indeed a linear function of

Xi and Wi, then the OLS coefficients γj from regression (18) capture E[∂xj
E[Ri|Xi,Wi]],

and by Corollary 1 the ratio γ2/γ1 captures a ratio of the average effect of a small increase

in PUMA income over individuals whose happiness is exactly at the threshold between

any two response categories, to the average effect of a small increase in own income for

that same group of individuals.

If E[Ri|Xi,Wi] on the other hand is not linear in fact inXi andWi, then OLS estimates

of Eq. (18) are not guaranteed to be interpretable in terms of causal effects, even if the

assumptions of Corollary 1 do hold. However, since (Ri, Xi,Wi) are all observed one

can instead employ a flexible estimator that does not require E[Ri|Xi,Wi] to be linear.

Although E[Ri|Xi = x,Wi = w] is a nonparametric function, the average derivatives

E[∂x1E[Ri|Xi,Wi]] and E[∂x2E[Ri|Xi,Wi]] can be estimated at the
√
n rate.

Column (3) of Table (1) employs the debiased machine-learning (DML) average deriva-

tive estimator of Chernozhukov et al. (2022), as adapted by Klosin and Vilgalys (2023),

to estimate the E[∂xj
E[Ri|Xi,Wi]] by Lasso. In line with Luttmer (2005), I cluster stan-

dard errors at the PUMA level. To facilitate this, I use a nonparametric cluster bootstrap

to estimate standard errors (based on 500 iterations). To ease the computational bur-

den in the bootstrap, I impose some separability between some components of Wi in the

regression function in implementation, but allow a flexible functional form between X1

and X2. Details are provided in Appendix F.2. For Column (3), the row labeled “Ra-

tio PUMA/own” reports the DML estimates of E[∂x2E[Ri|Xi,Wi]]/E[∂x1E[Ri|Xi,Wi]] in

Column (3). Overall, the estimates of average derivatives and their ratio are numerically

fairly similar to the γ̂j reported by Luttmer (2005) from the OLS specification (18). For

comparison, Appendix F.2 also reports estimates employing a fully nonparametric kernel-

regression approach without control variables Wi. This also yields similar estimates for

the average derivatives.

5.2 Decomposing mean effects by response category

While we know by Corollary 1 that the regression derivatives reported in Table 2 average

over respondents who are on the margin between two adjacent response categories, we

also know from Theorem 1 that we can isolate causal effects for respondents that are on

a single such margin r and r + 1, for some r ∈ {1, 2, . . . 6}.
The top two panels of Figure 3 report coefficients from a linear probability model that

takes, for a given r, the conditional expectation function E[1(Ri ≤ r)|Xi = x,Wi =

w] = P (Ri ≤ r|Xi = x,Wi = w) to be linear in Xi and Wi, with coefficients (γ1r, γ2r, λr)

specific to that response category r, i.e. 1(Ri ≤ r) = γ1rX1i + γ2rX2i + λT
r Wi + ϵri with

E[ϵri|Xi,Wi] = 0. The specification is otherwise identical to Column (2) in Table 2.

27That I am not able to match the numerical results exactly is likely explained by the many choices involved in how
exactly to define some of the control variables, or possible updates to the underlying NSFH data over the last two decades.
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Figure 3: Visualization of the OLS estimates of γ1r (top-left), γ2r (top-right), the ratio γ2r/γ1r (bottom-right)
from the regression 1(Ri ≤ r) = γ1rX1i + γ2rX2i + λT

r Wi + ϵri for r ∈ {1, 2, . . . 6}, along with a histogram of
the response categories r ∈ {1, . . . 7}. The horizontal line in the upper panels and bottom right panel depicts the
corresponding value from mean regression (see Table 2).

The plots reveal that the sign of γ̂1r is positive for all r when it is statistically sig-

nificant, the sign of γ̂2r is consistently negative when it is statistically significant, and

the ratio γ̂2r/γ̂1r never differs from the “aggregate” value of -2.614 recovered by mean

regression in a statistically significant way. An F-test of equality of γ2r/γ1r across all r

fails to reject (p-value: 0.98). See Appendix F for estimates in table form.

By Theorem 1, the hump-shaped patterns observed in the top two panels of Figure 3

could be explained by either of two factors, provided that the linear probability model

is correctly specified: (i) heterogeneity in the mean causal effect among the individuals

at each of the thresholds r; and (ii) by differences in the density of individuals at each

threshold, i.e. fH−τV (r)(0). Appendix F.4 shows that a histogram of Ri can approximate

how these densities vary across the thresholds. The bottom-left panel of Figure 3 depicts

P (Ri = r) and reveals that it does indeed capture the same basic pattern as γ1r and

mirrored by γ2r. Indeed, we see in the bottom-right panel that the pattern cancels out

nearly exactly, so that γ2r/γ1r is roughly constant across r (categories 1 and 2 are omitted

because they are very imprecisely estimated).

Overall, the strong similarity in the shapes of the first three panels of Figure 3 are

suggestive that the differences in γ̂1r and γ̂2r are driven by the underlying latent density of

happiness, rather than by heterogeneity in causal effects across the happiness distribution.

This is consistent, for example, with a simple constant-effects model in which γ2r/γ1r =

β2/β1, or more generally by a weakly-separable model of the form h(x, u) = h(g(x), u).
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5.3 Who are the marginal respondents?

Figure 4 compares the gender balance and education of respondents that on the margin

between categories r and r+1, for each r, with that of the population as a whole. These

comparisons are based on Proposition 3 in Appendix D.3, which leverages additional

assumptions to identify averages of an attribute Ai among marginal respondents.

The upper panels of Figure 4 report estimates of E[Ai|Hi = τVi
(r)], under an assump-

tion that {Xi ⊥⊥ (Ai, Ui, Vi)}|Wi and imposing the additional restriction that the sign of

the effect of household income on happiness is the same for all units (not that this as-

sumption is not imposed for the main results). The implementation takes the conditional

expectation of Ai · 1(Ri ≤ r) to be linear in x and w and assumes a linear probability

model for 1(Ri ≤ r) (see Appendix D.3 for details).

In particular, the top left panel displays 95% confidence intervals for E[Ai|Hi = τVi
(r)]

versus r ∈ {2, 3 . . . 6} when Ai is taken to be an indicator for the main respondent i

attending college.28 The horizontal line (orange) depicts the overall sample mean (an

estimate of E[Ai]). For none of the margins r can we reject the null hypothesis that the

average rate of college among marginal respondents for that category is the same as the

overall population mean. A similar result appears in the top-right panel, in which this

calculation is repeated with Ai equal to i’s years of education. There is some evidence

that individuals on the margin on categories four and five out of seven have fewer years

of education than the average. This is consistent with the finding of Barrington-Leigh

(2024) that lower-education individuals are more likely to “bunch” at focal points in the

response space R, for example the midpoint (which is indeed 4 on the 1 to 7 scale).

The bottom panels of Figure 4 exploit the identification of the relative odds for a

binary Ai, comparing marginal respondents to the population as a whole–see Eq. (33) in

Appendix D.3 for an explicit expression. This result makes use of a weaker assumption

in Proposition 3 that only assumes that Ai would represent a valid control variable to

add to Wi. In this case all that is required is to implement regressions of 1(Ri ≤ r) on x

and w separately by subsample defined by Ai.

The bottom panels report 95% confidence intervals for this ratio of odds, with the

horizontal line (orange) depicting unity (equal odds in both populations). The bottom-

right panel sets Ai to be an indicator for the main respondent being female, and compares

the relative odds of being female among marginal respondents to the population overall.

None are statistically different from unity. For clarity, the confidence interval for r = 3,

which is very large, is not shown.

Overall, the results of this section indicate there is mild evidence that marginal respon-

dents have somewhat less education than the overall population, for the central category

in the response space. No differences are detected across gender. The rightmost confi-

dence interval in each panel of Figure 4, labeled “Avg”, replaces indicators for Ri ≤ r

28Confidence intervals for r = 1 are dropped in all panels of Figure 4 for visibility, as the standard error is much larger
than for other r.
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Figure 4: Attributes of marginal respondents, main respondent data. See text for details.

with Ri to approximate an “average” comparison considering all of the response cate-

gories at once. In all cases, we do not find any evidence that the marginal respondents

overall differ from the infra-marginal respondents in education or gender.

6 Identification from discrete variation in X

The analysis thus far has considered what is identified by examining how the conditional

distribution of R changes over infinitesimal differences in X. This section now considers

taking discrete differences in treatment values (nesting the results thus far in the limit of

small changes). I find that differences in the distribution of R over discrete changes in X

can again be interpreted causally, and identify the sign of causal effects if those effects

have the same sign across individuals. However, unlike the case with continuous treat-

ments, magnitudes cannot be quantitatively compared between regressors, absent further

assumptions. Discrete treatment variables are prevalent in practice, so this highlights a

limitation of what is learned from subjective outcomes even in e.g. experiments with two

treatment arms.

6.1 Identifying the signs of convex averages of treatment effects

Consider any two fixed values x and x′, and define ∆i := h(x′, Ui) − h(x, Ui) to be the

treatment effect of moving from Xi = x to Xi = x′ for unit i. Further, let fH(y|∆, x, v, w)

denote the density of Hi conditional on ∆i = ∆, Xi = x,Vi = v and Wi = w. As before,

let P (Ri ≤ r|x,w) denote a shorthand for P (Ri ≤ r|Xi = x,Wi = w). The following

expression shows what is identified from the conditional distribution of Ri across this
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discrete change between values x and x′:

Theorem 2. Under MONO and EXOG:

P (Ri ≤ r|x′, w)− P (Ri ≤ r|x,w) = −E[f̄H(τVi
(r)|∆i, x, Vi, w) ·∆i|Wi = w]

where f̄H(y|∆, x, v, w) := 1
∆

∫ y

y−∆
fH(h|∆, x, v, w) · dh is the average density of H be-

tween y−∆ and y, among individuals with reporting function v, treatment effect ∆, and

(Xi,Wi) = (x,w).29

Theorem 2 generalizes Eq. (3) from the introduction, which before introducing control

variables w used the notation f̄x,x′(∆, v) for f̄H(y|∆, x, v, w). To simplify notation, I now

leave the dependence of f̄H(y|∆, x, v, w) on x′ (through the definition of ∆) implicit.

Similar to Lemma 2, Theorem 2 shows that the change in P (Ri ≤ r|Wi = w,Xi = x)

over discrete changes in x can be written as a positive linear combination of the causal

effect of that variation in X on H. The weighting factor f̄H(τVi
(r)|∆i, x, Vi, w) is positive

for each i, and the sign of a parameter of the form ∆̃ introduced in Section 3.3 is thus

identified. However f̄H(τVi
(r)|∆i, x, Vi, w) is unknown to the researcher, determined in

part by individuals’ reporting functions and the underlying distribution of Hi.

Intuitively, respondents with treatment effect value ∆ are “counted” in the above aver-

age if there exists a positive mass of such individuals with (Xi,Wi) = (x,w) and happiness

Hi in the range τVi
(r)−∆ to τVi

(r). Note that Theorem 2 exhausts all implications of the

observable data (Ri, Xi) under MONO and EXOG regarding variation in the potential

outcome functions h(x, u) with respect to x (for a fixed value of the controls Wi).
30

Figure 5 illustrates an example of Theorem 2. Suppose there are two response cate-

goriesR = {0, 1} with a common reporting function r(h) = 1(h ≥ τ). By iterating expec-

tations over ∆i, we can consider a single value ∆ of ∆i at a time. Thus we aim to show that

E[Ri|x′,∆]−E[Ri|x,∆] = f̄H(τ |x,∆) ·∆, using that P (Ri ≤ 0|x′,∆) = 1−E[Ri|x′,∆].

In Figure 5, I make the conditioning on ∆i = ∆ implicit to simplify notation, taking an

example in which Xi is an indicator for marriage with x′ = 1, x = 0.

Lemma 2 as a limiting case of Theorem 2: A similar expression to that of Theorem 2

shows up in the “bunching design”, which leverages bunching at kinks in decision-makers’

choice sets for identification of behavioral elasticities. Since the kink compares just two

distinct slopes, an identification problem emerges for elasticity parameters (Blomquist et

al., 2021). An assumption sometimes used sidestep this issue is that the kink is “small”

(e.g. Saez 2010; Kleven 2016, see Goff 2022 for a discussion). An analogous assumption in

the context of Theorem 2 would be that ∆i is always small so that for each ∆ ∈ supp{∆i},
the density fH(h|∆, x, v, w) is approximately constant for all h between τv(r) − ∆ and

29By “between y − ∆ and y” I mean in the interval [min{y − ∆, y},max{y − ∆, y}], regardless of the sign of ∆. Note
that f̄H(y|∆, x, v) is positive even if ∆ < 0, in which case it is equal to the average density between y and y + |∆i|.

30Given any such fixed w, once P (Ri ≤ r|Xi = x,Wi = w) is known for all r for some fixed reference value x of the
explanatory variables, along with the distribution of Xi|Wi = w, the only remaining information available from the data
takes the form of differences P (Ri ≤ r|x′, w)− P (Ri ≤ r|x,w) for various values of x′ and r.
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E[Ri|married]−E[Ri|unmarried]

f̄H ×∆

h

Figure 5: Visualization of Theorem 2. Conditional on ∆i := h(married, Ui) − h(unmarried, Ui) = ∆,
fH(·|married) = fh(married,U)(·) is a rightward shift of fH(·|unmarried) = fh(unmarried,U)(·), by ∆. Thus
E[Ri|married,∆]−E[Ri|unmarried,∆] is the area under fH(·|married) between τ and τ +∆, which is in turn
equal to a rectangle of width ∆ and height f̄H , where f̄H is the average of fH(·|married) across this interval.

τv(r). Under this assumption, Theorem 2 would simplify to:

P (Ri ≤ r|x′, w)− P (Ri ≤ r|x,w) = −
∫

dFV |W (v|w) · fH(τVi
(r)|∆i, x, Vi, w) ·∆i

= −
∫

dFV |W (v|w) · fH(τv(r)|x, v, w) ·E[∆i|Hi = τv(r), Xi = x, Vi = v,Wi = w] (19)

Eq. (19) exactly recovers the weighting over individuals achieved by Lemma 2 using

continuous variation in x. In particular, the quantity E[∆i|τv(r), x, v, w] appears above

with the same weight −dFV |W (v|w) · fH(τv(r)|x, v, w) as E[∂xj
h(x, Ui)|τv(r), x, v, w] does

in Eq. (12). However, the constant density assumption used to obtain (19) is quite

hard to justify except in the limit that ∆i is very small with probability one.31 Section

6.2 thus explores this issue further when ∆i is not small, in the context of mean regression.

Mean regression: As our main focus is regressions capturing the conditional mean of Ri

with R an integer response scale, one can again aggregate Theorem 2 across the response

31If we consider the limit x′ → x with the two differing only in component j, this approximation becomes exact and Eq.
(19) applied to (P (Ri ≤ r|x′, w)− P (Ri ≤ r|x,w))/(x′

j − xj) reduces to Lemma 2. See Lemma SMALL in Goff (2022).
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categories r to obtain:32

E[Ri|x′, w]−E[Ri|x,w] = E

[
R̄−1∑
r=0

f̄H(τv(r)|∆, x, v, w) ·∆i

∣∣∣∣∣Wi = w

]
(20)

Recall from Lemma 2 that derivatives of the conditional distribution of R yield causal ef-

fects ∇xh(x, Ui) with weights proportional to
∑

r fH(τv(r)|x, v). By contrast, (20) shows

that discrete differences in X recover treatment effects ∆i = h(x′, Ui) − h(x, Ui) with

“weights” that themselves depend upon ∆i through
∑

r f̄H(∆i, x, v, w). Since this quan-

tity depends not only on the density of H at response thresholds τv(r) but also the density

at points within ∆ of such thresholds through f̄ , the two weighting schemes do not lead

to estimands that can obviously be directly compared.

Note that the sign of E[Ri|x′, w] − E[Ri|x,w] does not reflect the sign of the un-

weighted average treatment effect E[∆i]. Rather, the sign of the difference in means de-

pends on how positive and negative treatment effects are aggregated over by the weights∑
r f̄H(τv(r)|∆, x, v, w). If the CDF functions of h(x, Ui) and h(x′, Ui) cross, then there

must be some individuals with ∆i < 0 while others with ∆i > 0.33. This connects

Theorem 2 to the result of Bond and Lang (2019), discussed further in Appendix A.

6.2 Comparing discrete and continuous regressors

Eq. (19) and Theorem 2 together imply that regression coefficients between discrete and

continuous treatment variables can be meaningfully compared quantitatively in terms of

causal effects in the limit that treatment effects for the discrete treatment are very small,

given a linear conditional mean function of R on X.

More generally, a researcher who is interested in comparing a local regression derivative

to the mean difference across two discrete groups can construct ratios of the form:

E[Ri|Xi = x′,Wi = w]−E[Ri|Xi = x,Wi = w]

∂x1E[Ri|Xi = x′′,Wi = w]
(21)

for some x,x′, and x′′. For example, if X = (income,marriage) with x′ = (y,married)

and x = (y, unmarried) for any income y and x′′ = (y,m) form ∈ {married, unmarried},
then (21) would yield a comparison of regression contrasts involving income to those in-

volving marriage. If E[Ri|Xi,Wi] were fully linear, then the numerator of (21) would

be the regression coefficient on marriage and the denominator would be the regression

coefficient on income.

In Appendix E, I show that complications in the interpretation of (21) arise from

two effects: discreteness of the response scale, and “non-linearity” in the spacing of the

thresholds τv(r) for a given individual. There I define a formal notion of the response

categories being “dense” in the space of latent Hi, for each reporting function type v.

32To obtain the notation of Eq. (3) in the introduction from (20), define f̄H(∆, x, v, w) :=
∑R̄−1

r=0 f̄H(τv(r)|∆, x, v, w).
33Specifically, then P (∆i < 0) ≥ supt

{
Fh(x′,Ui)

(t)− Fh(x,Ui)
(t)

}
and P (∆i > 0) ≥ supt

{
Fh(x,Ui)

(t)− Fh(x′,Ui)
(t)

}
;

see e.g. Fan and Park (2010)
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This dense response limit allows us to conceptualize there as being an infinite number

of response categories, while remaining contained between 0 and a fixed R̄. The dense

response limit delivers a tractable approximation for deriving analytical results, which

may be reasonable to apply in instances in which the survey question offers many response

categories between a lower and upper limit (e.g. integers from 0 to 100).

In Appendix E, Proposition 6 shows that bounds on the ratio of total weights in

Equation (34) can be obtained in the dense response limit when each individual spaces

out the thresholds τv(r) at roughly equal intervals—yielding reporting functions that are

individually linear. Proposition 6 gives two sets of bounds, one derived under weaker

assumptions than the other. First, a more general bound suggests that discrete contrasts

will tend to overstate causal effects relative to regression derivatives, by a factor that

is upper bounded by two. A second bound further assumes that the “sensitivity” of

individual reporting functions is not too heterogeneous, and suggests that the inflation

factor can also be upper bounded by the reciprocal of the fraction of the population that

do not bunch at the endpoints of the response scale. This bound is close to unity when

there are few such bunchers, which can be verified empirically.

In this setting, and if E[Ri|Xi,Wi] is close to linear, the two bounds can be inter-

sected and we can conlude that discrete contrasts will overstate causal effects relative to

regression derivatives, but not by much. This obtains a special case in which regression

coefficients from a mix of discrete and continuous regressors coefficients from an OLS

regression can be meaningfully compared quantitatively.

To assess the performance of the theoretical bounds described above, Appendix E.5

simulates several data-generating-processes (DGPs) for Hi and for the response functions

r(·, Vi). The simulations generally provide an optimistic picture that quantities of the

form {E[Ri|x′, w]−E[Ri|x,w]} /∂xj
E[Ri|x,w] can be interpreted as close to a ratio of

weighted averages of causal effects, in these DGPs. In general, results do not seem to

differ substantially whether the number of response categories is small, or whether there

are few or many different reporting functions present in the population. When treatment

effects become very large relative to the dispersion of happiness in the population, non-

linearity in the density of the conditional distribution of happiness becomes important and

the simulations make apparent that comparisons of magnitude can become misleading.

7 Conclusion

This paper investigates the identification of causal effects when using subjective responses

as an outcome variable. Such reports typically ask individuals to choose a response from

an ordered set of categories, and how individuals use those categories can be expected to

differ by individual i. Nevertheless, researchers may be willing to suppose that individual

responses reflect the value of a well-defined latent variable Hi.

Without observing Hi and without assuming it is possible to rank individuals by Hi
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on the basis of their responses Ri, we have seen that the conditional distribution of Ri

given exogenous covariates Xi can still be informative about the causal effects of X on H.

While this allows one to observe the sign of causal effects under the assumption that this

sign is common across individuals, and to compare magnitudes between two continuous

treatments, continuous treatment variables typically only identify effects among individ-

uals who are on the threshold between two response categories. Meanwhile with discrete

treatments, mean comparisons can impose different total weightings over individuals in

the population. The results suggest that researchers should be mindful of the variation

being employed when comparing the magnitude of regression effects across explanatory

variables, even when those variables are as good as randomly assigned.

In particular, I draw from the results three practical suggestions for the use of regres-

sion analysis for causal inference with subjective ordinal outcomes. First, the critique

that such responses are only ordinarily and not quantitatively meaningful is most pro-

nounced when researchers compare two populations that differ among many dimensions

in an uncontrolled observational setting. However, when the researcher properly isolates

exogenous variation in treatment variables by estimating E[Ri|Xi] flexibly under as-good-

as-random assignment of the treatment variable(s) of interest, regression differences and

derivatives do identify the sign of a convex average of causal effects. Second, to make such

regression derivatives quantitatively meaningful, researchers should focus on comparing

across treatment variables when more than one is available. Third, researchers should still

exercise some caution when comparing the magnitudes of two discrete treatment effects

or between a discrete treatment effect and the slope for a continuous treatment. The

relative magnitudes of convex averages of causal effects can still be partially identified

in such settings with further assumptions, and weakening these assumptions represents a

possible avenue for future research.
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Appendices

Appendix A provides an extended discussion of how my results relate to Bond and Lang

(2019). Appendix B relates my general model of ordered response to ones previously con-

sidered in the literature. Appendix C considers several extensions to my baseline model,

such as using instrumental variables rather than selection-on-observables for identifica-

tion, or allowing for a multivariate latent variable. Appendices D and E develop some

supporting theoretical results for the paper, and Appendix F provides additional material

related to the empirical application.

A Reconciling my results with Bond and Lang (2019)

Bond and Lang (2019) (BL) do not focus on causal effects, but show that certain state-

ments about even the statistical relationship between H and X cannot be answered by

the data (R,X). This is natural since H itself is not directly observed. To connect my

results to BL, I first develop results echoing theirs in the notation of this paper while

also focusing on statistical, rather than causal relationships. I then impose Assumption

EXOG to discuss how my results can coexist with BL’s, in the language of causal effects.

To prove their main result about the non-identification of sgn(θ), where θ := E[Hi|Xi =

x′]−E[Hi|Xi = x], Bond and Lang (2019) draw on results from Manski and Tamer (2002)

for regressions with interval-valued outcome data. An alternative way to see the problem

directly is to write θ as:

θ =

∫ 1

0

{
QH|X=x′(u)−QH|X=x(u)

}
· du (22)

where QH|X is the conditional quantile function of Hi given Xi.
34 Meanwhile, the mean

difference in Ri instead identifies, in the case of a common reporting function:

E[R|X = x′]−E[Ri|Xi = x] =

∫ 1

0

r̄′x′,x(u) ·
{
QH|X=x′(u)−QH|X=x(u)

}
· du, (23)

where r̄′x′,x(u) :=
r(QH|X=x′ (u))−r(QH|X=x(u))

QH|X=x′ (u)−QH|X=x(u)
is the “average rate of change” in the common

reporting function r(·) between QH|X=x(u) and QH|X=x′(u). Eq. (23) can be derived by

noting that Qr(H)|X=x(u) = r(QH|X=x(u)) (Hosseini, 2010).

Eq. (23) thus represents a re-weighting of the quantile differences QH|X=x′(u) −
QH|X=x(u) that appear in (23) with uniform weight under the integral over all u ∈ [0, 1]

in Eq. (22). The quantity r̄′x′,x(u) is weakly positive for any (x, x′, u) since r is weakly

increasing, and will exhibit discrete jumps or falls at the u for which QH|X=x′(u) and

34Eq. (22) follows from the identity E[A] =
∫ 1
0 QA(u) · du for any random variable A.
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QH|X=x(u) lie on opposite sides of a response threshold τ(r).35 Where exactly the weight

r̄′x′,x(u) is smaller or larger depends on the distribution of latent happiness and the spacing

of the response thresholds τ(r), which are both unknown.

Another special case in which the sign of E[R|X = x′] − E[Ri|Xi = x] does identify

the sign of θ is when the conditional distribution H|X = x′ stochastically dominates the

conditional distributionH|X = x (or vice versa), as mentioned in the introduction. In this

case the sign of QH|X=x′(u)−QH|X=x(u) is positive for all u ∈ [0, 1], implying that θ and

E[Ri|Xi = x′]− E[Ri|Xi = x] will both be positive. If instead QH|X=x′(u) < QH|X=x(u)

for some u, while QH|X=x′(u) > QH|X=x(u) for other u (i.e. the conditional quantile

functions cross), then it will generally be possible to reverse the ordering of E[Ri|Xi = x′]

and E[Ri|Xi = x] for a given θ depending on where the unknown function r(·) increases
the fastest (see Schröder and Yitzhaki (2017) for a version of this argument).

A.1 Convex averages of causal effects are identified, and interesting

Since the observable data are not dispositive on their own, one can of course always

couple the data with stronger assumptions to identify the sign of θ. Suppose that Xi = x′

indicates the i is a resident of the United States and Xi = x that i is a resident of Japan.

If one is willing to assume that the country with higher mean R has a higher happiness at

every quantile level u ∈ [0, 1]—whichever country that is—then the sign of θ is identified.

But since life differs in many ways between the US and Japan which may matter in

different ways for different individuals, it is hard to make this argument compellingly.

Indeed, the underidentification problem for the sign of θ is most acute when comparing

means of Ri between two distinct populations that differ from one another along multiple

dimensions, and each of which is quite heterogeneous on its own.

The above problem appears in a much less pronounced way when Xi represents a

vector of treatments that are as-good-as-randomly assigned, as in Theorems 1 and 2 of

this paper. In particular, if the treatment effect ∆i = hi(x
′) − hi(x) has the same sign

for all units i, then Hi|Xi = x′ necessarily stochastically dominates Hi|Xi = x′. As

an example, consider a linear potential outcomes model in which hi(x) = hi(x, Ui) =

xTβ + Ui. The treatment effect ∆i is then ∆ := (x′ − x)Tβ, the same for all i. Given

randomization Ui ⊥⊥ Xi, QH|X=x(u) = Qh(X)(u) = xTβ+QU(u) and the quantile difference

QH|X=x′(u) − QH|X=x(u) = ∆, numerically the same for all u ∈ [0, 1].36 The quantile

35Interestingly, when individuals differ in their reporting functions, it is conceivable that E[R|X = x′] − E[Ri|Xi = x]
achieve a uniform weighting over the quantiles u ∈ [0, 1] (cf. Section 4.4). If Vi ⊥⊥ Xi, then I show in Proposition 5 of

Goff (2025) that (23) generalizes to E[Ri|x′] − E[Ri|x] =
∫ 1
0 r̄′

x′,x(u) ·
{
QH|X(u|x′)−QH|W (u|x)

}
du, where r̄′

x′,x(u) :=∫
dFV (v) ·

r(QH|X (u|x′),v)−r(QH|X (u|x),v)
QH|X (u|x′)−QH|X (u|x) . With a continuum of Vi, r̄

′
x′,x(u) can be smooth and possibly constant over u.

36In fact without loss of generality we can normalize Ui to be uniform on [0, 1], and h(x, u) = QH|X=x(u). To see
this, suppose instead that Ui has CDF FU , but given randomization we have that Ui ⊥⊥ Xi. Note that with probability
one, hi(x) = Qh(x)|Xi

(Ti) where Ti := Fh(x)|X(hi(x)|Xi). This is a general property of conditional distributions, see e.g.

Lemma 3 of Goff et al. (2024) for a proof. Observe that since hi(x) = xT β + Ui with Ui ⊥⊥ Xi, Ti = FU (Ui). Define
h̃i(x) := QH(x)|Xi

(Ti). We can similarly work out h̃i(x) to be h̃i(x) = QxT β+Ui|X(Ti|Xi) = x′β+QU (Ti) using Ui ⊥⊥ Xi.

Putting this all together, we have that with probability one hi(x) = h̃i(x) = x′β+ Ũi, where we define Ũi := QU (FU (Ui)).
Note that QU (FU (Ui)) ∼ Unif [0, 1] and is independent of Xi (if Ui is not continuously distributed, Ũi can be suitably
redefined so that it remains uniform, see Lemma 4 of Goff et al. (2024)).
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functions never cross.

Assuming a linear causal model with homogeneous treatment effects would be very

restrictive, but the above example illustrates a broader point. As Theorem 2 shows,

differences in the distribution of Ri between two distinct points Xi = x′ and Xi = x

reveal, under random assignment, positive aggregations of treatment effects ∆i, among

units whose response value would change given a counterfactual shift from x to x′. In the

limit that x′ → x, the local derivative of P (Ri ≤ r|x) at x yields the sign of the unweighted

average marginal causal effect of changing x among individuals at the threshold between

response categories r and r+ 1, as shown in Lemma 2. Whether this local average effect

among marginal respondents is informative about the overall average effect of changing

x to x′ depends on how heterogeneous casual effects are in the population. With random

assignment, the overall average treatment effect (ATE) between treatment values x and

x′:

E[∆i] = E[h(x′, Ui)]−E[h(x, Ui)] = E[Hi|Xi = x′]−E[Hi|Xi = x]

corresponds exactly to the parameter θ considered by BL.

This type of reasoning echoes the analysis of instrumental variables with heterogeneous

treatment effects. In the LATE model of Imbens and Angrist (1994), a binary instrument

reveals the average effect of a binary treatment among compliers. Whether this local

average is informative about the overall ATE depends on how different treatment effects

are between the compliers and other groups in the population. Unlike in the LATE

context, the “marginal respondents” in our setting that are averaged over in the causal

effects revealed by the data constitute a measure-zero subset of the population given that

for each reporting function v they represent a single value of the continuous variable

H. Furthermore, the magnitudes of regression derivatives or differences reflect not only

magnitudes of causal effects, but the density of happiness values near the thresholds

between response categories. This underscores the value of comparing the magnitudes

across treatment variables, rather than interpreting the magnitudes individually.

A.2 Targeting ratios of effects rather than the effect of one treatment

Indeed, recall from Eq. (2) that the ratio of local regression derivatives identifies the ratio

of convex combinations of the causal effects of the two continuous treatment variables.

In a model h(x, u) = h(g(x), u) that is weakly separable between x and u, Section 4.5

showed that this ratio in turn identifies both the sign and magnitude of marginal rates

of substitution between the treatments. For example, if g(x) = xTβ, we identify β2/β1.

The weakly separable class of functions is quite broad, and includes cases in which we

may not even be able to identify the sign of parameters like β1 or β2 individually, due

to the very problem highlighted by Bond and Lang (2019). Yet, we can identify both

the sign and the exact magnitude of their ratio. This is a counter-intuitive result, so I

illustrate it below with a simple example.
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Consider the model h(x, u) = (β1x1+β2x2) · (u− 1/3)+1/3 with β1, β2 > 0. This is a

weakly separable model with g(x) = xTβ and h(g, u) = g · (u− 1/3) + 1/3. Note that in

this model the sign of the effect of a small increase in x depends on Ui, if Ui > 1/3 then

∂x1(x, Ui) = β1 · (Ui − 1/3) is positive. If Ui < 1/3, then ∂x1(x, Ui) is negative. The same

considerations apply to X2. If for example Ui ∼ Unif [0, 1], then the average effect of a

small increase in either treatment ends up being positive, since then E[Ui − 1/3] = 1/6.

However if instead Ui ∼ Unif [0, 1/2], then the average marginal effect is negative. The

distribution of Ui is not known by the researcher, and the sign of E[∂xj
h(x, Ui)] is not

identified from the data for either j ∈ {1, 2} and any x.

However, the sign and the magnitude of E[∂x2h(x, Ui)]/E[∂x1h(x, Ui)] is identified.

The reason is that the sign of each variable’s individual effect cancels out in the ratio:

the sign of the ratio is identified, despite the sign of each variable’s own mean effect

being unknowable. If we let h′ denote the partial derivative of h with respect to its first

argument, then h′(g, u) = u− 1/3 and:

∂2E[Ri|Xi = x]

∂1E[Ri|Xi = x]
= ((((((((
E[h′(xTβ, Ui)] · β2

((((((((
E[h′(xTβ, Ui)] · β1

= �������
E[Ui − 1/3] · β2

�������
E[Ui − 1/3]] · β1

=
β2

β1

by Equation (17). Although the sign of h′(g, u) varies with u and E[h′(xTβ, Ui)] is not

identified by the data, it appears in both the numerator and the denominator and cancels.

We can see this phenomenon manifest with discrete differences in X as well. Suppose

that β2 = 10 and β1 = 1, and Ui ∼ Unif [0, 1]. Consider x = (1, 0)′ and x′ = (1 + ϵ, 0)′

for ϵ > 0, so that xTβ = 1 and (x′)Tβ = 1+ ϵ. We then have QH|X=x′(u)−QH|X=x(u) =

ϵ·(u−1/3), so the conditional quantile functions always cross at u = 1/3. Accordingly, the

sign of θ = E[Hi|Xi = x′]−E[Hi|Xi = x] is not identified, as argued by Bond and Lang

(2019). This holds for any ϵ, even as it becomes very close to zero. Accordingly, the sign

of the overall average marginal effect E[∂x1h(x, Ui)] with x = (1, 0)′ remains unidentified

as we take ϵ ↓ 0. However, as we saw above, the ratio E[∂x2h(x, Ui)]/E[∂x1h(x, Ui)] is

identified, in this weakly separable model of potential outcomes.

B Relationship to existing econometric models

The framework of this paper outlined in Section 3 is primarily related to two strands

of econometric literature: i) models of ordered response; and ii) nonseparable outcome

models with possible endogeneity and instrumental variables. This section describes the

relationship to both of these literatures.

B.1 Ordered response models

The model outlined in Section 3 nests familiar econometric models of ordered response,

that typically make parametric assumptions about the functions h, r and the distribution

of unobservables, while entirely eliminating heterogeneity in v.
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For example, the probit model treats the case in which R = {0, 1}, and lets Ri =

1(X ′
iβ + Ui ≥ 0) where Ui|Xi ∼ N(0, σ2) where σ is often normalized to 1. This fits

into the general model above with Vi taken to be degenerate (all units share a value v),

τ(0) = 0, Ui a scalar and h(x, u) = xTβ + u for some β ∈ Rdx . The assumption that U is

independent of Xi then implies EXOG. In the probit model, the effect on H of a switch

from Xi = x to Xi = x′ is common across units, given by (x′ − x)Tβ. The ordered probit

model maintains this same structure but with a larger set of categories R = {0, 1, . . . R̄},
with corresponding thresholds τ(0), τ(1), . . . , τ(R̄− 1) common across individuals.

Despite the popularity of (ordered) probit and logit models, it is not necessary to

impose a parametric structure on h(x, u) or the distribution of U to obtain identification

in binary and ordered choice settings. Matzkin (1992) shows that h can be identified up

to scale under fairly general conditions if u is a scalar and h admits a separable structure:

h(x, u) = g(x)+u for some function g. This model allows for individual-specific reporting

functions in a trivial sense, since owing to the additive separability the distinction between

thresholds τv(r) and the error u is simply a matter of definition.37 However, a separable

model like h(x, u) = g(x) + u for potential outcomes, like the probit model, imposes the

strong restriction that treatment effects are the same for all individuals. My results allow

for treatment effect heterogeneity, and nests a leading case of Matzkin (1992) when the

treatment variables are all continuous (see Appendix D.1).

B.2 Nonseparable outcome models with or without endogeneity

Suppose for the moment that H were observed. Then Equation (7) along with Assump-

tion EXOG would yield a nonseparable model for the outcome H with a set of exogenous

regressors X, with no restrictions on the dimension of heterogeneity U or functional

restrictions like monotonicity in X or U . In this general setting, Hoderlein and Mam-

men (2007) and Sasaki (2015) show that with continuous X quantile regressions reveals

outcome-conditioned average treatment effect parameters (this terminology is due to

Hoderlein and Sasaki 2013). Kasy (2022) provides similar results for a multi-dimensional

set of outcome variables, and Chernozhukov et al. (2015) extend to panel data settings.

Blundell et al. (2017) use invertibility assumptions to afford identification of an entire

structural function with multi-dimensional outcomes.

However in my setting only R is observed, and not H. This leads to the model

of Section 3 in which R,H and X are related through Equations (6) and (7). This

structure resembles triangular instrumental variables (IV) models, where my X plays the

role of the instrument(s) and Eq. (7) represents the “first stage” relationship between

the instrument(s) and endogeneous regressor. Reporting functions play the role of the

outcome equation in an IV setup, and “endogeneity” arises if Ui��⊥⊥Vi, explicitly allowed

37Indeed, fixing any r and defining Y r
i = 1(Ri ≤ r) we may write Y r

i = 1(g(Xi) + ηri ≤ 0) where ηri = Ui − τVi
(r).

Under conditions given by Matzkin (1992), the function g and the distribution of ηr can be identified (up to a scale
normalization). See also Cunha et al. (2007). Since this can be done for each value r, the function g is in fact overidentified
with more than two categories. Matzkin (1994) establishes conditions for identification of g in a weakly separable model
Yi = r(h(g(Xi), ηi)), but requires ηi to be scalar.
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in my model. However unlike IV settings, one cannot observe the “endogenous variable”

Hi, which renders the analysis of identification very different in my setting.38 In the

literature thus far that has assumed H is observed, it has been found that monotonicity

assumptions can be helpful in securing identification when structural functions are taken

to be nonseparable as they are in my model (Imbens and Newey, 2009; D’Haultfœuille

and Février, 2015; Torgovitsky, 2015; Hoderlein et al., 2016).

The result of Hoderlein and Mammen (2007) for nonseparable models with exogeneity

has previously been used to study identification from discrete choice probabilities in

Chernozhukov et al. (2019). Matzkin (2019) also analyzes some nonseparable models of

discrete choice. To my knowledge the present paper is the first to leverage results on the

link between quantile regressions and conditional average causal effects to address the

concerns highlighted by Bond and Lang (2019) regarding the use of ordinal scales.

Finally, I note that this paper is related to the literature on measurement error and

misclassification, in that one might view R as a imperfect measure of H contaminated

by the reporting function. However, I let latent happiness H and responses R exist on

entirely different scales (e.g. H in R and R in a set of integers), in the tradition of

ordered response models and in common with Bond and Lang (2019). This feature also

distinguishes the approach of this paper from models of rounding (Hoderlein et al., 2015),

measurement error (Schennach and Hu, 2013), and discrete misclassification (Hu, 2008;

Oparina and Srisuma, 2022).

C Extensions of the basic model

C.1 Using instrumental variables for identification

Suppose for that rather than making Assumption EXOG, we instead have a set of ob-

served variables Zi to use as instruments for Xi. We assume each Xj for j = 1 . . . J is

continuously distributed, and Zi contains a continuously distributed instrument corre-

sponding to each Xj, i.e.

X1i = x1(Zi,Wi, η1i), X2i = x2(Zi,Wi, η2i) . . . XJi = xJ(Zi,Wi, ηJi)

Finally, for each j = 1 . . . J , suppose that xj(z, w, ηj) is strictly increasing in ηj. Let ηi =

(η1i, η2i, . . . ηJi)
T . We now assume that Zi, rather than Xi, is (conditionally) independent

of all other heterogeneity across individuals i:

Assumption INSTRUMENT (conditional independence of instruments).

{Zi ⊥⊥ (ηi, Ui, Vi)} |Wi

38Indeed, the IV analogy yields some intuition for my results: although variation in X induces exogeneous variation in H
and in R through H, we cannot re-scale the “reduced form” relationship between X and R by the “first stage” relationship
between H and X, since H is unobserved.
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The following result adapted from Imbens and Newey (2009) implies that under INSTRU-

MENT we can use ηi as a control variable in Wi, in the sense that

Lemma. Under INSTRUMENT and the IV model above: {Xi ⊥⊥ (Ui, Vi)}|(ηi,Wi)

Proof. Note that INSTRUMENT implies that {Zi ⊥⊥ (Ui, Vi)}|Wi, ηi. Furthermore, con-

ditional on ηji and Wi, the only remaining variation in Xji comes from Zi. This is true

for each j, so conditional on ηi and Wi, the only variation in Xi comes from variation in

Zi, i.e. Xi is simply a function of Zi. The result then follows.

Thus, if ηi is simply included in the vector of controls along, INSTRUMENT implies

EXOG. “Controlling” for ηi is feasible, because given that each xj(z, w, ηj) is strictly

increasing in ηj, we can without loss redefine ηji = FXj |Z,W (Xji|Zi,Wi) which can be

estimated from the data for each j and individual i.39 If no controls are needed for

INSTRUMENT, then EXOG holds with Wi := FXj |Z(Xji|Zi).

C.2 Subjectively-defined latent variables

In the main body of the paper, I assume that individuals use a reporting function ri(h)

that is an increasing function of the variable h that the researcher is interested in. Given

this, the model can accommodate arbitrary heterogeneity in ri(·) (or equivalently: the

locations of the thresholds that i uses), so long as this variation is independent of ex-

planatory variables.

However in many applications, one might worry that not only are the definitions of the

categories R subjective, but so is the definition of the quantity that individuals are asked

to use in answering the survey question. For example, when answering a life-satisfaction

question some individuals might think about their recent life experiences, while others

may think about their whole life in aggregate. Some might spend a lot of time thinking

about the question, while others might answer quickly and intuitively. Accordingly, let

individual i use variable H̃ i when they answer the survey question, where H̃i := H̃ i
i is

i’s value of this quantity that they define for themself. The key assumption that will

allow us to extend the model to account for this kind of heterogeneity is that each H̃i

is a weakly increasing function of some H, where H is an objectively-defined variable of

ultimate interest to the researcher.
39Note that since xj(z, w, ηj) is strictly increasing in ηj , FXj |Z,W (xj |Zi = z,Wi = w) = P (ηji ≤ x−1

j (z, w, xj)|Wi =

w) where we have used INSTRUMENT. Define η̃ji := FXj |Z,W (Xji|Zi,Wi) = P (ηji ≤ x−1
j (Zi,Wi, Xji)|Wi) =

Fηj |W (ηji|Wi). Observe from this that we can write η̃ji as a function of ηji, conditional on Wi. Define η̃i =

(η̃1i, η̃2i, . . . η̃Ji)
T which is similarly a deterministic function of ηji conditional on Wi. Since conditioning on η̃i and

Wi is the same as conditioning on ηi and Wi, the random vector η̃i satisfies {Zi ⊥⊥ (Ui, Vi)}|Wi, η̃i. Note finally that
η̃ji ∼ Unif [0, 1] and with probability one Xji = x̃j(Zi,Wi, η̃ji) where x̃j(z, w, u) := QXj |W=w,Z=z(u)) for each u ∈ [0, 1].

Thus the Lemma holds after redefinition of ηi to be η̃i and each function xj to be x̃j .
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I extend the model as follows: observables (Ri, Xi) are now related by

Ri = r̃i(H̃i) = r̃(H̃i, Si) (24)

H̃i = h̃i(Hi) = h̃(Hi, Ti) (25)

Hi = hi(Xi) = h(Xi, Ui) (26)

where both r̃(·, s) and h̃(·, t) are assumed to be weakly increasing and left-continuous. The

new function, h̃i(h), can be defined in terms of counterfactuals: what would i’s value of

their subjectively-defined latent variable H̃ i be if their objectively-defined happiness Hi

were h? Ti can be of arbitrary dimension, allowing individual-specific mappings between

H and H̃.

Now suppose that {Xji ⊥⊥ (Ti, Ui, Vi)}| Wi. If we define Vi = (Si, Ti), then EXOG

holds, and defining r(·, v) = r̃(h̃(·, t), s) MONO now holds as well, allowing us to apply

the main results of the paper. Note that EXOG is now stronger than it was in the

baseline model: if we want to accommodate heterogeneity in what latent variable H̃

individuals use to answer the question, we must assume that heterogeneity to also be

conditionally independent of Xj. In addition to the existing exclusion restriction that

variation in Xj does not alter reporting functions r̃i, we now have an additional implicit

exclusion restriction that variation in Xj does not affect the subjective definitions Ti that

individuals apply to generate H̃i in terms of Hi.

One nice feature of this extended version of the model is that the researcher may be

more willing to make structural assumptions about the function h(x, u) now that it is

made explicit that H may differ from what individual’s actually have in their mind when

they answer the question. For example, if causal effects on some notion of objective

life satisfaction H are assumed to be homogeneous (so that h(x, u) = g(x) + u), then

marginal rates of substitution can be identified through Eq. (17), despite individuals

using H̃ rather than H to answer the survey question.

As another example, suppose that ordinal preferences are quasilinear in X1 and define

Hi = X1i + ϕ(X2i, . . . , XJi) from the utility representation that counts a unit of X1 the

same for each individual i (see discussion in footnote 23). Then the extended model

of this section allows different individuals to apply different cardinalizations of their

preferences—captured by h̃i(·)—when they report Ri.

C.3 Multivariate latent variables

In some settings, it may be appealing to assume that subjective responses are driven by

a vector of latent variables rather than a single one.

For example, Barreira et al. (2021) studies the mental health of economics graduate

students in U.S. PhD programs, and include a question in which respondents are asked

to agree or disagree with the statement “I have very good friends at my Economics

Department”. In such a case, respondents might consider both the quantity and quality
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of friendships in their definition of “having good friends”. The emphasis that respondents

place on each may also vary by individual.

To model this case, we might replace Eq. (6) with

Ri = r(H1i, H2i, Vi)

where r is weakly increasing in both H1 (number of friends) and H2 (“average” quality of

friendships). We further assume two separate structural functions h1(X,U) and h2(X,U)

describing the effects of the X on quantity and quality of friendships, respectively.

For simplicity, let us first consider a case with a single reporting function r(H1, H2),

and a scalar x, and where no controls Wi are needed for EXOG. It will be useful to write

d

dxj

P (Ri ≤ r|Xi = x) =

∫ ∫
T (r)

d

dx
fH(h1, h2|x) · dh1dh2 (27)

where T (r) is the set of (h1, h2) such that r(h1, h2) ≤ r. In the above I have assumed

dominated convergence so that one can interchange the integrals and derivative.

In the two-dimensional case, Eq. 4.1 of Hoderlein and Mammen (2008) shows that a

quantity like d
dx
fH(h1, h2|x) can be rewritten as:

d

dx
fH(h1, h2|x) = −∇ ◦

(
fH(h1, h2|x) ·E[∂xh1(x, U)|H1i = h1, H2i = h2, Xi = x]

fH(h1, h2|x) ·E[∂xh2(x, U)|H1i = h1, H2i = h2, Xi = x]

)

where for a vector-valued function h(x), we let ∇ ◦ h denote the divergence of h. More

generally, Kasy (2022) shows that for a vector h = (h1, h2, . . . hK)
′ of any finite dimension:

d

dx
fH(h|x) = −∇ ◦ {fH(h|x) ·E[∂xh(x, U)|h, x]}

where we let h(x, U) be a vector of (h1(x, U),h2(x, U) . . .hK(x, U))′.

In the general case with anyK ≥ 1 and again allowing reporting-function heterogeneity

(satisfying EXOG), and multiple treatment variables, Eq. (27) becomes

d

dxj

P (Ri ≤ r|Xi = x) =

∫
dFV |W (v|w)

∫
Tv(r)

d

dxj

fH(h|x) · dh (28)

where Tv(r) := {h : r(h, v) ≤ r}.
An application of the divergence theorem allows us to rewrite Eq. (27) as an integral

over the boundary ∂Tv(r) of the set Tv(r):

d

dxj

P (Ri ≤ r|Xi = x) =

∫
dFV |W (v|w)

∫
∂Tv(r)

fH(h|x, v) ·E[∂xj
h(x, U)|h, x, v] ◦ nv(ℓ) · dℓ

where nx,v(ℓ) represents a normal vector perpendicular to ∂Tv(r) at a point indexed by ℓ.

Figure 6 depicts this in the two-dimensional example. In that case, ℓ is a scalar index

that parameterizes the path along the one-dimensional boundary of Tv(r).
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h2

h1

Tv(r)

∂Tv(r)

nv(`)

Figure 6: Components of n̂(ℓ) are positive, by monotonicity of h(h1, h2, v) w.r.t h1 and h2.

Provided that r(h, v) is weakly increasing in each component of h (for all reporting

functions v), the components nv,j(ℓ) of nv(ℓ) will be positive, as illustrated in Figure 6.

In the two-dimensional case for example, we have:

− d

dxj

P (Ri ≤ r|Xi = x) =

∫
dFV |W (v|w)

∫
∂Tv(r)

fH(h|x, v) ·
{
n̂v,1(ℓ) ·E[∂xj

h1(x, U)|h, x, v]

+n̂v,2(ℓ) ·E[∂xj
h2(x, U)|h, x, v]

}
· dℓ

Suppose for example that hj(x, u) = x′βk+u where βjk represents the effect of treatment

variable Xj on Hk. Then this becomes

d

dxj

P (Ri ≤ r|Xi = x) = −E
[∫

∂TVi
(r)

{βj1 · n̂v,1(ℓ) + βj2 · n̂v,2(ℓ)} · dℓ
∣∣∣∣∣Xi = x

]

where the expectation is over response functions Vi. Unless the boundary ∂Tv(r) is linear

in h, the positive weights n̂v,2(ℓ) will generally vary with ℓ across the inner integral.

However, the effects of two treatment variables can still be meaningfully compared. For

example, suppose we have two continuous treatment variables of interest: X1 and X2,

and that for each latent variable Hk, β2k = γβ1k. Then:

∂x2P (Ri ≤ r|Xi = x)

∂x1P (Ri ≤ r|Xi = x)
=
E

[∫
∂TVi

(r)
{β11 · n̂v,1(ℓ) + β12 · n̂v,2(ℓ)} · dℓ

∣∣∣Xi = x
]

E

[∫
∂TVi

(r)
{β21 · n̂v,1(ℓ) + β22 · n̂v,2(ℓ)} · dℓ

∣∣∣Xi = x
] = γ

D Additional identification results for continuous treatments

D.1 Additional results in the weakly separable case

This appendix continues the analysis of a weakly separable structural function h(x, u) =

h(g(x), u) from Section 4.5 in the main text.
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In the still simpler case of a partially linear h function, (17) leads to the following:

Corollary 3. Suppose MONO and EXOG and REGj for j = {1, 2} hold, and that h(x, u)

takes the form h(x, u) = x1β1 + x2β2 + g(x3, . . . xJ) + u (e.g. h(x, u) = xTβ + u) with

β2 ̸= 0. Then, if EXOG holds with no control variables E[Ri|x] is also weakly separable,

i.e. E[Ri|x] = ϕ (γ1x1 + γ2x2, x3 . . . xJ) for some function ϕ, and γ2/γ1 = β2/β1. With

controls, we instead have that E[Ri|x,w] is weakly separable in x for a fixed w, that is

γ1, γ2 and function ϕ may all depend on w.

Proof. Fix a w, and let m(x) := E[Ri|Xi = x,Wi = w]. By (17), we have that

∂x2m(x)/∂x1m(x) = β2/β1, for all x. This implies that m takes the form of ϕ above.

As a final note, we can see how Lemma 2 recovers an identification result of Matzkin

(1994) in the case of no controls Wi and REGj holding for all components Xj of x.

Note first that given the weakness of the assumptions made, we could only ever hope to

identify g(x) up to an increasing transformation. One functional restriction that removes

this arbitrariness, considered by Matzkin (1994), is to suppose g(x) is homogeneous of

degree one. Matzkin (1994) also imposes that u be a scalar. In this case, Eq. (17) implies

that g is identified up to scale:

Proposition 1. Suppose MONO and EXOG hold, there are no controls W , and each of

the X1 . . . XJ are continuously distributed satisfying REG. Suppose further that h(x, u) =

h(g(x), u), where g is homogeneous of degree one, continuously differentiable, and for

some k: ∂xk
g(x) ̸= 0 for all x ∈ X with X a convex set in RJ . Then g(x) is identified

up to an overall scale.

The proof of Proposition 1 in Appendix G gives an explicit expression for g(x). Note

that Proposition 1 does not require Ui to be a scalar, in this regard generalizing a result

of Matzkin (1994).

D.2 Details: marginal rates of substitution

By Lemma 2, a version of Eq. (13) also holds at a single value of X and W :

∂x2E[Ri|Xi = x,Wi = w]

∂x1E[Ri|Xi = x,Wi = w]
=

β̃2(x,w)

β̃1(x,w)
(29)

where β̃j(x,w) := E

[
ρ(x,v,w)

E[ρ(x,Vi,w)|Hi∈τVi ,Xi=x,w]
· ∂xj

h(x, Ui)

∣∣∣∣Hi ∈ τVi
, Xi = x,Wi = w

]
with

ρ(x, v, w) :=
∑

r fH(τv(r)|x, v, w), and we assume that limh→∞ fH(h|x, v, w) = 0 and that

for each v ∈ V , the τv(r) are all distinct.40

40Let A and B be random variables, where B is absolutely continuous and let B be a finite set of distinct values. Assume
that E[A|B = b] is continuous in b, so we can then define E[A|B ∈ B] simply as limϵ↓0E[A|minb∈B |B − b| < ϵ] which

works out to
∑

b∈B
fB(b)∑

b′∈B fB(b′) ·E[A|B = b].
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In the weakly separable case (16), this simplifies:

∂x2E[Ri|x,w]
∂x1E[Ri|x,w]

=

∫
dFV |W (v|w) · ρ(x, v, w) · ∂x2g(x) ·E [∂gh(g(x), Ui)|Hi ∈ τv, x, v, w]∫
dFV |W (v|w) · ρ(x, v, w) · ∂x1g(x) ·E [∂gh(g(x), Ui)|Hi ∈ τv, x, v, w]

which is equal to
∂x2g(x)

∂x1g(x)
since the ∂xj

g(x) factor out and the terms in purple cancel.

A convenient feature of a weakly separable model is that since individual heterogeneity

U affects the X variables after they are aggregated by g, ratios like ∂x1g(x)/∂x2g(x)

captures the marginal rate of substitution between x1 and x2 for each unit. By contrast,

(29) is not necessarily equal to a weighted average over marginal rates of substitution in

the population, when they are heterogeneous between units. The following proposition

gives a special case in which it does, without the strong condition of weak separability.

Proposition 2. If in addition to the assumptions of Lemma 2 for j = 1, 2, we have

� Cov
(

∂x2h(x,Ui)

∂x1h(x,Ui)
, ∂x1h(x, Ui)

∣∣∣Hi ∈ τVi
, x, w

)
= 0

� {Vi ⊥⊥ Ui} | (Hi ∈ τVi
, Xi,Wi)

then

E

[
∂x2h(x, Ui)

∂x1h(x, Ui)

∣∣∣∣Hi ∈ τVi
, Xi = x,Wi = w

]
=

∂x2E[Ri|Xi = x,Wi = w]

∂x1E[Ri|Xi = x,Wi = w]

If Cov
(

∂x2h(x,Ui)

∂x1h(x,Ui)
, ∂x1h(x, Ui)

∣∣∣Hi ∈ τVi
, x, w

)
≤ 0, then E

[
∂x2h(x,Ui)

∂x1h(x,Ui)

∣∣∣Hi ∈ τVi
, x, w

]
≥

∂x2E[Ri|Xi=x,Wi=w]

∂x1E[Ri|Xi=x,Wi=w]
and vice-versa if the inequality is reversed.

Proof. From Lemma 2 and Ri =
∑R̄−1

r=0 1(r < Ri), we have that

∂xj
E[Ri|x,w] = E

[
ρ(x, Vi, w) · ∂xj

h(x, Ui)|Hi ∈ τVi
, Xi = x,Wi = w

]
(30)

This expression shows that ∂xj
E[Ri|x,w] averages over all units having Xi = x (and

Wi = w), located at any of their individual-specific happiness thresholds, with (positive

but not convex) weights ρ(Xi, Vi, Xi).

Given {Vi ⊥⊥ Ui} | (Hi ∈ τVi
, Xi,Wi) and (30), we have for j ∈ {1, 2}

∂xj
E[Ri|x,w] = E [ρ(x, Vi, w)|Hi ∈ τVi

, Xi = x,Wi = w] ·E
[
∂xj

h(x, Ui)|Hi ∈ τVi
, Xi = x,Wi = w

]
So the RHS of (29) becomes: E [∂x2h(x, Ui)|Hi ∈ τVi

, x, w] /E [∂x1h(x, Ui)|Hi ∈ τVi
, x, w].

Now, using Cov
(

∂x2h(x,Ui)

∂x1h(x,Ui)
, ∂x1h(x, Ui)

∣∣∣Hi ∈ τVi
, x, w

)
≤ 0,

E [∂x1h(x, Ui)|Hi ∈ τVi
, x, w] ≤ E

[
∂x2h(x, Ui)

∂x1h(x, Ui)

∣∣∣∣Hi ∈ τVi
, x, w

]
·E [∂x1h(x, Ui)|Hi ∈ τVi

, x, w]

and analogously if ≤ is replaced with ≥.

Proposition 2 requires reporting heterogeneity Vi to be conditionally orthogonal to struc-

tural function heterogeneity Ui. Further, one must be able to at least sign the correlation
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of marginal rates of substitution and heterogeneity in marginal effects with respect to x2.

This correlation might be negative, if for example, individuals with high returns to x2 do

not have returns to x1 that are proportionally as high, on average.

D.3 Characterizing the marginal respondents

The following result gives conditions under which average characteristics of respondents

on the margin between response category r and r + 1, which drive the average causal

effect identified by Lemma 2, can be identified from the data:

Proposition 3. Let Ai be an individual characteristic such that EXOG holds condition-

ally on Ai, i.e. {Xi ⊥⊥ Ui}|(Ai,Wi, Vi) and {Xji ⊥⊥ Vi}|(Ai,Wi). Suppose further that for

treatment j the sign of ∂xj
h(x, Ui) is the same for all individuals i. Then (under REGj

and further regularity conditions described in the proof):

E[Ai|Hi = τVi
(r), Xi = x,Wi = w] =

E[Ai · ∂xj
P (Ri ≤ r|Ai, x, w)|x,w]

E[∂xj
P (Ri ≤ r|Ai, x, w)|x,w]

(31)

Under the stronger independence condition that {Xi ⊥⊥ (Ai, Ui, Vi)}|Wi, this becomes

E[Ai|h(x, Ui) = τVi
(r), Xi = x,Wi = w] =

∂xj
E[Ai · 1(Ri ≤ r)|x,w]
∂xj

P (Ri ≤ r|x,w) (32)

The stronger assumption {X ⊥⊥ (A,U, V )}|W in Proposition 3 leading to Eq. (32) is a

natural one if the treatment(s) X are as-good-as-randomly assigned (conditional on W ),

and A represents a characteristic of individuals unaffected by the treatments X. In this

case A will be independent of the treatments in the same sense that U and V are. As

an example, one could in a study in which gender is observed estimate the proportion

of respondents at each response margin r that are women. To do this, one only needs

to supplement the regression contemplated by Lemma 2 with another than multiplies

1(Ri ≤ r) by characteristic Ai, and compute the ratio of regression derivatives.

The weaker condition leading to Eq. (31) would hold if A is a variable that could

be added as a valid control variable in W , but does not need to be for EXOG to hold.

This is perhaps harder to motivate, but it is certainly weaker than the above. Abadie

(2003) similarly considers the identification of mean attributes of IV compliers, when

those attributes represent valid control variables.41 The result of Proposition 3 is also

related to an intermediate result used in the proof of Theorem 1 in Hoderlein et al. (2016).

A particularly simple special case occurs when Ai is binary. Then (31) yields P (Ai =

1|Hi = τVi
(r), x, w)/P (Ai = 1|x,w) = ∂xj

P (Ri ≤ r|Ai = 1, x, w)/E[∂xj
P (Ri ≤ r|Xi =

41In the case of complier characteristics, the LATE monotonicity assumption plays a role analogous to the assumption
that sgn(∂xjh(x, Ui)) is common across i in Proposition 3. Analogously, the compliers are not individually identified.
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x,Ai)|x,w]. As a consequence, we then have that:

P (Ai = 1|Hi = τVi
(r), x, w)/P (Ai = 0|Hi = τVi

(r), x, w)

P (Ai = 1|x,w)/P (Ai = 0|x,w) =
∂xj

P (Ri ≤ r|Ai = 1, x, w)

∂xj
P (Ri ≤ r|Ai = 0, x, w)

(33)

This says that, for example, the ratio of the local regression derivative for Ri ≤ r between

the male and female subsamples reveals the odds (conditional on Xi = x) of being a

woman for the marginal respondents of response category r, as compared to the odds of

being a woman for all respondents (including the infra-marginal ones).

The simplest implementation of Eq. (32) would take the conditional expectation of

Ai ·1(Ri ≤ r) to be linear in x and w, in addition to assuming a linear probability model

for 1(Ri ≤ r). Given this restriction, the identified quantity

E[Ai|h(x, Ui) = τVi
(r), Xi = x,Wi = w] =

∂xj
E[Ai · 1(Ri ≤ r)|x,w]
∂xj

P (Ri ≤ r|x,w)

does not depend on x or w, and thus the ratio of the coefficient on Xji in these two

regressions identifies E[Ai|Hi = τVi
(r)]. The above is implemented in Figure 4, which

takes Xji to be i’s household income. Proposition 3 could equally well have been applied

using the regression coefficients for PUMA income instead under the same assumptions.

The bottom panels of Figure 4 similarly approximate the relevant regressions with

linear probability models, which in turn implies that the local relative odds

P (Ai = 1|Hi = τVi
(r), Xi = x,Wi = w)/P (Ai = 0|Hi = τVi

(r), Xi = x,Wi = w)

P (Ai = 1|Xi = x,Wi = w)/P (Ai = 0|Xi = x,Wi = w)

do not depend on x or w for a given r.

E What would be identified with a smooth reporting function

This section considers the question considered in Section 6.2 from the main text: when

can discrete differences in the conditional expectation of R given X be interpreted quan-

titatively, by comparing their magnitude to that of a regression derivative? This question

motivates a comparison of the Lemma 2 result for a setting with discrete response cate-

gories to a hypothetical case in which the space of responses R were instead a continuum.

Then I consider such a continuum as a limit of richer and richer response spaces, which

is necessary to develop some of the formal results in Section 6.2 of the main paper.

E.1 Comparing discrete and continuous regressors

Beginning with (21) from the main text, our goal is to examine the causal interpretation

of E[Ri|Xi=x′,Wi=w]−E[Ri|Xi=x,Wi=w]
∂x1E[Ri|Xi=x′′,Wi=w]

outside of the limit that ∆i is very small (so that Eq.

(19) holds). Under the assumptions of Lemma 2, if R = {0, 1, . . . , R̄} then for each j
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that satisfies REGj:

∂xj
E[Ri|x,w] = E

{∑
r

fH(τVi
(r)|x, Vi, w) ·E

[
∂xj

h(x, Ui)|Hi = τVi
(r), x, Vi, w

]∣∣∣∣∣Wi = w

}

Combining this with Eq. (20), we know that the ratio in Eq. (21) is equal to

E
[∑

r f̄H(τVi
(r)|∆i, x, Vi, w) ·∆i|Wi = w

]
E {∑r fH(τVi

(r)|x′′, Vi, w) ·E [∂x1h(x
′′, Ui)|Hi = τVi

(r), x′′, Vi, w]|Wi = w} (34)

To interpret this as informative about the relative magnitudes of ∆i and ∂x1h(x
′′, Ui),

the relevant question is how similar the sum
∑

r fH(τVi
(r)|x′′, Vi, w) over densities at the

thresholds is to the corresponding sum over mean densities:
∑

r f̄H(τVi
(r)|∆i, x, Vi, w), at

least on average. If these quantities tend to be close to one another in magnitude, then

Eq. (21) uncovers something close to the ratio of two convex averages of causal effects.

If they differ by an unknown amount, then interpreting (21) in terms of the relative

magnitudes of causal effects is not possible.

Reasoning about the magnitudes involved in (34) is challenging in full generality,

but it is possible to derive analytical results to guide our intuition by assuming that

there are “many” response categories in R. Given the definition of f̄ , notice that∑
r fH(τv(r)|x′′, v, w) and

∑
r f̄H(τv(r)|∆, x, v, w) are similar for a given (∆, v, w) if

∑
r

1

∆

∫ τv(r)

τv(r)−∆

fH(y|∆, x, v, w)dy ≈
∑
r

fH(τv(r)|x′′, v, w) (35)

Observe that the two sides of (35) can only differ because the summation occurs over Hi

evaluated at the discrete thresholds τv(r). If instead the sums over r were replaced by

integrals over all possible values ofHi, we would have
∫ {

1
∆

∫ h

h−∆
fH(y|∆, x, v, w)dy

}
dh =∫

fH(h|x′′, v, w) · dh, which holds trivially because both sides evaluate to unity for any

∆, v, x, w and x′′.42 Thus it would seem that we have a second “limit” in which discrete

and continuous regression differences can be compared: when there are many response

categories. However, I show below that discrete sums over the thresholds do not exactly

correspond to equal-weighted integrals over h in the limit of a continuum of response

categories. Rather, in this limit the integrals also involve the quantity r′(h, v), which

measures how responsive response function v is at h. Nevertheless, the intuition provided

by the above logic suggests that looking at the limit of many categories may provide a

tractable means of evaluating the quality of Eq. (35) as an approximation.

E.2 Continuous regressors with a continuum of responses

As a benchmark, this section imagines an intermediate situation in which respondents

can select a response from some bounded continuum in R. This allows us to separate

42This is immediate for the RHS, which integrates a density. To see it for the LHS, reverse the order of integrals to

obtain
∫
dy · fH(y|∆, x, v, w)

{
1
∆

∫ y+∆
y dh

}
= 1.
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the effect of reporting heterogeneity from that of information loss due to discretization

of the latent variable Hi into categories.

Suppose R is a convex subset of R, for simplicity R = [0, R̄] for some maximum

response value R̄. Figure 7 depicts two examples of reporting functions on this continuum

of responses.

0

R̄

H

R

0

R̄

H

R
Figure 7: Example of two “continuous” reporting functions, with the density of H depicted in gray.

While the example on the left side of Figure 7 is a smooth sigmoid shape mapping R to

the interval [0, R̄], the piecewise-linear reporting function on the right has kinks at τv(0)

and τv(R̄) beyond which the function is flat. Nevertheless, we may define a derivative

function r′(h, v) of any given r(h, v) with respect to h, which by virtue of MONO can only

fail to exist only at isolated points in H for a given v.43 Provided that Hi is continuously

distributed, it therefore does not affect results to treat r′(h, v) as defined for all h. With

“smooth reporting”, we have the following analog of Lemma 2:

Proposition 4. Assume MONO, EXOG and REG for at least one j, with R a convex

subset of R. Then:

∇xE[Ri|x,w] =
∫

dFV |W (v|w)
∫

dh·r′(h, v)·fH(h|x, v, w)·E [∇xh(x, Ui)|h, x, v, w] (36)

provided the “boundary condition”: limh→±∞ fH(h|x, v, w)·E
[
∂xj

h(x, Ui)|Hi = h, x, v.w
]
=

0, i.e. average partial effects do not explode for extreme values of Hi, any faster than the

density of Hi falls off in h, for each v and j satisfying REG.

The proof of Proposition 4 makes use of a result of Kasy (2022) that relates derivatives

of the density of an outcome with respect to policy variables, to the rate of change of the

“flow density” quantity introduced in the discussion of Lemma 2.

We can compare this expression to what would be recovered by the infeasible regression

43This is an application of “Lebesque’s theorem” that monotone functions are differentiable almost everywhere.
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of Hi on Xi and Wi (i.e. if Hi were observed):

∇xE[Hi|x,w] =
∫

dFV |W (v|w)
∫

dh · 1 · fH(h|x, v, w) ·E [∇xh(x, Ui)|Hi = h, x, v, w]

(37a)

And with integer categories R, using Lemma 2:

∇xE[Ri|x,w] =
∫

dFV |W (v|w)
∑
r

fH(τv(r)|x, v, w) ·E [∇xh(x, Ui)|Hi = τv(r), x, v, w]

(37b)

These three expressions differ only in what multiplies fH(h|x, v, w)·E [∇xh(x, Ui)|h, x, v, w]
for various values of h. Relative to (37a), (36) introduces the derivative r′(h, v) of the

reporting function. Intuitively, r′(h, v) corresponds to how closely spaced the thresholds

are near a given value of h. If this spacing varies across the support of h, causal effects will

be up-weighted for the h where r′(h, v) is largest, relative to the h where the derivative

is smaller. Comparing (37b) to (36) shows that using subjective responses with discrete

categories further involves information loss due to the discretization: the integral over all

h is replaced by a sum over the thresholds τv(r).
44

E.3 The “dense response limit” of many categories

In practice, survey questions do not typically allow individuals to give any real number

(within a range) in response to subjective questions. However, results based on Propo-

sition 4 provide a more tractable setting to derive analytical results. If R is sufficiently

rich, then this will provide a useful approximation to the actual properties of that setting

(e.g. Benjamin et al., 2014 elicits life-satisfaction data with 100 categories). Below, I give

a formal definition of this “dense response limit” corresponding to an integer response

space R =
{
0, 1, . . . , R̄

}
, which proves useful in the analysis of Section 6.2. Appeal to

this limit is indicated by the symbol
R→ in the results of Section 6.2.

To define the dense response limit for a fixed R̄, consider a sequence of response spaces

Rn = {0, 1/n, 2/n, . . . , (nR̄)/n} where note that nR̄ has nR̄+ 1 categories ranging from

0 to (nR̄)/n = R̄. For a fixed value of reporting heterogeneity v, consider a sequence

of reporting functions rn(·, v) indexed by n, and let τv,n(·) be a function from Rn to R

representing the thresholds corresponding to each function rn(·, v) in the sequence.

Definition (dense response limit). Fix a v ∈ V. Consider a sequence of reporting

functions rn(·, v) for n → ∞. We say that the sequence converges to response function

44In the case of linear reporting functions with a continuous response space, Proposition 4 generalizes a result of Greene
(2005) for marginal effects in the double-censored Tobit model. The Tobit model takes a linear structural model h(x, u) =
xT β + u. Greene shows that if the error term u has any continuous distribution, a marginal effect is equal to the true
structural effect times the probability that an observation is not censored at either endpoint. (36) with no covariates w

reduces to ∂x1E[Ri|x] = β1 ·
∫
dFV (v) · R̄

µ(v)−ℓ(v)
·P (0 < Ri < R̄|x, v) using that r′(h, v) = R

µ(v)−ℓ(v)
· 1(ℓ(v) < h < µ(v)).

The traditional Tobit model further treats Vi as degenerate with µ − ℓ = R, so the above recover’s Greene’s result that
∂x1E[Ri|Xi = x] = β1 · P (0 < Ri < R|Xi = x).
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r(·, v) in the dense response limit, denoted as rn(·, v) R→ r(·, v), if:

lim
n→∞

τv,n(rn) = τv(r)

for any sequence of {rn}∞n=1 where rn ∈ Rn for each n, such that limn→∞ rn = r for some

r ∈ [0, R̄] (according to the Euclidean metric on the reals). For any functional of all

response functions θ({rn(·, v)}v∈V), let θ(rn) R→ Θ denote that Θ evaluates the functional

θ at the limiting family of response functions: Θ = θ(r).

Intuitively, if the actual response scale is the integers 0 to R̄, the dense response limit

instead approximates reports as taking on any real number in [0, R̄].

As a concrete example, consider linear response function r(h, v) = min{R̄,max{0, h}}
ranging from 0 to R̄ on the continuum R = [0, R̄]. Consider the sequence of reporting

functions rn(h, v) = max
r∈Rn:h≤τv,n(r)

r, where we let the thresholds be τv,n(r) = r for each

r ∈ Rn, r < R̄ (recall that τv,n(r) = ∞ when r is equal to it’s highest value in the response

space, in this case R̄). The response function rn(h, v) then represents a “staircase”

function that jumps from the rth category ( r−1
n
) to the (r+1)th category ( r

n
) at τv,n((r−

1)/n) = (r − 1)/n. In this case rn(·, v) R→ r(·, v) in the dense response limit, because for

any sequence {rn}∞n=1 such that limn→∞ rn = r ∈ [0, R̄] (for example rn = max
r′∈Rn:r′≤r

r′) we

have that limn→∞ τv,n(rn) = limn→∞ rn = r.

In the dense response limit, discrete differences in the mean of Ri depends upon the

average slope r′(h, Vi) of the response function r(·, Vi) for h between Hi and Hi +∆i:

Proposition 5. Under MONO, EXOG, and REG, then in the dense response limit

E[Ri|x′, w]−E[Ri|x,w] R→ R̄ ·E[∆i · r̄′(Hi,∆i, Vi)|Xi = x,Wi = w]

where r̄′(y,∆, v) := 1
∆

∫ y+∆

y
r′(h, v) · dh.

Since r̄′ ≥ 0, the weights on ∆i in Proposition 5 are positive and aggregate to45

Πx,x′ := R̄ ·E[r̄′(Hi,∆i, Vi)|Xi = x,Wi = w] (38)

Proposition 4 in Appendix E derives an analogous result to Proposition 5 for regression

derivatives in the case of a continuous component of x. That result shows that the total

weight on causal effects in a derivative ∂xj
E[Ri|x,w] is, by comparison:

Πx := R̄ ·E[r′(Hi, Vi)|Xi = x,Wi = w] (39)

For ease of notation, I leave the dependence of quantities Πx and Πx,x′ on the value of

the control variables Wi implicit.

A comparison of Πx and Πx,x′ allows us to interpret the relative magnitudes of discrete

45Note that if ∆i and r̄′(Hi,∆i, Vi) are uncorrelated conditional on Xi = x,Wi = w, then we can further write the RHS
of Proposition 5 as E[∆i|Xi = x] · R̄ ·E[r̄′(Hi,∆i, Vi)|Xi = x].
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and continuous differences in E[Ri|Xi = x,Wi = w], as in Eq. (21). If we have, for

example, a binary X1 and continuous X2, and we let x′ = (1, x2) and x = (0, x2) for some

x2 ∈ R, then:

E[Ri|Xi = x′,Wi = w]−E[Ri|Xi = x,Wi = w]

∂x1E[Ri|Xi = x,Wi = w]

R→ β̃2(x, x
′, w)

β̃1(x′′, w)
· Πx,x′

Πx

(40)

where β̃1(x
′′, w) is a convex weighted average over the (derivative) causal effect of X1 on

H and β̃2(x, x
′, w) is a convex weighted average over causal effects of X2 on H. If the

aggregate weights are close in magnitude, i.e. Πx,x′/Πx ≈ 1, then we can identify the

relative magnitudes of these causal averages to a good approximation.

E.4 Heterogeneous linear reporting in the dense response limit

To assess whether the approximation that Πx,x′/Πx ≈ 1 is plausible, I impose a further

simplification. Let us say that heterogeneous linear reporting holds with R = {0, 1, . . . R̄}
if each individual spaces out the thresholds τv(r) evenly within some individual-specific

range, i.e. τv(r) = ℓ(v) + r · µ(v)−ℓ(v)

R̄
where ℓ(v) = τv(r) is the threshold between the two

lowest categories for an individual with Vi = v, and µ(v) is the threshold between the top

two categories.46

Heterogeneous linear reporting captures the idea that response functions are “linear”,

while still allowing them to vary by individual. Heterogeneous linear reporting may be

a reasonable assumption if individuals aim to maximize the informativeness of their re-

sponses by equally spreading out the response categories (van Praag, 1991), given their

subjective definitions ℓ(v) and µ(v) of the minimum and maximum category thresholds.47

Kaiser and Vendrik (2022) summarize empirical evidence in support of linearity, for ex-

ample from asking individuals directly about their response thresholds, or asking about

verifiable outcomes such as an individual’s height.

With heterogeneous linear reporting, a partial identification result holds analytically

in the dense response limit:

Proposition 6. Suppose that the following hold in addition to MONO,EXOG,REG:

1. r(h, v)
R→ ℓ(v) + h−ℓ(v)

µ(v)−ℓ(v)
, i.e. reporting is (heterogeneously) linear in the dense

response limit; and

2. For each ∆ in the support of ∆i, fH(h|∆, x, v, w) is increasing on the interval [ℓ(v)−
|∆|, ℓ(v) + |∆|], and decreasing on the interval [µ(v)− |∆|, µ(v) + |∆|]

46Note that in the limit of many categories R̄, this can be well approximated by the linear reporting function

limR̄→∞
r(h,v)

R
= 1(ℓ(v) ≤ h ≤ µ(v)) · h−ℓ(v)

µ(v)−ℓ(v)
.

47Many studies justify the use of regression based approaches to studying subjective data Ri by interpreting such data as
a direct measurement of Hi. However, the function r(·, v) cannot literally be the identity function if R is a set of integers,
unless we think that “true” happiness also only takes integer values. We might view the cardinality approach as instead
supposing that r(h) is homogeneous across individuals and that the thresholds τ(r) are equally spaced apart.
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Then
Πx,x′

1
2
(Πx +Πx′)

∈ [1, 2],

Furthermore, suppose that the lengths of reporting intervals are not too variable across

individuals relative to variability in bunching at the endpoints 0 and R̄, in the sense that

V ar

[
1

µ(Vi)− ℓ(Vi)

∣∣∣∣x,w] ≤ V ar [Bi|x,w] ·E
{

1

µ(Vi)− ℓ(Vi)

∣∣∣∣x,w}2

,

where Bi := P (Ri = 0 or Ri = R̄|Xi, Vi,Wi), then

1

2
≤ Πx,x′

Πx

≤ 1

(1−E[Bi|x,w])2
,

Proposition 6 provides two sets of bounds on the ratio of the total weight on causal

effects in E[Ri|x′, w] − E[Ri|x,w], to the total weight on causal effects in a derivative

∂xj
E[Ri|x,w]. The first bound,

Πx,x′
1
2
(Πx+Πx′ )

∈ [1, 2] implies that, in the setup of Eq. (40):

E[Ri|Xi = x′,Wi = w]−E[Ri|Xi = x,Wi = w]
1
2
∂x1E[Ri|Xi = x′,Wi = w] + 1

2
∂x1E[Ri|Xi = x,Wi = w]

R→ θ · β̃2(x, x
′, w)

β̃1(x, x′, w)
(41)

where θ is some number between 1 and 2, and β̃1(x, x
′, w) is a convex combination of

∂x1h(Xi, Ui). This bound requires no assumptions on how variable the happiness scale

lengths µ(Vi)− ℓ(Vi) can be across individuals with different Vi.

By contrast, the second set of bounds requires us to assume that the coefficient of

variation of 1
µ(Vi)−ℓ(Vi)

is no greater than the standard deviation of Bi, conditional on Xi

and Wi. Assuming homogeneity of reporting functions makes the coefficient of variation

zero, trivially satisfying the assumption. More generally, the stringency of the assumption

can be evaluated from the data by a nonparametric regression of observed bunching at

the endpoints of the scale (0 and R̄) on Xi and Wi.

Note that if the additional restriction justifying the second set of bounds holds, and

E[r′(Hi, Vi)|Xi = x,Wi = w] is roughly constant in x, then

Πx,x′

Πx

≈ Πx,x′

1
2
(Πx +Πx′)

and we can take the intersection of the two sets of bounds: [1, 1/(1−E[Bi|x,w])2]. This
bound will be very narrow if there are few endpoint bunchers when Xi = x,Wi = w.

E.5 Simulation evidence on Proposition 6

To gather some further suggestive evidence on the comparability of estimates that use

discrete vs. continuous variation in X. I in this section simulate some data-generating-

processes (DGPs) for Hi and for the response functions r(·, Vi), computing the quantities

Πx,x′ , Πx and Πx′ numerically given the population DGP. This section is abbreviated
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for brevity; a much more extensive set of simulations is reported in Goff (2025). To

summarize the results found there, I focus on a particularly simple class of DGPs.

The DGP is set such that EXOG holds with no covariatesWi, and consider a researcher

comparing E[Ri|Xi = x′] − E[Ri|Xi = x] to ∂xj
E[Ri|Xi = x] and ∂xj

E[Ri|Xi = x′] for

some given values x′ and x, and regressorsXj. Given the results of the last section, we seek

to compare Πx,x′ , Πx and Πx′ to understand the relative weights each of these estimands

place on causal effects. An “optimistic” picture emerges if Πx,x′/1
2
(Πx +Πx′) ≈ 1.

I this section I suppose that heterogeneous linear reporting holds, and investigate

deviations from the assumptions of Proposition 6 only in that R̄ is finite (so we are

outside of the dense response limit), and that Item 2. in the statement of Proposition 6

may not hold. Additional simulations in Goff (2025) report results from DGPs that relax

heterogeneous linear reporting, but the range of deviations from Πx,x′/1
2
(Πx + Πx′) ≈ 1

found in that case were no greater than in the case with (heterogenous) linear reporting.

I take Hi|Xi = x to have a standard normal distribution. Note that since the overall

location and scale of the happiness distribution is not inherently meaningful, this choice of

mean and variance is arbitrary. Additional simulations reported in Goff (2025) replicate

similar behavior to the results reported below, when the conditional Hi is not normally

distributed and exhibits skewness, non-unimodality, or bounded support.

Individual reporting functions can be characterized by ℓ(v), the value of happiness at

which an individual with Vi = v moves from response category 0 to response category 1,

and µ(v), the value at which this individual would move from category R̄−1 to the highest

category R̄. Next, I suppose that individuals’ values of ℓ(Vi) are distributed uniformly

between −1 and −0.5, and that µ(Vi) is independent of ℓ(Vi) and distributed uniformly

from [0.5, 1]. The left panel of Figure 8 provides a visualization. These choices aim to

reflect a world in which while individuals differ e.g. in the point µ(Vi) at which they

would report R = R̄, this threshold for the highest possible category is for all individuals

at least above the mean level of happiness in the population.

The right side of Figure 8 computes
Πx,x′

1
2
(Πx+Πx′ )

from Eqs. (38) and (39) by drawing a

population of 1000 reporting functions, and assigning each a value of Hi|Xi = x inde-

pendent of Vi (i.e. imposing Ui ⊥⊥ Vi). Figure 8 generally provides an optimistic picture

that Πx,x′/1
2
(Πx + Πx′) ≈ 1, even when R̄ is small (and thus the dense response limit

does not hold). The table on the right side of Figure 8 reports
Πx,x′

1
2
(Πx+Πx′ )

as a function

of the number of response categories R̄ ∈ [2, 5, 11, 100], supposing a constant treatment

effect ∆ which is varied from −0.5 to 5. Note that the results can be interpreted as

reporting conditional analogs of the quantity
Πx,x′

1
2
(Πx+Πx′ )

among individuals sharing a value

of ∆i = h(x′, Ui)− h(x, Ui), in a setting in which Hi is independent of treatment effects

∆i, conditional on Xi = x.

51



∆ R̄=2 R̄=5 R̄=11 R̄=100

-0.5 1.017758 1.016489 1.018028 1.018884
-0.1 1.000335 1.000441 1.000664 1.000809
0.1 1.000837 1.000283 1.001079 1.001052
0.25 1.003905 1.005432 1.004132 1.003522
0.5 1.020549 1.019535 1.017904 1.014529
1 1.060440 1.062557 1.061607 1.051899
5 0.504738 0.531706 0.544236 0.549753

1/NB 1.867396 1.878186 1.874115 1.873973

Figure 8: Hi|Xi = x is standard normal, and 1000 reporting functions are drawn from ℓ(v) ∼ U [−1, 1/2],
µ(v) ∼ U [1/2, 1]. The left panel depicts the supports of ℓ(v) (green) and µ(v) (yellow) with the density of Hi.
The right panel reports values of Πx,x′/ 1

2
(Πx + Πx′) as a function of ∆ and the number of response categories

R̄.

Proposition 6 implies that as R̄ → ∞, Πx,x′/1
2
(Πx + Πx′) should lie between 1 and

2, for any values ∆ such that ℓ(Vi) < −|∆| and µ(Vi) > |∆| for all Vi (so that fH(h|x)
is increasing on the interval [ℓ(Vi) − |∆|, ℓ(Vi) + |∆|], and analogously for ℓ(v)). This

is true for all of the values reported in Figure 8, aside from ∆ = 1 and ∆ = 5. In all

but the case of ∆ = 5, Πx,x′/1
2
(Πx + Πx′) is in fact quite close to unity, well within the

refined bounds [1, 1/NB] which holds under the variance restriction in Proposition 6,

where NB = P (0 < Ri < R|X = x) is the “non-bunching” probability.

With the exception of ∆ = 5, the standard-normal DGP reported in Figure 8 provides

an optimistic picture that {E[Ri|Xi = x′]−E[Ri|Xi = x]} /∂xj
E[Ri|Xi = x] uncovers

something close to a ratio of weighted averages of causal effects β̃2/β̃1 in the setting

described by Equation (40). In this case, results do not differ substantially whether the

number of response categories is small (e.g. R̄ = 2, binary response) or e.g. R̄ = 100.

The ∆ = 5 case nevertheless shows that the ratio in the case of (40) may be quite

misleading in principle. The R̄ = 2 value of Πx,x′/1
2
(Πx + Πx′) ≈ 0.5 means that the

magnitude of β1 relative to that of β2 would be under-estimated by a factor of 2, when

using x′ = (1, x2) and x = (0, x2) in a linear model h(x, u) = β1x1 + β2x2. On the other

hand, it is implausible that binary treatment variable being analyzed would have an effect

on happiness that is 5 times the variance of happiness in the population. Note that ∆ = 5

with Hi|{Xi = x} ∼ N (0, 1) violates Item 2. in the assumptions of Proposition 6, given

e.g. that all ℓ(v) within 5 of where the conditional density of Hi begins decreasing.

While the quantity Πx,x′/1
2
(Πx +Πx′) averages over the reporting heterogeneity in the

population, Figure 9 disaggregates this by Vi. Define δ∆,x,v :=
∑

r f̄H(∆,τv(r),x,v)−
∑

r fH(τv(r)|x,v)∑
r fH(τv(r)|x,v) .

An individual with Xi = x and Vi = v will receive similar weights when using either dis-
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crete or continuous variation at x if δ∆,x,v ≈ 0. Write Eq. (20) as:

E[Ri|x′]−E[Ri|x] =
∫

dFV |W (v|w) ·
(∑

r

fH(τv(r)|x, v)
)

·E[∆i|Xi = x, Vi = v]

+

∫
dFV |W (v|w) ·

∫
d∆ · fH(∆|x, v) ·∆ · δ∆,x,v

Figure 9 reports the distributions of
∑

r f̄H(∆,τv(r),x,v)∑
r fH(τv(r)|x,v) = 1 + δ∆,x,v, across 1000 reporting

functions sampled the same as in Figure 8. The distributions of δ∆,x,Vi
are approximately

unimodal in each case, with a variance that tends to increase with the magnitude of ∆.

Figure 9: The distribution of 1 + δ∆,x,Vi across Vi is depicted across alternative values of ∆i, with Hi|Xi = x
standard normal, R̄ = 100, and 1000 reporting functions are drawn from ℓ(v) ∼ U [−1, 1/2], µ(v) ∼ U [1/2, 1].

In line with Proposition 6, the distributions are centered at or slightly above unity, except

in the case of ∆ = 5.

F Further details on the empirical application

F.1 Sample construction

I use three data sources in my replication and extension of Luttmer (2005). First, I access

the public microdata files for the 1987 and 1992 waves of the NLSF from ICPSR, which

constitutes a nationally representative sample of individuals nineteen or older (and able

to speak English or Spanish). This provides the variables Ri, X1i, and Wi in e.g. Eq.

(18). I follow Luttmer (2005) in deflating monetary values using the consumer price index

from the Bureau of Labor Statistics CPI-U series.

Although accessing the geo-coded data from the NLSF is not currently supported, I

obtained the predicted PUMA-level log-earnings variable X2i and PUMA identifiers (for

clustering standard errors) through correspondence with the author and a data sharing

agreement with the Social Sciences Research Services at the University of Wisconsin. I

thank Erzo F.P. Luttmer for providing this variable to me and the cooperation of the
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University of Wisconsin. By merging these data with the publicly available data (by

NLSF caseid and wave) and keeping only observations that are matched, I automatically

implement the sampling restriction of Luttmer (2005) to respondents who were married

or cohabiting in both waves of the NLSF. In the regressions reported, the sample used

throughout is that of the OLS regressions with controls, i.e. observations for which none

of Ri or any of the components of Xi,Wi are missing.

F.2 Details on the DML estimator, and nonparametric alternatives

The DML estimator for average partial derivatives of Klosin and Vilgalys (2023) uses

Lasso to learn the function E[Ri|Xi,Wi] and, following Chernozhukov et al. (2022), de-

biases the final estimates using the Riesz representation of the average partial derivative

estimand.48 As in Chernozhukov et al. (2022) (see Appendix B.1 there), two such average

partial derivative estimators have a
√
n jointly normal asymptotic distribution.

I limit the allowed interactions between the variables (Xi,Wi) in the set of basis func-

tions considered by the Lasso. In particular, I allow interactions between own-income,

employment, and PUMA-income, and constrain the additional variables Wi to enter lin-

early. This renders estimator semi-parametric rather than fully nonparametric, but makes

the bootstrap standard error calculations computationally feasible. I use bootstrap rather

than the analytical standard errors to accomodate clustering by PUMA. Consistency of

the bootstrap follows from standard arguments (van der Vaart, 2000), given that the

DML estimator is asymptotically linear with a Gaussian limiting distribution.

Effectively Column (3) of Table 2 thus employs a semi-parametric estimator that as-

sumes the partially linear form E[Ri|Xi,Wi] = f(X1i, X2i,W1i) + λTW−1,i, where Wi is a

dummy variable for unemployment and W−1,i denotes the other variables in Wi. Concep-

tually, the coefficients γj from Eq. (18) are now replaced with γj(x,w1) := ∂xj
E[Ri|Xi =

x,Wi = w], and first two rows of Column (3) report γj(Xi,W1,i) averaged across the

empirical distribution of Xi. The row labeled “Ratio PUMA/own” reports the ratio of

these two, i.e. E[∂x2E[Ri|Xi,Wi]]/E[∂x1E[Ri|Xi,Wi]].

I use the rlassoAutoDML function from the hdm package in R. I set the polynomial

order to two among (Xi,Wi), and use 5 folds in the cross-fitting stage.

For comparison, Table 3 shows results for the average derivatives and their ratio using a

local-linear regression. This procedure is implemented without control variables, and the

variance covariance matrix for the average derivatives is obtained by bootstrap (Cattaneo

and Jansson, 2018). The standard error for the ratio of average derivatives is then

calculated by the delta method. Bandwidths for the local-linear regression are chosen by

cross-validation, using the npregress kernel function in Stata.49

48The estimator of Klosin and Vilgalys (2023) involves two modifications of the DML average derivative estimator
previously proposed by Chernozhukov et al. (2022). First, it relies on analytical derivatives of the basis functions which
reduces the computational burden relative to numerical differentiation. Second, it introduces an iterative procedure for the
debiasing step by directly solving the corresponding convex optimization problem.

49In computing average derivatives, this command drops observations for which the local kernel-weighted design matrix
is close to singular, which results in a loss of some observations. Table 3 reports the size of the full sample passed to
npregress kernel.
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(1) (2)
OLS Local linear

Own ln income 0.0446∗∗∗ -0.246∗∗∗

(0.0113) (0.0223)
PUMA ln income -0.169∗∗ -1.971∗∗∗

(0.0614) (0.0696)
Ratio PUMA/own -3.792 -1.971
se(ratio) 1.534 0.401
Controls
Clustered se X X

Sample size 7939 7939

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3: Replication of Luttmer (2005)’s results for the main respondent, without control variables. Without
control variables, a fully nonparametric kernel regression (local-linear) estimator is feasible. Standard errors for
the average partial derivatives and their ratio obtained by cluster bootstrap, 500 replications.

F.3 Estimates by response category in table form

(1) (2) (3) (4) (5) (6)
R≤1 R≤2 R≤3 R≤4 R≤5 R≤6

Own ln income -0.000281 0.00205 0.00829 0.0211∗∗ 0.0405∗∗∗ 0.0159∗

(-0.14) (0.73) (1.96) (2.95) (4.67) (2.05)
PUMA ln income -0.00798 -0.0151 -0.0242 -0.0448 -0.0891∗∗ -0.0480

(-1.16) (-1.62) (-1.69) (-1.93) (-2.75) (-1.65)
Ratio PUMA/own 28.44 -7.360 -2.920 -2.121 -2.198 -3.009
se(ratio) 201.4 10.82 2.211 1.330 0.896 2.288
Sample size 7939 7939 7939 7939 7939 7939

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4: Coefficients from a linear probability model for each response category. All regressions include the
controls from Table 2 and standard errors clustered by PUMA.

F.4 Relationship between the density at each threshold r and P (Ri = r)

Suppose that the causal effect were a constant ∂x1h(x, Ui) = β1 for all i. Then, Lemma

2 shows that γ1r would be equal to β1 · E[fH(τVi
(r)|Xi, Vi,Wi)] for each r.50 The quan-

tity E[fH(τVi
(r)|Xi, Vi,Wi)] is unobservable, but note that for any r ∈ {1, 2, . . . 6} the

observable probability P (Ri = r) = P (Ri ≤ r)− P (Ri ≤ r − 1) identifies the quantity

E[FH(τVi
(r)|Xi, Vi,Wi)− FH(τVi

(r − 1)|Xi, Vi,Wi)]

≈ E [{τVi
(r)− τVi

(r − 1)} · fH(τVi
(r)|Xi, Vi,Wi)]

where the approximation takes the density fH(τVi
(r)|Xi, Vi,Wi) to be roughly constant

on the interval [τVi
(r), τVi

(r − 1)]. This will be a good approximation if that interval is

small with high probability (i.e. in the limit of many categories), in which case P (Ri = r)

50This uses that since γ1r does not depend on x or w, we must have that E[fH(τVi
(r)|x, Vi, w)|Wi = w] =

E[fH(τVi
(r)|xi, Vi,Wi)] for all x and w.
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is roughly proportional to E[fH(τVi
(r)|Xi, Vi,Wi)], if E[τVi

(r)− τVi
(r− 1)] does not vary

much with r.

G Proofs

G.1 Proof of Lemma 1

Fix any v. First we show that if (8) holds for all r then Assumption MONO holds.

Indeed, suppose that for some h′ > h we had r(h′, v) < r(h, v). Substituting r = r(h′, v)

into (8), we would then have that r(h, v) > r(h′, v) =⇒ h > τv(r(h
′, v)) and hence that

h′ > τv(r(h
′, v)) since h′ > h. But h′ > τv(r(h

′, v)) violates the definition of τv, since then

h′ > sup{h ∈ H : r(h, v) ≤ r(h′, v)} ≥ h′.

Left-continuity of r holds by considering any increasing sequence of h converging to

τv(r), i.e. I show that limh↑τv(r) r(h, v) = r(τv(r), v). First, note that limh↑τv(r) r(h, v) >

r(τv(r), v) would violate weak monotonicity of r. Suppose instead that limh↑τv(r) r(h, v) =

r∗ where r∗ < r(τv(r), v). This limit exists by the increasing property of r. It must

then be the case that τv(r
∗) = τv(r). To see this, consider the two alternatives. For

τv(r
∗) < τv(r), there would need to exist an h∗ such that r(h∗, v) > r∗ but h∗ < τv(r).

This would violate limh↑τv(r) r(h, v) = r∗ given that r is increasing. Suppose instead

that τv(r
∗) > τv(r). Then there would need to exist an h∗ such that r(h∗, v) > r but

h∗ < τv(r). But h∗ < τv(r) implies that r(h∗, v) ≤ r given that r is increasing. Now,

given that τv(r
∗) = τv(r), r∗ < r(τv(r), v) would violate (8) for h = τv(r

∗), because

r(h, v) > r =⇒ h > τv(r).

Now we will show that if Assumption MONO holds then (8) is satisfied for all v, r.

First, note that τv(r) is weakly increasing in r, and thus r(h, v) ≤ r =⇒ τv(r(h, v)) ≤
τv(r) =⇒ h ≤ τv(r) since by the definition of τv(r): h ≤ τv(r(h, v)) for any h. Thus we

can establish the =⇒ direction of (8), without even invoking Assumption MONO. In the

other direction, assume that for some r and h, h ≤ τv(r) but r(h, v) > r. By the increasing

property of MONO: h ≤ τv(r) =⇒ r(h, v) ≤ r(τv(r), v). Thus r < r(h, v) ≤ r(τv(r), v)

and thus r(τv(r), v) > r, so r(·, v) must have a left discontinuity at τv(r).

G.2 Proof of Lemma 2

We begin by showing that under MONO, REGj, and the first part of EXOG ({Xi ⊥⊥
Vi} | Wi):

∂xj
P (Ri ≤ r|x,w)
= −E

{
fH(τVi

(r)|x, Vi, w) · ∂xj
QH|XVW (α|x, Vi, w)

∣∣
α=FH|XV W (τVi (r)|x,Vi,w)]

∣∣∣Wi = w
}

This result is of independent interest, because it shows that a regression of the distribution

of R on a component of X can be decomposed into a linear combination of quantile

regressions of H on X (conditional on V and W ). Beyond regularity conditions, this
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result only requires reporting heterogeneity V to be conditionally independent of variation

in Xj, and no independence assumptions regarding potential outcomes. To interpret this

result causally, we then add the second part of EXOG.

To see this, note that by the law of iterated expectation and Lemma 1:

P (Ri ≤ r|Xi = x,Wi = w) =

∫
dFUV |XW (u, v|x,w) · 1(r(h(x, u), v) ≤ r)

=

∫
dFUV |XW (u, v|x,w) · 1(h(x, u) ≤ τv(r))

=

∫
dFV |XW (v|x,w)

∫
dFU |XVW (u|x, v, w) · 1(h(x, u) ≤ τv(r))

=

∫
dFV |W (v|w) ·E [1(h(x, Ui) ≤ τv(r))|Xi = x, Vi = v,Wi = w]

=

∫
dFV |W (v|w) · P (Hi ≤ τv(r)|Xi = x, Vi = v,Wi = w)

where I have used {Xi ⊥⊥ Vi} |Wi in the second to last step to replace FV |XW with FV |W .

By differentiating the equation QH|XVW (FH|XVW (h|x, v)|x, v, w) = h with respect to

xj, we have:

∂xj
P (Hi ≤ h|Xi = x, Vi = v,Wi = w) = −fH(h|x, v, w)·∂xj

QH|XVW (α|x, v, w)
∣∣
α=FH|XV W (h|x,v,w)

By dominated convergence (using Assumption REG) we can move the derivative inside

the expectation, and thus:

∂xj
P (Ri ≤ r|x) = −

∫
dFV |W (v|w)·fH(τv(r)|x, v, w)·∂xj

QH|XVW (α|x, v, w)
∣∣
α=FH|XV W (τv(r)|x,v,w)

.

Now we bring in the second part of EXOG, which implies that {Xji ⊥⊥ Ui}|(X−j,i, Vi,Wi),

whereX−j,i denotes all of the components ofXi aside from the jth. The theorem of Hoder-

lein and Mammen (2007) implies that given this and REG:

∂xj
QH|XVW (α|x, v, w)

∣∣
α=FH|XV W (τv(r)|x,v,w)

= E
[
∂xj

h(x, Ui)|Hi = τv(r), x, v, w
]

Therefore:

∂xj
P (Ri ≤ r|x) = −

∫
dFV |W (v|w) · fH(τv(r)|x, v) ·E

[
∂xj

h(x, Ui)|Hi = τv(r), x, v
]

In the case where V is degenerate, a similar proof to the above is used in Chernozhukov

et al. (2019) to study derivatives of conditional choice probabilities in multinomial choice

models (under somewhat different regularity conditions).

In the proof of Theorem 1 in Hoderlein and Mammen (2007), the conditional expec-

tation function analogous to E
[
∂xj

h(x, Ui)|Hi = h,Xi = x, Vi = v,Wi = w
]
appearing in
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the expression for ∂xj
P (Ri ≤ r|Xi = x) is defined to be the following integral:∫

dt · t·
fH,∂xjh(x,U)|XVW (h, t|x, v, w)

fH|XVW (h|x, v, w) =

∫
dt · t · ∂t∂hP (Hi ≤ h, ∂xj

h(x, Ui) ≤ t|x, v, w)
∂hP (Hi ≤ h|x, v, w)∫

dt · t · ∂t
{
limϵ↓0 P (Hi ∈ [h, h+ ϵ], ∂xj

h(x, Ui) ≤ t|x, v, w)/ϵ
limϵ↓0 P (Hi ∈ [h, h+ ϵ]|x, v, w)/ϵ

}
∫

dt · t · ∂t
{
lim
ϵ↓0

P (∂xj
h(x, Ui) ≤ t, h(x, Ui) ∈ [h, h+ ϵ]|x, v, w)
P (h(x, Ui) ∈ [h, h+ ϵ]|x, v, w)

}
(42)

where fH|XVW and fH,∂xjh(x,U)|XVW exist and have a ratio that is dominated by an abso-

lutely integrable functionM ·c(t), by AssumptionREGj. Given that Ui is a random vector

in RdU with a well-defined probability distribution conditional on Xi = x, Vi = v,Wi = w,

the limit

lim
ϵ↓0

P (∂xj
h(x, Ui) ≤ t, h(x, Ui) ∈ (h, h+ ϵ]|x, v, w)
P (h(x, Ui) ∈ (h, h+ ϵ]|x, v, w)

yields a regular conditional probability distribution of ∂xj
h(x, Ui) given Hi = h(x, Ui) = h

(and Xi = x, Vi = v,Wi = w). See the result of Pfanzagl (1979) for details.

Under an interchange of the limit and the integral in (42), we could also write the

quantity E[∂xj
h(x, Ui)|Hi = h,Xi = x, Vi = v,Wi = w] as limϵ↓0E[∂xj

h(x, Ui)|Hi ∈
[h, h+ ϵ], Xi = x, Vi = v,Wi = w]. I employ this limit representation to offer an intuitive

description of the Lemma 2 estimand as a weighted average over ∂xj
h(x, Ui), among

individuals having Hi “near” τVi
(r), in the limit that ϵ ↓ 0.51 Sasaki (2015) shows how

such outcome-conditioned average derivatives can be written as an explicit integral over

the distribution of heterogeneity values Ui ∈ RdU such that h(x, Ui) = τv(r).

51One can also establish Lemma 2 intuitively by applying Theorem 2 and letting x′ → x (see Footnote 31).
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G.3 Proof of Theorem 1

Let βr(x, v, w) := E
[
∂xj

h(x, Ui)|Hi = τv(r), x, v, w
]
. Averaging Eq (12) over Xi,Wi

yields:

E[∂xj
P (Ri ≤ r|Xi,Wi)]

= −
∫

dFXW (x,w) ·
∫

dFV |W (v|w) · fH|XVW (τv(r)|x, v, w) · βr(x, v, w)

= −
∫

dFXW (x,w) ·
∫

dFV |XW (v|x,w) · fH|XVW (τv(r)|x, v, w) · βr(x, v, w)

= −
∫

dFXVW (x, v, w) · fH|XVW (τv(r)|x, v, w) · βr(x, v, w)

= −
∫

dFXVW |H(x, v, w|τv(r)) · fH(τv(r)) · βr(x, v, w)

= −
∫

dFV |H(v|τv(r)) · fH(τv(r))
∫

dFXW |V H(x,w|v, τv(r)) ·E
[
∂xj

h(Xi, Ui)|Hi = τv(r), x, v, w
]

= −
∫

dFV |H(v|τv(r)) · fH(τv(r)) ·E
[
∂xj

h(Xi, Ui)|Hi = τVi
(r), Vi = v

]
= −

∫
dFV (v) · fH|V (τv(r)|v) ·E

[
∂xj

h(Xi, Ui)|Hi = τVi
(r), Vi = v

]
using EXOG in the second step. Note that by Bayes’ rule:

dFV |H−τV (r)(v|0) = fH−τV (r)|V (0|v) ·
dFV (v)

fH−τV (r)(0)
= fH|V (τv(r)|v) ·

dFV (v)

fH−τV (r)(0)

and thus dFV (v) · fH|V (v|τv(r)) = fH−τV (r)(0) · dFV |H−τV (r)(v|0), where fH|V (τv(r)|v) =

fH−τV (r)|V (0|v) given that τV (r) is a constant given V = v. Note that existence of

fH−τV (r)(0) is guaranteed by Assumption REGj, since by integrating item four of REGj

we know that the density fH|V exists and thus the density fH−τV (r)|V exists as well. Thus:

E[∂xj
P (Ri ≤ r|Xi,Wi)]

= −
∫

dFV (v) · fH|V (τv(r)|v) ·E
[
∂xj

h(Xi, Ui)|Hi = τVi
(r), Vi = v

]
= −fH−τV (r)(0) ·

∫
dFV |H−τV (r)(v|0) ·E

[
∂xj

h(Xi, Ui)|Hi − τVi
(r) = 0, Vi = v

]
= −fH−τV (r)(0) ·E

[
∂xj

h(Xi, Ui)|Hi − τVi
(r) = 0

]
= −fH−τV (r)(0) ·E

[
∂xj

h(Xi, Ui)|Hi = τVi
(r)
]

G.4 Proof of Corollary 2

The proof will make use of the following lemma:

Lemma. Let B be a random variable and A a random vector, admitting a joint density

and satisfying A ⊥⊥ B. Let g be a scalar-valued differentiable function of A. Then if B

has a uniform distribution on an interval of the real line that contains the support of g(a),

it follows that A|{g(A) = B} ∼ A.
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Proof. Since g is differentiable, g(A), B admit a joint density by the multivariate change-

of-variables theorem. Using independence of A and B, we can write this joint density as

fg(A),B(t, b) = fg(A)(t) · fB(b). B then admits a density conditional on g(A) = B, which

is given by

fB|g(A)=B(b) =
fg(A),B(b, b)∫
fg(A),B(s, s)ds

=
fg(A)(b) · fB(b)∫
fg(A)(s) · fB(s)ds

Since B ∼ Unif [ℓ, u] for some ℓ, u we have that fB(s) = fB(s
∗) if s ∈ [ℓ, u] and zero

otherwise, where s∗ is an arbitrary point in [ℓ, u]. We can thus rewrite the above as

fB|g(A)=B(b) =
fB(s

∗) · fg(A)(b)

fB(s∗) ·
∫ u

ℓ
fg(A)(s)ds

· 1(ℓ ≤ b ≤ u) = fg(A)(b) · 1(ℓ ≤ b ≤ u)

where
∫ u

ℓ
fg(A)(s)ds =

∫
fg(A)(s)ds = 1 since supp{g(A)} ⊆ [ℓ, u].

For a (vectored-valued) t, consider the CDF of A conditional on g(A) = B, evaluated

at t:

P (A ≤ t|g(A) = B) =

∫
fB|g(A)=B(b) · P (A ≤ t|g(A) = B,B = b) · db

=

∫ u

ℓ

fg(A)(b) · P (A ≤ t|g(A) = b, B = b) · db

=

∫ u

ℓ

fg(A)(b) · P (A ≤ t|g(A) = b) · db

=

∫
fg(A)(b) · P (A ≤ t|g(A) = b) · db = P (A ≤ t)

where I’ve used that A ⊥⊥ B in the third equality, that supp{g(A)} ⊆ [ℓ, u] in the fourth,

and then finally the law of iterated expectations.

To ease notation, let τri = τVi
(r) and define τi to be a vector of τri across r ∈ R. Given

Vi ⊥⊥ Xi|Wi, it follows that τi ⊥⊥ Xi|Wi, and we can rewrite Eq. (12) as a one-dimensional

integral over τri (by redefining Vi = τi and using the law of total probability):

∂xj
P (Ri ≤ r|x,w)

= −
∫

dFτr|W (t|w) · fh(x,U)(t|τri = t, x, w) ·E
[
∂xj

h(x, Ui)|h(x, Ui) = t, τri = t, x, w
]

= −
∫

dFτr|W (t|w) · fh(x,U)(t|τri = t, x, w) ·E
[
∂xj

h(x, Ui)|h(x, Ui) = t, h(x, Ui) = τri, x, w
]

Under the assumption that τri|Wi ∼ Unif [ℓr, ur], we can replace dFτr|W (t|w) with dt
µr−ℓr

·
1(ℓr ≤ t ≤ µr). Using Vi ⊥⊥ Ui|Xi,Wi, we have fh(x,U)(t|τri = t, x, w) = fh(x,U)(t|x,w)
and by the Lemma above that the distribution of Ui conditional on h(x, Ui) = τri, Xi =

x,Wi = w is the same of the distribution of Ui|Xi = x,Wi = w. This implies that

E
[
∂xj

h(x, Ui)|h(x, Ui) = t, h(x, Ui) = τri, x, w
]
= E

[
∂xj

h(x, Ui)|h(x, Ui) = t, x, w
]
, and
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thus

∂xj
P (Ri ≤ r|x,w) = − 1

µr − ℓr
·
∫ ur

ℓr

dt · fh(x,U)(t|x,w) ·E
[
∂xj

h(x, Ui)|h(x, Ui) = t, x, w
]

Meanwhile:

E
[
∂xj

h(x, Ui)|x,w
]
=

∫
dt · fh(x,U)(t|x,w) ·E

[
∂xj

h(x, Ui)|h(x, Ui) = t, x, w
]

=

∫ ur

ℓr

dt · fh(x,U)(t|x,w) ·E
[
∂xj

h(x, Ui)|h(x, Ui) = t, x, w
]

using that supp{h(x, Ui)} ⊆ [µr, ℓr] in the second equality. Thus, ∂xj
P (Ri ≤ r|x,w) =

− 1
µr−ℓr

·E
[
∂xj

h(x, Ui)|x,w
]
.

G.5 Proof of Theorem 2

I begin with a heuristic overview: the detailed proof is below. The logic of the result

is as follows: for a given individual having Vi = v, Ri will be less than or equal to r

when Xi = x′, but not when Xi = x, if ∆i < 0 and h(x, Ui) ∈ (τv(r), τv(r) + |∆i|].
This event increases the value of P (Ri ≤ r|x,w′) − P (Ri ≤ r|x,w). On the other

hand, Ri will be less than or equal to r when Xi = x but not when Xi = x′ when

∆i > 0 and h(x, Ui) ∈ (τv(r) − ∆i, τv(r)]. This event instead decreases the value of

P (Ri ≤ r|x′, w)− P (Ri ≤ r|x,w). The RHS of Theorem 2 can be written as

E

{∫ τVi (r)

τVi (r)−∆i

dy · fH(y|∆i, Xi = x, Vi)

∣∣∣∣∣Wi = w

}
,

which averages over both positive and negative ∆i, covering both cases.

Now let us prove the result of Theorem 2. By the law of iterated expectations, Lemma

1, and then EXOG

P (Ri ≤ r|Xi = x′,Wi = w)− P (Ri ≤ r|Xi = x,Wi = w)

=

∫
dFUV |XW (u, v|x′, w) · 1(r(h(x′, u), v) ≤ r)−

∫
dFUV |XW (u, v|x,w) · 1(r(h(x, u), v) ≤ r)

=

∫
dFUV |XW (u, v|x′, w) · 1(h(x′, u) ≤ τv(r))−

∫
dFUV |XW (u, v|x,w) · 1(h(x, u) ≤ τv(r))

=

∫
dFV |W (v|w) · {P (h(x′, Ui) ≤ τv(r)|Xi = x′, v, w)− P (h(x, Ui) ≤ τv(r)|Xi = x, v, w)}

=

∫
dFV |W (v|w) · {P (h(x′, Ui) ≤ τv(r)|Xi = x, v, w)− P (h(x, Ui) ≤ τv(r)|Xi = x, v, w)}
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using that Xi ⊥⊥ Ui|Wi, Vi by EXOG in the last step. Thus:

P (Ri ≤ r|Xi = x′,Wi = w)− P (Ri ≤ r|Xi = x,Wi = w)

=

∫
dFV |W (v|w) · {P (h(x′, Ui) ≤ τv(r) but not h(x, Ui) ≤ τv(r)|x, v, w)

−P (h(x, Ui) ≤ τv(r) but not h(x
′, Ui) ≤ τv(r)|x, v, w)}

=

∫
dFV |W (v|w) · {P (h(x′, Ui) ≤ τv(r) < h(x, Ui)|x, v, w)− P (h(x, Ui) ≤ τv(r) < h(x′, Ui)|x, v, w)}

=

∫
dFV |W (v|w) · {P (h(x, Ui) ∈ (τv(r), τv(r)−∆i]|x, v, w)− P (h(x, Ui) ∈ (τv(r)−∆i, τv(r)]|x, v, w)}

=

∫
dFV |W (v|w) · {P (Hi ∈ (τv(r), τv(r)−∆i]|x, v, w)− P (Hi ∈ (τv(r)−∆i, τv(r)]|x, v, w)}

= −
∫

dFV |W (v|w) ·
∫

dF∆|XVW (∆|x, v, w) · {P (Hi ∈ (τv(r), τv(r)−∆]|∆, x, v, w)

−P (Hi ∈ (τv(r)−∆, τv(r)]|∆, x, v, w)}

= −
∫

dFV |W (v|w) ·
∫

dF∆|XVW (∆|x, v, w)
∫ τv(r)

τv(r)−∆

dy · fH(h|∆, x, v, w)

= −
∫

dFV |W (v|w) ·
∫

dF∆|VW (∆|x, v, w) · f̄H(τv(r)|∆, x, v, w) ·∆

= −
∫

dFV |W (v|w) ·E[f̄H(τv(r)|∆i, x, v, w) ·∆i|Vi = v,Wi = w]

= −E[f̄H(τVi
(r)|∆i, x, Vi, w) ·∆i|Wi = w]

using EXOG and with the definition f̄H(y|∆, x, v, w) := 1
∆

∫ y

y−∆
fH(h|∆, x, v, w)dh.

G.6 Proof of Proposition 1

To fix the scale normalization, suppose that g(x∗) = 1 for some x∗ ∈ X . Then, note that

by the fundamental theorem of calculus, we may write

log g(x) =

∫ x

x∗
∇ log g(x) ◦ dv =

J∑
j=1

∫ xj

x∗
j

∂xj
log g(x1, . . . xj−1, t, 0, . . . , 0)dt

where ◦ denotes a dot product and dv traces any continuous path in X from x∗ to x, for

example the one given after the second equality that integrates over each xj in turn.

If all components of X are continuous and there are no controls, then note that for

any x ∈ X we can identify ∂xj
g(x)/∂xk

g(x) = ∂xj
E[Ri|x]/∂xk

E[Ri|x] for any j, k ∈ 1 . . . J

by Eq. (17). By assumption that g(x) is homogeneous of degree one, we have that

g(λx) = λg(x). “Euler’s theorem” of homogeneous functions then implies that g(x) =∑J
j=1 ∂xj

g(x)·xj (this result can be obtained by differentiating g(λx) = λg(x) with respect

to λ and evaluating at λ = 1). Thus (∂xk
log g(x))−1 = g(x)

∂xkg(x)
= 1+

∑
j ̸=k

∂xj g(x)

∂xkg(x)
·xj. We
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now arrive at a constructive expression for g(x) in terms of observables

g(x) = e

∫ xj
x∗
j

(
1+

∑
j ̸=k

∂xjE[Ri|(x1,...xj−1,t,0,...,0)]

∂xk
E[Ri|(x1,...xj−1,t,0,...,0)]

·xj

)−1

dt
(43)

G.7 Proof of Proposition 3

For any x and x′ that differ in component Xj only:

P (Ri ≤ r|Xi = x′, Ai)− P (Ri ≤ r|Xi = x,Ai)

= E[1(Hi ≤ τVi
(r))|x′, Ai]−E[1(Hi ≤ τVi

(r))|x,Ai]

=

∫
dFV |XA(v|x′, Ai) ·E[1(Hi ≤ τv(r))|x′, v, Ai]−

∫
dFV |XA(v|x,Ai) ·E[1(Hi ≤ τv(r))|x, v, Ai]

=

∫
dFV |XA(v|x,Ai) · {E[1(h(x′, Ui) ≤ τv(r))|x′, v, Ai]−E[1(h(x, Ui) ≤ τv(r))|x, v, Ai]}

=

∫
dFV |XA(v|x,Ai) · {E[1(h(x′, Ui) ≤ τv(r))− 1(h(x, Ui) ≤ τv(r))|x, v, Ai]}

=

∫
dFV |XA(v|x,Ai) · {E[1(h(x′, Ui) ≤ τv(r) < h(x, Ui))|x, v, Ai]}

−
∫

dFV |XA(v|x,Ai) · {E[1(h(x, Ui) ≤ τv(r) < h(x′, Ui))|x, v, Ai]} (44)

where in the second equality I have used that {Xji ⊥⊥ Vi}|(Ai,Wi) so that FV |XA(v|x′, a) =

FV |XA(v|x, a) for all a, and in the fourth equality that {Xji ⊥⊥ Ui}|(Ai,Wi, Vi) so that

E[1(h(x′, Ui) ≤ τv(r))|Xi = x′, Vi = v, Ai] = E[1(h(x′, Ui) ≤ τv(r))|Xi = x, Vi = v,Ai]

Given (44), we have that

E[Ai · {P (Ri ≤ r|x′, Ai)− P (Ri ≤ r|x,Ai)}|Xi = x]

=

∫
dFA|X(a|x) · a ·

∫
dFV |XA(v|x, a) · {E[1(h(x′, Ui) ≤ τv(r) < h(x, Ui)|x, v, a]}

−
∫

dFA|X(a|x) · a ·
∫

dFV |XA(v|x, a) · {E[1(h(x, Ui) ≤ τv(r) < h(x′, Ui)|x, v, a]}

= E[Ai · 1(h(x′, Ui) ≤ τVi
(r) < h(x, Ui))|Xi = x]−E[Ai · 1(h(x, Ui) ≤ τVi

(r) < h(x′, Ui))|Xi = x]

and similarly

E[P (Ri ≤ r|x′, Ai)− P (Ri ≤ r|x,Ai)|Xi = x]

= E[1(h(x′, Ui) ≤ τVi
(r) < h(x, Ui))|Xi = x]−E[1(h(x, Ui) ≤ τVi

(r) < h(x′, Ui))|Xi = x]
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Note that assuming the numerator and denominator below both exist, we can write

E[Ai · ∂xj
P (Ri ≤ r|Xi = x,Ai)|Xi = x]

E[∂xj
P (Ri ≤ r|Xi = x,Ai)|Xi = x]

=
limx′↓x

1
||x′−x|| ·E[Ai · {P (Ri ≤ r|x′, Ai)− P (Ri ≤ r|x,Ai)}|Xi = x]

limx′↓x
1

||x′−x|| ·E[P (Ri ≤ r|x′, Ai)− P (Ri ≤ r|x,Ai)|Xi = x]

= lim
x′↓x

����1
||x′−x|| ·E[Ai · {P (Ri ≤ r|x′, Ai)− P (Ri ≤ r|x,Ai)}|Xi = x]

��
��1

||x′−x|| ·E[P (Ri ≤ r|x′, Ai)− P (Ri ≤ r|x,Ai)|Xi = x]

= lim
x′↓x

E[Ai · {P (Ri ≤ r|x′, Ai)− P (Ri ≤ r|x,Ai)}|Xi = x]

E[P (Ri ≤ r|x′, Ai)− P (Ri ≤ r|x,Ai)|Xi = x]

where x′ is a sequence of vectors that differ from x only in the jth component, and I’ve

assumed dominated convergence so that we can interchange the limits and expectations.

Thus, by the above:

E[Ai · ∂xj
P (Ri ≤ r|Xi = x,Ai)|Xi = x]

E[∂xj
P (Ri ≤ r|Xi = x,Ai)|Xi = x]

= lim
x′↓x

E[Ai · 1(h(x′, Ui) ≤ τVi
(r) < h(x, Ui))|Xi = x]

E[1(h(x′, Ui) ≤ τVi
(r) < h(x, Ui))|Xi = x]−E[1(h(x, Ui) ≤ τVi

(r) < h(x′, Ui))|Xi = x]

− lim
x′↓x

E[Ai · 1(h(x, Ui) ≤ τVi
(r) < h(x′, Ui))|Xi = x]

E[1(h(x′, Ui) ≤ τVi
(r) < h(x, Ui))|Xi = x]−E[1(h(x, Ui) ≤ τVi

(r) < h(x′, Ui))|Xi = x]

(45)

Suppose for example that ∂xj
h(x, Ui) ≥ 0 with probability one. Then:

E[Ai · ∂xj
P (Ri ≤ r|Xi = x,Ai)|Xi = x]

E[∂xj
P (Ri ≤ r|Xi = x,Ai)|Xi = x]

= lim
x′↓x

E[Ai · 1(h(x′, Ui) ≤ τVi
(r) < h(x, Ui))|Xi = x]

E[1(h(x′, Ui) ≤ τVi
(r) < h(x, Ui))|Xi = x]

= lim
x′↓x

P (h(x′, Ui) ≤ τVi
(r) < h(x, Ui)|Xi = x) ·E[Ai|h(x′, Ui) ≤ τVi

(r) < h(x, Ui), Xi = x]

P (h(x′, Ui) ≤ τVi
(r) < h(x, Ui)|Xi = x)

= lim
x′↓x

E[Ai|h(x′, Ui) ≤ τVi
(r) < h(x, Ui), Xi = x] = E[Ai|h(x, Ui) = τVi

(r), Xi = x]

= E[Ai|Hi = τVi
(r), Xi = x]

provided that the RHS of the last line is well-defined. Similarly, if ∂xj
h(x, Ui) ≤ 0

with probability one, then the LHS above evaluates to limx′↓x E[Ai|h(x, Ui) ≤ τVi
(r) <

h(x′, Ui), Xi = x] = E[Ai|Hi = τVi
(r), Xi = x] and we thus obtain the same expression.
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More generally, if the sign of treatment effects vary by unit:

E[Ai · ∂xj
P (Ri ≤ r|Xi = x,Ai)|Xi = x]

E[∂xj
P (Ri ≤ r|Xi = x,Ai)|Xi = x]

= lim
x′↓x

P (h(x′, Ui) ≤ τVi
(r) < h(x, Ui)|Xi = x) ·E[Ai|h(x′, Ui) ≤ τVi

(r) < h(x, Ui), Xi = x]

P (h(x′, Ui) ≤ τVi
(r) < h(x, Ui)|Xi = x)− P (h(x, Ui) ≤ τVi

(r) < h(x′, Ui)|Xi = x)

− lim
x′↓x

P (h(x, Ui) ≤ τVi
(r) < h(x′, Ui)|Xi = x) ·E[Ai|h(x, Ui) ≤ τVi

(r) < h(x′, Ui), Xi = x]

P (h(x′, Ui) ≤ τVi
(r) < h(x, Ui)|Xi = x)− P (h(x, Ui) ≤ τVi

(r) < h(x′, Ui)|Xi = x)

(46)

and the estimand
E[Ai·∂xjP (Ri≤r|Xi=x,Ai)|Xi=x]

E[∂xjP (Ri≤r|Xi=x,Ai)|Xi=x]
yields a non-convex combination ofE[Ai|1(h(x, Ui) ≤

τVi
(r) < h(x′, Ui), Xi = x] and E[Ai|1(h(x′, Ui) ≤ τVi

(r) < h(x, Ui), Xi = x].

A sufficient condition for ∂xj
h(x, Ui) to have the same sign for all i “uniformly” in the

above sense is that for all x′ within some neighborhood of x, h(x′, Ui) is either strictly

increasing or strictly decreasing in component j of x′, for all Ui. Specifically, let x′(δ)

be the vector x but with δ added to the jth component. Then, for some δ̄ > 0, we have

we have that P (h(x, Ui) ≥ h(x′(δ), Ui)) = 1 or P (h(x, Ui) ≥ h(x′(δ), Ui)) = 0 for any

δ ≤ δ̄ (i.e. x′ and x are sufficiently close). Then given that E[Ai|Hi = τVi
(r), Xi = x] is

well-defined we have either that limx′↓x
P (h(x′,Ui)≤τVi (r)<h(x,Ui)|Xi=x)

P (h(x,Ui)≤τVi (r)<h(x′,Ui)|Xi=x)
= 0 if ∂xj

h(x, Ui) ≥ 0

with probability one, or that limx′↓x
P (h(x,Ui)≤τVi (r)<h(x′,Ui)|Xi=x)

P (h(x′,Ui)≤τVi (r)<h(x,Ui)|Xi=x)
= 0 if ∂xj

h(x, Ui) ≤ 0

with probability one. In either case one term of (46) evaluates to zero and the other to

E[Ai|Hi = τVi
(r), Xi = x].

To see that (32) holds under the stronger condition that {Xji ⊥⊥ (Ai, Ui, Vi)}|Wi, we

have in this case by similar steps as above:

E[Ai · 1(Ri ≤ r)|Xi = x′]−E[Ai · 1(Ri ≤ r)|Xi = x]

= E[Ai · 1(Hi ≤ τVi
(r))|x′]−E[Ai · 1(Hi ≤ τVi

(r))|x]

=

∫
dFV A|X(v, a|x′) · a ·E[1(Hi ≤ τv(r))|x′]−

∫
dFV A|X(v, a|x) · a ·E[1(Hi ≤ τv(r))|x]

=

∫
dFV A|X(v, a|x) · a · {E[1(h(x′, Ui) ≤ τv(r))|x′]−E[1(h(x, Ui) ≤ τv(r))|x]}

=

∫
dFV A|X(v, a|x) · a · {E[1(h(x′, Ui) ≤ τv(r))− 1(h(x, Ui) ≤ τv(r))|x]}

=

∫
dFV A|X(v, a|x) · a · {E[1(h(x′, Ui) ≤ τv(r) < h(x, Ui))|x]}

−
∫

dFV A|X(v, a|x) · a · {E[1(h(x, Ui) ≤ τv(r) < h(x′, Ui))|x]}

= E[Ai · {1(h(x′, Ui) ≤ τVi
(r) < h(x, Ui))− 1(h(x, Ui) ≤ τv(r) < h(x′, Ui))}|Xi = x]

(47)

using that {Xji ⊥⊥ (Vi, Ai)}|Wi so that FV A|X(v, a|x′) = FV A|X(v, a|x) for all a in the
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third equality. Similarly:

P (Ri ≤ r)|Xi = x′)− P (Ri ≤ r)|Xi = x)

= E[1(h(x′, Ui) ≤ τVi
(r) < h(x, Ui))− 1(h(x, Ui) ≤ τv(r) < h(x′, Ui))|Xi = x] (48)

And thus

∂xj
E[Ai · 1(Ri ≤ r)|Xi = x]

∂xj
P (Ri ≤ r|Xi = x)

= lim
x′↓x

E[Ai · 1(Ri ≤ r)|Xi = x′]−E[Ai · 1(Ri ≤ r)|Xi = x]

P (Ri ≤ r)|Xi = x′)− P (Ri ≤ r)|Xi = x)

under suitable regularity conditions to take the derivative outside of the expectation.

Given (47) and (48), the above yields the same estimand as (45), again simplifying to

E[Ai|h(x, Ui) = τVi
(r), Xi = x] given the common sign of derivative ∂xj

h(x, Ui) across all

individuals i.

G.8 Proof of Proposition 4

By the law of iterated expectations: E[Ri|Xi = x,Wi = w] =
∫
dFV |W (v|w) ·

∫
dh ·r(h, v) ·

fH(h|x, v, w). Now use REG to move the derivative inside the integral:

∂xj
E[Ri|Xi = x,Wi = w] =

∫
dFV |W (v|w) ·

∫
dh · r(h, v) · ∂xj

fH(h|x, v, w)

Theorem 1 of Kasy (2022) (for a one-dimensional outcome) implies that ∂xj
fH(h|x, v, w) =

− ∂
∂h

{
fH(h|x, v, w) ·E

[
∂xj

h(x, Ui)|Hi = h, x, v, w
]}
. Thus

∂xj
E[Ri|x,w] = −

∫
dFV |W (v|w)

∫
dh · r(h, v) · ∂

∂h

{
fH(h|x, v, w) ·E

[
∂xj

h(x, Ui)|Hi = h, x, v, w
]}

Now use integration by parts, applying the assumed boundary condition eliminates the

first term, establishing the result:

∂xj
E[Ri|x,w] = 0 +

∫
dFV |W (v|w)

∫
dh · r′(h, v) · fh(h|x, v, w) ·E

[
∂xj

h(x, Ui)|Hi = h, x, v, w
]

G.9 Proof of Proposition 5

With the substitution h = τv(r), dr = r′(h, v) · dh:

∑
r

∫ τv(r)

τv(r)−∆

dy · fH(y|∆, x, v, w)
R→ R̄ ·

∫
dr

∫ τv(r)

τv(r)−∆

dy · fH(y|∆, x, v, w)

= R̄ ·
∫

dh · r′(h, v)
∫ h

h−∆

dy · fH(y|∆, x, v, w) = R̄ ·
∫

dy

∫ y+∆

y

dh · r′(h, v) · fH(y|∆, x, v, w)

= R̄ ·
∫

dy ·∆ · r̄′(y,∆, v) · fH(y|∆, x, v, w) = ∆ · R̄ ·E[r̄′(Hi,∆, v)|∆i = ∆, Xi = x, Vi = v,Wi = w]
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where r̄′(y,∆, v) := 1
∆

∫ y+∆

y
r′(h, v)dh. Thus:

E[Ri|Xi = x′,Wi = w]−E[Ri|Xi = x,Wi = w]

= R̄ ·
∫

dFV |W (v|w) ·
∫

dF∆|XVW (∆|x, v, w) ·∆ ·E[r̄′(Hi,∆, v)|∆i = ∆, Xi = x, Vi = v,Wi = w]

= R̄ ·
∫

dFV |W (v|w) ·
∫

dF∆|XVW (∆|x, v, w) ·E[∆ · r̄′(Hi,∆, v)|∆i = ∆, Xi = x, Vi = v,Wi = w]

= R̄ ·
∫

dFV |W (v|w) ·E [E[∆i · r̄′(Hi,∆i, Vi)|∆i = ∆, Xi = x, Vi = v]|Xi = x, Vi = v]

= R̄ ·
∫

dFV |W (v|w) ·E[∆i · r̄′(Hi,∆i, Vi)|Xi = x, Vi = v,Wi = w]

= R̄ ·E[∆i · r̄′(Hi,∆i, Vi)|Xi = x,Wi = w]

Note that if we assume that ∆i and r̄′(Hi,∆i, Vi) are uncorrelated conditional on Xi =

x,Wi = w, this reduces to

E[Ri|Xi = x′]−E[Ri|Xi = x] = R̄ ·E[∆i|Xi = x] ·E[r̄′(Hi,∆i, Vi)|Xi = x]

G.10 Proof of Proposition 6

Starting with Proposition 5, observe that r̄′(y,∆, v) := 1
∆

∫ y+∆

y
r′(h, v)dh is equal to

r′(v) ·



y−(ℓ(v)−∆)
|∆| · 1(y ∈ [ℓ(v)−∆, ℓ(v)]) + 1(y ∈ [ℓ(v), µ(v)−∆])

+µ(v)−y
∆

· 1(y ∈ [µ(v)−∆, µ(v)]) if ∆ > 0

y−ℓ(v)
∆

· 1(y ∈ [ℓ(v), ℓ(v) + |∆|]) + 1(y ∈ [ℓ(v) + |∆|, µ(v)])
+µ(v)+|∆|−y

|∆| · 1(y ∈ [µ(v), µ(v) + |∆|]) if ∆ < 0

where r′(v) = |R|
ℓ(v)−µ(v)

. To ease notation, let us for the moment make the conditioning

implicit and let f(y) denote fH(y|∆, x, v, w) and F (y) the corresponding conditional

CDF. Let us keep v also implicit in both ℓ and µ. If we let ϕ denote the quantity
1

r′(v)

∫
dy · r̄′(y,∆, v) for a fixed ∆, then:

ϕ =



[F (ℓ)− F (ℓ−∆)]E
[

Hi−(ℓ−∆)
∆

∣∣∣Hi ∈ [ℓ−∆, ℓ]
]
+ F (µ−∆)

−F (ℓ) + [F (µ)− F (µ−∆)]E
[
µ−Hi

∆

∣∣Hi ∈ [µ−∆, µ]
]

if ∆ > 0

[F (ℓ+ |∆|)− F (ℓ)]E
[

Hi−ℓ
|∆|

∣∣∣Hi ∈ [ℓ, ℓ+ |∆|]
]
+ F (µ)

−F (ℓ+ |∆|) + [F (µ+ |∆|)− F (µ)]E
[

µ+∆−Hi

|∆|

∣∣∣Hi ∈ [µ, µ+ |∆|]
]

if ∆ < 0

(49)
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To get a lower bound on ϕ, we use the assumption that f(y) is increasing on the interval

[ℓ− |∆|, ℓ+ |∆|], as well as decreasing on the interval [µ− |∆|, µ+ |∆|]:

ϕ ≥

1
2
[F (ℓ)− F (ℓ−∆)] + F (µ−∆)− F (ℓ) + 1

2
[F (µ)− F (µ−∆)] if ∆ > 0

1
2
[F (ℓ+ |∆|)− F (ℓ)] + F (µ)− F (ℓ+ |∆|) + 1

2
[F (µ+ |∆|)− F (µ)] if ∆ < 0

=

1
2
[F (µ−∆)− F (ℓ−∆)] + 1

2
[F (µ)− F (ℓ)] if ∆ > 0

1
2
[F (µ+ |∆|)− F (ℓ+ |∆|)] + 1

2
[F (µ)− F (ℓ)] if ∆ < 0

=
1

2
[F (µ−∆)− F (ℓ−∆)] +

1

2
[F (µ)− F (ℓ)]

=
1

2
[F (µ(v)|∆, x′, v)− F (ℓ(v)|∆, x′, v)] +

1

2
[F (µ(v)|∆, x, v, w)− F (ℓ(v)|∆, x, v, w)],

reintroducing conditioning values with the notation F (·|∆, x, v, w) := FH|∆XVW (·|∆, x, v, w).

A lower bound on the weight Πx,x′ on causal effects in E[Ri|x′, w]− E[Ri|x,w] can thus

given by averaging over Vi (c.f. Proposition 5):

Πx,x′ ≥
∫

dFV |W (v|w) ·
∫

dF (∆|x, v, w) ·
{
1

2
[F (µ(v)|∆, x′, v, w)− F (ℓ(v)|∆, x′, v, w)]

+
1

2
[F (µ(v)|∆, x, v, w)− F (ℓ(v)|∆, x, v, w)]

}
Note that this exactly the same as the average between the weights Πx and Πx′ corre-

sponding to using continuous variation at Xi = x and Xi = x′, respectively. For example

(c.f. Eq. 36):

Πx =

∫
dFV |W (v|w) ·

∫
dF (∆|x, v, w) · [F (µ(v)|∆, x, v, w)− F (ℓ(v)|∆, x, v, w)]

This leads to the lower bound of Πx,x′/(1
2
Πx +

1
2
Πx′) ≥ 1 in Proposition 5.

Now, to obtain an upper bound, notice that an upper bound on ϕ occurs if we imagine

putting all of the mass in each of the interval conditional expectations in (49) to the right

in the intervals that depend on ℓ, and at the left end for the intervals that depend on µ.

Then:

ϕ ≤

���F (ℓ)− F (ℓ−∆) +������
F (µ−∆)−���F (ℓ) + F (µ)−������

F (µ−∆) if ∆ > 0

������F (ℓ+ |∆|)− F (ℓ) +���F (µ)−������F (ℓ+ |∆|) + F (µ+ |∆|)−���F (µ) if ∆ < 0

=

F (µ)− F (ℓ−∆) if ∆ > 0

= F (µ+ |∆|)− F (ℓ) if ∆ < 0
=

F (µ(v)|∆, x, v, w)− F (ℓ(v)|∆, x′, v, w) if ∆ > 0

F (µ(v)|∆, x′, v, w)− F (ℓ(v)|∆, x, v, w) if ∆ < 0

where I’ve used that F (y|∆, x′, v, w) = F (y − ∆|∆, x, v, w) in the last step. An upper

bound for ϕ that applies to both cases can be obtained by adding them together:

ϕ ≤ F (µ(v)|∆, x, v, w)−F (ℓ(v)|∆, x, v, w)+F (µ(v)|∆, x′, v, w)−F (ℓ(v)|∆, x′, v, w) (50)
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where I’ve used that F (µ) ≥ F (ℓ − ∆) and F (µ + |∆|) ≥ F (ℓ) are implied by the

assumption that f(y) is increasing on the interval [ℓ− |∆|, ℓ + |∆|], while decreasing on

the interval [µ− |∆|, µ+ |∆|], which implies that µ− |∆| ≥ ℓ+ |∆|.
Thus, an upper bound on the weight Πx,x′ on causal effects in E[Ri|x′, w]−E[Ri|x,w]

is:

Πx,x′ ≥
∫

dFV |W (v|w) ·
∫

dF∆|XVW (∆|x, v, w) · {F (µ(v)|∆, x′, v, w)− F (ℓ(v)|∆, x′, v, w)

+F (µ(v)|∆, x, v, w)− F (ℓ(v)|∆, x, v, w)}

leading to the upper bound of Πx,x′/(1
2
Πx +

1
2
Πx′) ≤ 2 in Proposition 5.

Now consider the final condition in Proposition 5. That Πx,x′/Πx ≥ 1/2 follows from

the above since F (µ(v)|∆, x′, v, w) − F (ℓ(v)|∆, x′, v, w) ≥ 0 for all ∆, x, v, w. For the

upper bound we have

Πx

Πx,x′
≥
E

{
NB(x,Vi,w)
µ(Vi)−ℓ(Vi)

∣∣∣Xi = x,Wi = w
}

E

[
1

µ(Vi)−ℓ(Vi)

∣∣∣]
=
E

[
1

µ(Vi)−ℓ(Vi)

∣∣∣Xi = x,Wi = w
]
·NB(x,w)− Cov

[
1

µ(Vi)−ℓ(Vi)
, NB(x, Vi, w)

∣∣∣Xi = x,Wi = w
]

E

{
1

µ(Vi)−ℓ(Vi)

∣∣∣Xi = x,Wi = w
}

≥ NB(x,w)−

√√√√√√V ar
[

1
µ(Vi)−ℓ(Vi)

∣∣∣Xi = x,Wi = w
]

E

{
1

µ(Vi)−ℓ(Vi)

∣∣∣Xi = x,Wi = w
}2 · V ar [NB(x, Vi, w)|Xi = x,Wi = w]

≥ NB(x,w)− V ar [NB(x, Vi, w)|Xi = x,Wi = w]

≥ NB(x,w)−NB(x,w) · (1−NB(x,w)) = NB(x,w)2

where NB(x, v, w) := P (0 < Ri < R̄|x, v, w) = P (ℓ(Vi) ≤ Hi ≤ µ(Vi)|x, v, w) and

NB(x,w) = E[NB(x, Vi, w)|x,w] is the observable probability of not bunching given

(Xi,Wi) = (x,w). The third inequality uses the assumption that
V ar

[
1

µ(Vi)−ℓ(Vi)

∣∣∣x,w]
E

{
1

µ(Vi)−ℓ(Vi)

∣∣∣x,w}2 ≤

V ar [NB(x, Vi, w)|x,w] and the last one that V ar [NB(x, Vi, w)|x,w] ≤ NB(x,w) · (1−
NB(x,w)) since NB(x, v, w) ∈ [0, 1] for all x, v, w.

From this notation, we obtain the form written in Proposition 6 by noting that

NB(Xi, Vi,Wi) = 1− Bi. Note that V ar [NB(x, Vi, w)|x,w] = V ar [Bi|x,w].
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